Советы

Будущее наших смартфонов в графитовых батареях? Алюминий-ионные батареи со сверхбыстрой зарядкой.

Будущее наших смартфонов в графитовых батареях? Алюминий-ионные батареи со сверхбыстрой зарядкой.

Сегодня смартфоны, независимо от производителя и моделей, имеют одну и ту же повторяющуюся проблему – автономность, время работы устройства от одной подзарядки. Если сегодня одним из самых популярных и самых автономных смартфонов является Galaxy Note, то время его работы было бы несколько лет назад просто смешным. Раньше телефон можно было зарядить и целую неделю не думать о том, что нужно поискать розетку и зарядное устройство. Теперь инженеры и исследователи находятся в поисках более современного аккумулятора или новых технологий.

Группа исследователей из Университета Вандербильта (штат Теннесси) смогла создать прототип революционной батареи. Представьте себе возможность заряжать смартфон всего за несколько секунд и при этом он потом сможет проработать несколько недель.

Но нам придется отказаться от нынешнего типа батарей, которые могут оказаться в ближайшее будущее атавизмом, ведь в будущем батареи будут представлять собой супер-конденсаторы. Работать они будут на кремниевом чипе с графеном, который за счет своей пористой структуры будет собирать на себе заряд. Если попытаться найти аналог, то представьте себе пористый сыр, а сам материал имеет огромное преимущество для хранения электроэнергии.

Прототип батареи был создан путем объединения оксида графена с гидразином в воде с использованием ультразвука. Полученное вещество потом нагревается до 140 градусов по Цельсию и затем в течение 5 часов выдерживают под давлением 300кг/см2. В конце концов, получается чрезвычайно пористый графен. Всего 1 грамм такого вещества имеет площадь поверхности больше, чем баскетбольная площадка. К примеру, если заряжать всего 3 секунды грамм такого материала, то заряда хватит на горение светодиода в течение 5 минут.

С такими возможностями в будущем вопрос подзарядки уже будет полностью исключён. Также есть и другая вторичная положительная черта – смартфоны могут быть еще тоньше и легче. Батарея будущего с использованием новой технологии сможет отработать до 5000 циклов, что хватит примерно на 100 лет, а также она будет гибкой и сам материал еще биоразлагаемый.

Очевидно, что с такими свойствами графен станет очень популярным материалом для производства смартфонов, но его наверняка станут использовать и в других сферах – автомобили, компьютеры и т.д.

Ученые из Стэнфордского университета изобрели первый высокопроизводительный алюминиевый аккумулятор, который быстро заряжается, долговечен и недорог. Исследователи говорят, что новая технология является безопасной альтернативой многих массово-производимых батарей сегодня.

«Мы разработали алюминиевый аккумулятор, который может заменить существующие устройства хранения энергии, такие как щелочные батареи, которые вредны для окружающей среды, а также литий-ионные батареи, которые иногда возгораются», - сказал Хонгжие Дай, профессор химии в Стэнфордском университете. «Наша новая батарея не загорится, даже если вы просверлите её насквозь.»

Профессор Дай и его коллеги описывают новые аккумуляторы в журнале Nature как: «сверх-быстро-перезаряжаемые алюминиево-ионные аккумуляторы».

Алюминий уже давно стал привлекательным материалом для батарей, в основном из-за его низкой стоимости, низкой горючести и высокой емкости заряда. В течение многих десятилетий исследователи безуспешно пытались разработать коммерчески жизнеспособную алюминий-ионную батарею. Основной задачей было найти материалы, способные производить достаточное напряжение после нескольких циклов заряда-разряда.

Графитовый катод

Алюминий-ионный аккумулятор состоит из двух электродов: отрицательно заряженный анод из алюминия и положительно заряженный катод.

«Люди пробовали различные виды материалов для катода,» сказал Дай. «Мы случайно обнаружили, что простое решение заключается в использовании графита, который состоит в основном из углерода. В нашем исследовании мы определили несколько типов графитового материала, которые дают нам очень хорошую производительность.»

