Телевизоры

Частотно-временное разделение каналов. Многоканальная телефонная связь и методы разделения каналов

Частотно-временное разделение каналов. Многоканальная телефонная связь и методы разделения каналов


Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов.

В многоканальных системах тракты всех сигналов должны быть разде­лены каким-либо способом, чтобы сигнал каждого источника мог попасть в соответствующий приемник. Такая процедура носит название разделения каналов или раз­деления канальных сигналов .

Мультиплексирование (англ. MUX) – процедура объединения (уплотнения) канальных сигналов в МСП.

Процедура обратная мультиплексированию связана с разделением каналов – демультиплексирование (англ. DMX или DeMUX).

MUX + DMX = MULDEX - «мульдекс»

Классификация методов разделения каналов

Все используемые методы разделения каналов можно классифицировать на линейные и нелинейные (см. рисунок).

Рисунок - Классификация методов разделения каналов

В МСП выделяют следующие методы разделения каналов:

- про­странственное (схемное);

- линейные: частотное – ЧРК, временное – ВРК, разделение каналов по форме – РКФ;

- нелинейные: приводимые к линейным и мажоритарные.

Пространственное разделение.

Это простейший вид разделения, при котором каждому каналу отводится индивидуальная линия связи:



Рисунок - МСП с пространственным разделением каналов

ИИ – источник информации

ПИ – приемник информации

ЛС - линия связи

Другие формы разделения каналов предполагают передачу сообщений по одной линии связи. В связи с этим многоканальную передачу называют также уплотнением каналов .

Обобщенная структурная схема МСП с линейным разделением сигналов каналов

M i – модулятор i-го канала

П i – перемножитель i-го канала

И i – интегратор i-го канала

Д i – модулятор i-го канала

СС – синхросигнал передающей стороны

ПС – приемник синхросигнала на приёмной стороне

ЛС – линия связи

На передающей стороне первичные сигналы C 1 (t), C 2 (t),...,C N (t) поступают на вход M 1 , M 2 ,..., M N , на другой вход которых от генераторов переносчиков поступают линейно независимые или ортогональные переносчики ψ 1 (t), ψ 2 (t),...,ψ N (t) , переносящие первичные сигналы в канальные сигналы S 1 (t), S 2 (t),.., S N (t) . Затем канальные сигналы суммируются, и формируется групповой много­канальный сигнал S гр (t) .

На приемной стороне групповой сигнал S" гр (t), изменившийся под воз­действием различного вида помех и искажений n(t), поступает на перемножители П 1 , П 2 ,..., П N , над вход которых от генерато­ров переносчиков поступают переносчики ψ 1 (t), ψ 2 (t),..., ψ N (t) . Результаты перемножения поступают на интеграторы И 1 , И 2 ,..., И N , на выходе которых получаются канальные сигналы c учетом помех и искажений, S" 1 (t), S" 2 (t),..., S" N (t). Далее канальные сигналы поступают на Д 1 ,Д 2 ,...,Д n , которые преобразуют канальные сигналы в первичные c учетом помех и искажений С" 1 (t), С" 2 (t),..., С" N (t).

Функционирование системы передачи возможно при синхронном (а иногда и синфазном) воздействии переносчиков на устройства преобразования М на передаче и умножения П на приеме. Для этого на передающей стороне в групповой сигнал вводится синхросигнал (СС), а на приемной стороне он выделяется из группового сигнала приемником синхросигнала (ПС).

Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

Телекоммуникационной системой с частотным разделением каналов называют систему, в линейном тракте которой для передачи канальных сигналов отводятся неперекрывающиеся полосы частот .

Рассмотрим принцип частотного разделения каналов, используя схему N-канальной системы и планы частот в ее характерных точках.

Рисунок - Структурная схема N-канальной МСП с ЧРК

В качестве переносчиков в МСП с ЧРК используются гармонические колебания с различными частотами f 1 , f 2 , …f n (колебания несущих):

ψ i (t ) = S i

Канальные сигналы формируются в результате модуляции одного из параметров переносчиков первичными сигналами C i (t) . Применяются амплитудная , частотная и фазовая модуляции. Частоты несущих колебаний выбираются так, чтобы спектры канальных сигналов S 1 (t) и S 2 (t) не перекрывались . Групповой сигнал S гр (t) , поступивший в линию связи, представляет собой сумму канальных сигналов

S гр (t ) = S 1 (t ) + S 2 (t ) + ...+ S n (t )

При передаче по линейному тракту сигнал S гр (t ) претерпевает линейные и нелинейные искажения и на него накладывается помеха n(t), т.о., в приемную часть поступает искаженный сигнал .