В экспериментальных батареях, команда Стэнфордского университета помещала в алюминиевый анод и графитовый катод в ионный жидкий электролит, в гибкий полимерный пакет с покрытием.

Исследователи Стэндфордского университета за работой над алюминиево-ионным аккуумлятором

«Электролит в основном состоит из растворов солей, а это жидкость при комнатной температуре, поэтому это очень безопасно,» - сказал аспирант Стэнфорда Мин Гун. «Алюминиевые батареи безопаснее, чем обычные литий-ионные батареи, используемые в миллионах портативных компьютеров и мобильных телефонов на сегодняшний день, добавил профессор Дай. «Литий-ионные батареи могут стать причиной возникновения пожара», сказал он. В качестве примера он указал на недавнее решение авиакомпании Юнайтед энд Дельта, запрещающее перевозить литиевые батареи на пассажирских самолетах.

«В нашем исследовании на видео мы показываем, что вы можете просверлить аккумуляторную оболочку, но они будут продолжать работу некоторое время и не загорятся», - сказал Дай.

Одним из достоинств аккумуляторов является их является ультра-быстрая зарядка. Владельцы смартфонов знают, что это может занять несколько часов, при зарядке литий-ионных аккумуляторов. Разработчики новых аккумуляторов заявили «беспрецедентную скорость», до одной минуты у прототипа аккумулятора.

Долговечность является еще одним важным фактором. Алюминиевые батареи, разработанные в других лабораториях обычно теряют емкость уже всего после 100 циклов заряда-разряда. Батарея Стэнфордского университета в состоянии выдержать более 7500 циклов без какой-либо потери мощности. «Это первая модель алюминиево-ионных батарей, с ультра-быстрой зарядкой, со стабильностью в тысячи циклов», - пишут авторы. Для сравнения: типичный литий-ионный аккумулятор выдерживает около 1000 циклов.

«Другой особенностью алюминиевой батареи является гибкость,» - сказал Гонг. «Вы можете согнуть его и сложить, поэтому у аккумулятора есть потенциал для применения в гибких электронных устройствах. Алюминий также более дешевый металл, чем литий.»

Применение

В дополнение к использованию в портативных электронных устройствах, алюминиевые батареи могут быть использованы для хранения возобновляемой энергии в электросетях.

«Сетям нужна батарея с длительным жизненным циклом, которые могут быстро накапливать и выделять энергию», - объяснил Дай. «Наши последние неопубликованные данные свидетельствуют о том, что алюминиевую батарею можно заряжать десятки тысяч раз. Трудно представить себе строительство огромного литий-ионного хранилища для сетевого резервирования.»

«Алюминий-ионная технология также предлагает экологически чистую альтернативу одноразовым щелочным батареям», - сказал Дай. «Миллионы потребителей используют элементы типа АА и ААА напряжением 1,5 вольт. Наш аккумулятор генерирует около двух вольт электричества. Это выше, чем кто-либо добился с алюминием, но дальнейшее улучшение аккумулятора позволит достичь напряжения литий-ионных батарей » - добавил он.

«Пока плотность хранения алюминиево-ионных аккумуляторов составляет около 40 Вт*час/кг, в то время как у литий-ионных 100-206 Вт*час/кг. Но улучшение катодного материала, в конечном итоге, может увеличить напряжение и плотность энергии. В противном случае, наша батарея уже имеет все, что вы хотели иметь в батарее: недорогие электроды, хорошую безопасность, высокоскоростная зарядка, гибкость и длительный срок службы » - сообщил профессор Хонгжие Дай.

Почти тридцатилетний поиск путей совершенствования алюминий-ионного аккумулятора приближается к своему финалу. Первый аккумулятор с алюминиевым анодом, способный быстро заряжается, при этом недорогой и долговечный, разработали ученые из Стэнфордского университета.