В приемной части производится разделение канальных сигналов с помощью канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n, т.е. из группового сигнала выделяют канальные сигналы .

Первичные сигналы восстанавливаются демодуляторами Д 1 , Д 2 , … Д n с использованием частот, равными частотам несущих на передаче.

Планы частот в ее характерных точках (см. схему)

В ЧРК доминирующее положение занимает вид модуляции АМ-ОБП, поскольку является наиболее компромиссным.

Рисунок – Варианты полосой фильтрации при АМ-ОБП

Формирование сигнала АМ-ОБП в технике связи осуществляется двумя способами:

1) Фильтровой способ

2) Фазоразностный способ

Фильтровой способ чаще используется в технике МСП, в то время как фазоразностный как правило в малоканальных системах передачи.

Фильтровой способ

На передающей стороне

Пример:

Спектр сигнала 0,3 – 3,4 кГц. Определить результат АМ-ОБП, если в качестве несущей используется гармоническое колебание с частотой 100 кГц.

На приемной стороне

Примечание: Нестабильность по частоте (рассогласование) между генераторным оборудованием передающей и приемной сторон для первичной группы сигнала (12x КТЧ) должно составлять не более 1,5 Гц.

Фазоразностный способ

Принцип работы: схема состоит из двух плеч, объединяемых на входе и выходе с помощью развязывающих устройств (РУ). На модулятор (M 2) одного плеча исходный сигнал и несущая частота подаются сдвинутыми по фазе на π/2 относительно сигнала и несущей частоты, подаваемых на модулятор (M 1) другого плеча. В результате на выходе схемы будет колебание только одной боковой полосы. Фазовые контуры (ФК 1 , ФК ФК 2) обеспечивают сдвиг по фазе на π/2.

Условием разделимости канальных сигналов в МСП с ЧРК является их ортогональность , т.е.

где энергетический спектр i-го канального сигнала;

границы полосы частот, отводимой в линейном тракте для i-го канального сигнала.

Ширина частотного спектра группового сигнала Df S определяется числом каналов в системе передачи (N); шириной спектра канальных сигналов Df i , а также частотными характеристиками затухания канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n.

Разделительные фильтры обеспечивают малое затухание в полосе пропускания (апр ) и необходимую величину затухания в диапазоне эффективного задерживания (апод ). Между этими полосами находятся полосы расфильтровки разделительных фильтров. Следовательно, канальные сигналы должны быть разделены защитными промежутками (D), величины которых должны быть не меньше полос расфильтровки фильтров.

Следовательно, ширина группового сигнала может быть определена по формуле

Df гр = N × (Dfi + Df з )

так как затухание разделительных фильтров в полосе задерживания конечно (апод ), то полное разделение канальных сигналов невозможно. Вследствие этого появляются межканальные переходные помехи .

В современных МСП телефонной связи каждому КТЧ выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т.е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи. Кроме того, необходимо обеспечить высокую степень линейности всего тракта группового сигнала.

Рисунок – Структурная схема аппаратуры формирования

Тема 5. Методы разделения каналов

5.1 Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов. Сигналы переносчики и модуляция их параметров.

5.2 Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

5.3 Многоканальные системы телекоммуникаций с временным разделением каналов. Сравнительный анализ аналого-импульсных методов модуляции.

Рассмотрим особенности структуры трактов передачи и приема сигналов и последовательность преобразования сигналов в системах ЧРК-ЧМ. С этой целью обратимся к рис. 2.1 и 2.3 и выясним, что представляет собой показанные на них элементы применительно к системам с ЧРК-ЧМ.

Аппаратура уплотнения (АУ) построена по принципу частотного разделении каналов (ЧРК) или, другими словами по принципу частотного уплотнения (ЧУ), широко применяемому для уплотнения кабельных линий связи. Принцип ЧУ состоит в том (рис.3.2 и 3.3), что в трактате передачи спектры ТЧ индивидуальных сообщений с помощью индивидуальных преобразователей передачи (ИПП) и далее групповых преобразователей передачи (ГПП) транспортируются в область более высоких частот, причем групповое преобразование может иметь несколько этапов.

Перенос спектра осуществляют методом однополосной модуляции, в связи с чем системы с ЧРК-ЧМ иногда называют с ОБ-ЧМ, ОБП-ЧМ (одна боковая полоса), а групповой сигнал именуют групповым или линейным однополосным сигналом (на рис.3.2.):

Индивидуальный преобразователь передачи ИПП (а также и групповой преобразователь передачи ГПП) представляет собой кольцевой модулятор на который с одной стороны поступает спектр частот преобразуемого сигнала (сигнала ТЧ), а с другой гармоническое колебание несущей частоты. После кольцевого преобразователя включен полосовой фильтр (ПФ), который выделяет одну из боковых полос, верхнюю или нижнюю, и подавляет остаток несущей и вторую боковую полосу. Выбором значения и полосы частот фильтра ПФ определяется транспонированное положение и ширина полосы частот сигнала дальнего канала на оси частот группового (линейного) сигнала. На стороне приема преобразование спектра происходит в обратном порядке в групповых преобразователях приема (ГППр) и в индивидуальных преобразователях приема (ИППр). При индивидуальном преобразовании спектров сигналов стандартных каналов ТЧ, лежащих в пределах поднесущие частоты кратные 4 кГц. При этом между соседними каналами обеспечиваются защитные полосы = 0,9 кГц., необходимые для надежной расфильтровки спектров соседних каналов. В результате индивидуального преобразования формируются первичные группы каналов (ПГ), обычно включающие в себя 3,6 или 12 каналов. Так, для полевых малоканальных военных систем чаще всего применяется 3-х канальные первичные группы, занимающие спектр частот 12,3 - 23,4 кГц - так называемые 3- канальные ШК, образованные с помощью поднесущих 12,16,20 кГц с выделение верхних боковых. Для формирования линейного спектра использованы три ступени преобразования. В индивидуальном оборудовании применяется преобразование низкочастотных сигналов с

помощью несущих частот 12, 16 и 20 кГц. для первого второго и третьего каналов соответственно с использованием верхних боковых полос от 12,3 до 15,4 кГц, от 16,3 до 19,4 кГц, от 20,3 до 23,4 кГц. Аналогичному образованию подвергаются сигналы четвертого, пятого и шестого каналов.

На второй ступени преобразования осуществляется перенос спектров двух трехканальных групп 12,3-12,4 кГц в диапазон частот от 68 до 96 кГц с помощью несущих частот 92 и 108 кГц. Используемые полосы частот от 68 до 80 кГц (первая группа) и от 84 до 96 кГц (вторая группа) с помощью третьей ступени преобразования, групповой, на несущей частоте 64 кГц. переносятся в линейный спектр частот 4-32 кГц.

Кроме полученного спектра частот в линию передаются сигналы канала служебной связи и контрольная частота 18 кГц.

В тракте приема преобразование сигналов линейного спектра в спектры тональной частоты осуществляется в обратном порядке. В малоканальных станциях с ЧРК-ЧМ работающих в основном в диапазоне метровых волн частотно-модулированный сигнал (ЧМ) формируется непосредственно на радиочастоте (рис.3.6) в частотно-модулируемом генераторе (ЧМГ), не стабилизированным кварцем. Колебания ЧГМ далее усиливаются в усилителе высокой частоты (УВЧ) на выходе которого формируется многоканальный частотно-модулированный сигнал (МК ЧСМ), либо предварительно еще умножаются по частоте (обычно не более чем в 2-4 раза т.е. fпер=fчмг или fпер=nfчмг. Модуляция колебания ЧМГ осуществляется с помощью варикапа или другого реактивного элемента, включенного в колебательный контур ЧМГ. Модулирующий групповой сигнал (ГС) поступает с выхода передающего тракта АУ (рис.3.6.) и подается на реактивный элемент ЧМГ, предварительно пройдя групповой усилитель (ГУ) и предискажающий контур. Последний способствует выравниванию качества каналов по шумам. Для того чтобы обеспечить высокую стабильность частоты ЧМГ, его частота стабилизируется по колебанию соответствующей опорной частоты из набора частот вырабатываемых синтезатором опорных частот (СОЧ). Подстройка частоты осуществляется путем сравнивания частоты ЧМГ (fЧМГ)с опорной частотой (fОЧ)в системе (СМ). При точной настройке ЧМГ промежуточная частота (fПЧ), получаемая как разность fОЧ=fЧМГ-fОЧ равна своему номиналу и кольцо АПЧ, включающее усилитель промежуточной частоты (УПЧ) и частотный детектор (ЧД),

не оказывают влияния на частоту ЧМГ (система в состоянии равновесия). При расстройке ЧМГ значение отличается от номинала и система АПЧ подстраивает частоту ЧМГ доводя его остаточную расстройку до некоторой малой допустимой величины. Фильтр нижних частот (НФЧ) резко ограничивает полосу частот практически выделяя только постоянную составляющую.