Исследователи уверенно заявляют, что их детище вполне может стать безопасной альтернативой литий-ионным аккумуляторам, всюду применяющимся сегодня, а также щелочным батарейкам, которые экологически вредны.

Не лишним будет вспомнить, что литий-ионные аккумуляторы порой возгораются. Профессор химии Хонгжи Дай уверен, что его новая батарея не загорится, даже если просверлить её насквозь. Коллеги профессора Дайя охарактеризовали новые аккумуляторы как «сверхбыстро перезаряжаемые алюминий-ионные аккумуляторы».

В силу низкой стоимости, пожаробезопасности, и способности создавать значительную электроемкость, алюминий уже давно привлек внимание исследователей, однако многие годы ушли на создание коммерчески жизнеспособной алюминий-ионной батареи, которая могла бы производить достаточное напряжение даже после многих циклов заряда-разряда.

Ученым нужно было преодолеть многие препятствия, в числе которых: распад материала катода, низкое напряжение разряда ячейки (около 0,55 вольт), потеря емкости и недостаточный жизненный цикл (менее 100 циклов), быстрая потеря мощности (от 26 до 85 процентов спустя 100 циклов).

Теперь же ученые представили аккумуляторную батарею на основе алюминия с высокой стабильностью, в который они использовали металлический анод из алюминия в паре с катодом из трехмерной графитовой пены. До этого было перепробовано много разных материалов для катода, и решение в пользу графита было найдено совершенно случайно. Ученые из группы Хонгжи Дайя определили несколько типов графитового материала, которые показывают весьма высокую производительность.

В своих экспериментальных образцах, команда Стэнфордского университета поместила алюминиевый анод, графитовый катод, и безопасный жидкий ионный электролит, состоящий в основном из растворов солей, в гибкий полимерный пакет.

Профессор Дай и его группа записали видео, где показали, что даже если просверлить оболочку, их аккумуляторы все равно будут продолжать работать некоторое время и не загорятся.

Важным достоинством новых аккумуляторов является их ультрабыстрая зарядка. Обычно литий-ионные аккумуляторы смартфонов подзаряжаются в течение нескольких часов, в то время, как прототип новой технологии демонстрирует беспрецедентную скорость зарядки до одной минуты.

Долговечность новых батарей особенно поражает. Ресурс батареи составляет более 7500 циклов заряда-разряда, причем без потери мощности. Авторы сообщают, что это первая модель алюминий-ионных батарей, с ультрабыстрой зарядкой, и стабильностью в тысячи циклов. А типичный литий-ионный аккумулятор выдерживает лишь 1000 циклов.

Примечательной особенностью алюминиевой батареи является ее гибкость. Аккумулятор можно сгибать, что говорит о потенциальной возможности его применения в гибких гаджетах. Кроме всего прочего, алюминий значительно дешевле лития.

Перспективным видится использование таких батарей для хранения возобновляемой энергии с целью ее резервирования для последующего обеспечения электрических сетей, поскольку по последним данным ученых, алюминиевую батарею можно заряжать десятки тысяч раз.

Вопреки массово используемым элементам АА и ААА напряжением 1,5 вольт, алюминий-ионный аккумулятор генерирует напряжение порядка 2 вольт. Это наивысший из показателей, которых кто-либо добился с алюминием, причем в перспективе этот показатель будет улучшен, заявляют разработчики новых аккумуляторов.

Достигнута плотность хранения энергии 40 Вт-час на килограмм, а у этот показатель достигает 206 Вт-час на килограмм. Однако улучшение катодного материала, уверен профессор Хонгжи Дай, в конце концов приведет как к увеличению напряжения, так и к повышению плотности хранения энергии в аккумуляторах алюминий-ионной технологии. В любом случае, ряд преимуществ перед литий-ионной технологией уже достигнут. Здесь и дешевизна, сочетающаяся с безопасностью, и высокоскоростная зарядка, и гибкость, и длительный срок службы.