В радиорелейных станциях с ЧРК-ЧМ, работающих в диапазоне СВЧ, передающая часть группового тракта и радио-тракта строится, как правило, в соответствии с принципом, показанным на рис.3.6. Здесь fПЕР =f1 ± fПЧ, причем f1 = fГЕТ ± fСДВ, где fСДВ - частота сдвига между частотами передатчика fПЕР и приемника fПР данного полукомплекта станции. Частота сдвига обычно постоянная, а частота гетеродина fГЕТ, вырабатываемая в синтезаторе частот (СЧ), при перестройке станции

изменяет свое назначение, вследствие чего изменяется f1 , а значит и fПЕР. Промежуточная частота при отсутствии модуляции всегда постоянна. В процессе модуляции групповым сигналом величина fПЧ изменяется пропорционально напряжению и в соответствии со знаком напряжения группового сигнала.

На промежуточной ретрансляционной станции при ретрансляции по ВЧ (ВЧ транзит) групповой тракт отключается и на вход смесителя сигнал промежуточной частоты поступает от приемника другого направления связи. Сигнал канала служебной связи (КСС) при этом вводится в частотный или фазовый модулятор, содержащийся в генераторе сдвига (Гсдв).

Структура тракта приема в принципе поясняется с помощью рис.3.7. Приемник супергетеродинного типа строится как приемник ЧМ сигнала. В малоканальных РРС, работающих в диапазонах метровых волн, обычно применяют двойное преобразование частоты. В системах СЧ используют однократное преобразование частоты. В этом случае при ретрансляции по ВЧ многоканальный частотно-модулированный сигнал промежуточной частоты в режиме транзита (ВЧТр) без демодуляции в передатчик другого направления связи. Поскольку гетеродин в этом режиме используется одновременно как для работы передатчика, так и для работы приемника (различных направлений связи). Величина нестабильности частоты гетеродина исключается из ретранслированного сигнала, причем,где соответственно частота передачи и частота приема противоположных направлений связи на данной промежуточной РРС.

При работе в оконечном режиме (Ок) сигнал промежуточной частоты после ограничения по амплитуде в ограничителе (Огр) демодулируется частотным детектором. Далее групповой сигнал усиливается групповым усилителем и после выравнивающего контура (ВК) поступает в аппаратуру уплотнения.

Достоинства метода ЧРК-ЧМ:

– возможность сопряжения с проводными линиями многоканальной электросвязи по групповому тракту и по трактам стандартных широкополосных каналов (ШК), что позволяет легко получать составные радиорелейно-кабельные линии связи и обеспечить совместную работу таких средств связи с минимальным числом транзитов по ТЧ;

– возможность применения метода внешнего уплотнения, позволяющего, при необходимости, размещать РРС на значительном удалении от узла связи (до 14-16 км);

– отсутствие необходимости применения системы синхронизации;

– универсальность широкополосных групповых и радио-трактов в принципе пригодных для передачи не только многоканальных сигналов, объединяющих ляд сигналов стандартных каналов ТЧ, но для передачи высокоскоростных потоков бинарной информации, телевизионных сигналов и т.п.

Недостатки метода ЧРК-ЧМ:

– громоздкость аппаратуры уплотнения при числе каналов, равном десяткам и более; применительно к военным подвижным РРЛ это приводит к необходимости выделения дополнительных транспортных единиц для размещения АУ;

– невозможность выделения любых номеров каналов ТЧ без демодуляции до ТЧ всех или части каналов, необходимость выделения каналов только группами (тройками, шестерками и т.д. На рис.3.8.г показан принцип импульсной передачи непрерывного сигнала.);

– необходимость обслуживания отдельных аппаратных уплотнения своими экипажами;

– относительная дороговизна АУ и РРС в целом.

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

В предыдущих разделах мы рассмотрели основные способы разделения элементов сложных сигналов, а также возможные варианты схем построения систем управления и контроля, использующих тот или иной метод.

В тех случаях, когда имеются ограничения на время передачи сообщений при временном разделении элементов сигналов или ограничено количество частотных каналов при частотном разделении можно использовать комбинированную систему с частотно-временным разделением сигналов (рис. 2.21).

В каждой временной позиции распределителя происходит одновременная передача сигналов по всем частотным каналам. Если число каналов – j, одновременно передается j бит информации. Общее число элементарных двоичных сообщений, передаваемое за один цикл (с момента выявления новизны в состоянии контролируемых объектов или окончания ввода команды до окончания передачи) в системе, работающей по такому принципу, равно произведению количества позиций распределителя на количество частотных каналов.

В приведенной на рис. 2.21 схеме организовано два частотных канала с несущими частотами f1 и f2 для передачи контрольной информации.