В 2015 году средствами массовой информации предрекался большой спрос на графит в связи с необходимостью удовлетворения спроса на литий-ионные аккумуляторы, вызванного повышением популярности электротранспорта. Возникли спекуляции, предсказывающие дефицит графита, ведь для большой аккумуляторной системы электромобиля этого вещества требуется порядка 25 килограммов. Хотя на сегодняшний день стоимость и доступность графита не вызывают беспокойства, существует небольшая тенденция к удорожанию этого материала.

Изготовление графитового анода чистотой 99,99 процентов является весьма дорогостоящим процессом, который к тому же оставляет после себя значительное количество отходов. Конечная стоимость такого анода не столько зависит от материала, сколько от процесса очистки. Утилизация и повторное использование старых графитовых анодов требуют еще больше средств ввиду более сложного процесса регенерации.

Углерод и графит – родственные вещества. Графит является аллотропной формой углерода, - структурной модификацией, которая происходит путем скрепления молекул друг с другом особым образом. Графит является наиболее стабильной формой углерода. Алмаз, метастабильный аллотроп углерода, известный своими превосходными физическими свойствами, является менее стабильным, чем графит, несмотря на то, что графит более мягкий и податливый.

Термин графит берет корни от греческого “graphein”. Это термостойкий, электро- и теплопроводный, химически пассивный (коррозионно стойкий) и легкий (легче алюминия) материал. Кроме анодов для литий-ионных аккумуляторов, высококачественный графит также используется в топливных элементах, солнечных батареях, полупроводниках, светодиодах и ядерных реакторах.

Углеродное волокно представляет собой длинную тонкую прядь толщиной около 5-10 мкм, что составляет примерно одну десятую толщины человеческого волоса. Атомы углерода, соединенные вместе в микроскопические кристаллы, формируют сильную межатомную связь. Из таких волокон можно формировать невероятно прочные структуры, и уже сегодня из них создаются рамы для велосипедов и корпусные детали для автомобилей и самолетов, способные заменить классические алюминиевые. Только 5 процентов графита уходит на нужды отрасли электрических батарей.

Графит для промышленности доступен в двух формах - природный графит из шахт и синтетический из нефтяного кокса. Как правило, обе эти формы используются для производства анодов для литий-ионных аккумуляторов, но у синтетической есть небольшое преимущество - она занимает 55 процентов этого рынка.

Производители предпочитают синтетический графит из-за его превосходной консистенции и высокой степени чистоты в сравнении с природным. Но уже существуют современные методы очистки, которые позволяют добиться чистоты природного графита на уровне 99,9 процента, тогда как синтетический графит изначально имеет 99,0 процентов.

Очищенный природный графит имеет лучшую кристаллическую структуру и обеспечивает более высокую электро- и теплопроводность в сравнении с синтетическим. Также переход на природный графит позволяет уменьшить конечную стоимость аккумулятора, сохранив ту же производительность. Синтетический графит для литий-ионной электрохимической системы продается по цене около $ 10.000 за тонну, тогда как природный в виде порошка имеет цену $ 7 000 (цены указаны за 2015 год). Помимо меньшей цены, природный графит более экологичен и служит основой для создания материала будущего - графена.

Графен

Графен представляет собой аллотроп углерода в виде двумерной гексагональной решетки. Представленный в виде листа чистого углерода, графен имеет толщину всего в один атом. Это гибкий, прозрачный, непроницаемый для влаги, тверже, чем алмаз и более проводящий, чем золото, материал. Научное сообщество возлагает огромные надежды на графен и ожидает, что с его помощью можно будет улучшить много устройств, в том числе, и электрические батареи.

Считается, что анод из графена может запасать больше энергии в сравнении с графитовым, а также способен уменьшить время зарядки в десять раз. Также значительно улучшатся нагрузочные характеристики и долговечность батареи, использующей графеновый анод.