Рисунок 2.21 Частотно-временное разделение сигналов

При изменении состояния какого либо контролируемого объекта схема выявления новизны, подключенная к регистру состояний, растормаживает распределитель пункта А и включает оба модулятора М1 и М2, начиная очередной цикл передачи информации. Появление в линии связи активных или пассивных частот по каждому из частотных каналов приводит к запуску распределителя пункта Б (элемент ИЛИ открывает ключ &.к). Распределители, переключаясь синхронно и синфазно по позициям, обеспечивают выбор режима работы генераторов (М1, М2) в зависимости от состояния элементов памяти регистра состояний в пункте передачи и выбор соответствующих ячеек памяти приемного регистра для записи информации в пункте приема. После окончания информационной части сигнала и переключения обоих распределителей в n+1-ю позицию в пункте А сбрасывается признак наличия новизны (в схеме выявления новизны), что приводит к закрытию ключа &.к, сбросу и остановке распределителя, выключению модуляторов. В пункте Б в это же время формируется сигнал разрешения дешифрации. После выключения модуляторов М1 и М2 на передающей стороне на всех выходах демодуляторов в пункте приема устанавливаются сигналы «нулевого» уровня, закрывающие элемент ИЛИ, ключ &.к и блокирующие распределитель.

Кодовое разделение сигналов

Под кодовым разделением сигналов понимают способ разделения сообщений при котором каждому исходному сообщению N ставится в соответствие определенная n-разрядная двоичная комбинация, передаваемая устройствами с частотным, временным или частотно-временным разделением элементов этой комбинации. Приведенные на рис. 2.19 и 2.20 схемы устройств ТУ как раз и реализуют кодовый принцип разделения команд, адресованных различным объектам управления. По такому же принципу могут быть построены и системы, предназначенные для передачи контрольной информации.

Частотное разделение каналов, Мультиплексирование с разделением по частоте (англ. Frequency-Division Multiplexing, FDM)

Разделение каналов осуществляется по частотам. Так как радиоканал обладает определённым спектром, то в сумме всех передающих устройств и получается современная радио связь. Например: спектр сигнала для мобильного телефона 8 МГц. Если мобильный оператор даёт абоненту частоту 880 МГц, то следующий абонент может занимать частоту 880+8=888 МГц. Таким образом, если оператор мобильной связи имеет лицензионную частоту 800-900 МГц, то он способен обеспечить около 12 каналов, с частотным разделением.

Частотное разделение каналов применяется в технологии X-DSL. По телефонным проводам передаются сигналы различной частоты: телефонный разговор-0,3-3,4 кГц а для передачи данных используется полоса от 28 до 1300 кГц.

Очень важно фильтровать сигналы. Иначе будут происходить наложения сигналов, из-за чего связь может сильно ухудшиться.

Практика построения современных систем передачи информации показывает, что наиболее дорогостоящими звеньями каналов связи являются линии связи : кабельные, волноводные и световодные, радиорелейные и спутниковые и др. Поскольку экономически нецелесообразно использовать дорогостоящую линию связи для передачи информации между единственной парой абонентов, то возникает проблема построения многоканальных систем передачи, в которых одна общая линия связи уплотнятся большим числом индивидуальных каналов. Этим обеспечивается повышение эффективности использования пропускной способности линии связи. Сообщения А 1 (t), …, А N (t) от N источников ИС 1 , …, ИС N с помощью индивидуальных модуляторов М 1 , …, М N преобразуются в канальные сигналы U 1 (t), …, U N (t). Сумма этих сигналов образует групповой канальный сигнал U Л (t), который передается по линии связи (ЛС). Групповой приемник П преобразует полученный сигнал Z Л (t) в исходный групповой сигнал Z(t)=U(t). Индивидуальные приемники П 1 , …, П N выделяют из группового сигнала Z(t) соответствующие канальные сигналы Z 1 (t), …, Z N (t) и преобразуют их в сообщения . Блоки М 1 , …, М N и сумматор образуют аппаратуру уплотнения, блоки М, ЛС и П – групповой канал. Аппаратура уплотнения, групповой канал и индивидуальные приемники образуют систему многоканальной связи.

Чтобы разделяющие устройства могли различать сигналы отдельных каналов, должны быть определены соответствующие признаки, присущие только данному сигналу. Такими признаками в случае непрерывной модуляции могут быть частота, амплитуда, фаза, в случае дискретной модуляции еще и форма сигнала. В соответствии с используемыми для разделения признаками различаются и способы разделения: частотные, временные, фазовые и др.

23.Частотное разделение сигналов. Временное разделение сигналов. Разделение сигналов по форме (кодовое).

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

    Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

    Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

    Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

    Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

    Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.