При использовании традиционных графитовых анодов ионы лития накапливаются вокруг внешней поверхности электрода. Графеновый анод же позволяет этим ионам проникать внутрь себя, используя крошечные отверстия в графеновых пластинах - размером порядка 10-20 нм. Это свойство обеспечивает оптимальную зону хранения и доступности ионов, позволяя таким образом добиться более чем десятикратного увеличения количества возможной энергии в сравнении с классическим графитовым анодом.

Но электрическая батарея и с графеновым анодом может быть усовершенствована, например, добавлением оксида ванадия к катоду. Экспериментальные батареи показывают удивительные результаты, такие как зарядка в течение 20 секунд и сохранение 90 процентов емкости после 1000 циклов заряда/разряда. Использование графена также возможно и в других областях, например, в суперконденсаторах он используется для увеличения удельной энергоемкости. На рисунке 1 показана уникальная решеточная структура графена, которую мы можем наблюдать с помощью сканирующей зондовой микроскопии.

Рисунок 1: Изображение структуры графена с помощью сканирующей зондовой микроскопии. Графен представляет из себя лист из чистого углерода толщиной всего в один атом. Это гибкий, прозрачный, непроницаемый для влаги, крепче, чем алмаз, и более проводящий, чем золото материал. Каждый атом углерода располагает тремя электронами, которые формируют химическую связь с ближайшими соседями.

Ученые теоретически знали о удивительных свойствах графена на протяжении десятилетий, но только недавно технологии настолько продвинулись, что стало возможным получить это вещество. Пока что не существует массовых устройств, использующих преимущества графена в своей работе, но есть все предпосылки, что эра графена уже не за горами. (Смострите BU-104c:

Исследовательская группа Максима Коваленко базируется в ETH Zurich и в Лаборатории тонких пленок и фотоэлектрических систем Empa. Амбициозная цель команды - создать батарею из наиболее распространенных элементов земной коры, таких как магний или алюминий, что позволило бы быстро увеличить производство аккумуляторов простым и недорогим способом. К тому же эти материалы безопасны в использовании, даже если анод изготовлен из чистого металла.

В традиционных батареях электрический ток возникает за счет катионов металлов, перемещающихся между анодом и катодом и обратно. В качестве альтернативы можно использовать большие, но легкие органические анионы. Однако это порождает ряд вопросов: в какой среде должны перемещаться эти легкие анионы и какой материал подойдет для изготовления катода? В литий-ионных батареях катод изготовлен из оксида металла, который может легко поглощать небольшие катионы лития во время зарядки. Однако большие органические ионы слишком велики и имеют заряд, противоположный заряду катионов лития.

Чтобы решить эту проблему, команда Коваленко поставила принцип литий-ионной батареи с ног на голову. В обычных литий-ионных батареях анод выполнен из графита, слои которого в заряженном состоянии содержат ионы лития. Напротив, в батарее Коваленко графит используется как катод, а крупные анионы осаждаются между слоями графена. Анод, в свою очередь, сделан из металла.

Empa / ETH Zürich

Сотрудник лаборатории Константин Кравчик обнаружил, что в качестве доступного материала для катодов может использоваться отработанный в ходе производства стали графит, так называемая графитовая спель. Так же хорошо подходит естественный графит, поставляемый в виде хлопьев и имеющий открытую молекулярную структуру, куда могут легче проникать крупные анионы. В то же время мелкозернистый графит, обычно используемый в литий-ионных батареях, не подходит для батареи Коваленко: в таком графите слои смяты, и внутрь способны проникать лишь небольшие литиевые катионы.

Батарея с катодом, изготовленным из графитовой спели или необработанных графитовых хлопьев, может стать очень рентабельной. И, как показали первые эксперименты, долговечной: лабораторный прототип в течение нескольких месяцев пережил тысячи циклов зарядки и разрядки. По словам членов команды, аккумулятор на основе хлорида алюминия и графита может эксплуатироваться в течение десятилетий в повседневном бытовом использовании. В настоящее время исследовательская группа работает над увеличением напряжения батареи и плотности энергии.