Windows 7, XP

Двойственный симплекс метод пример. Двойственный симплекс-метод

Двойственный симплекс метод пример. Двойственный симплекс-метод

11.4. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

Из результатов предыдущих пунктов следует, что для получения решения исходной задачи можно перейти к двойственной и, используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, то легко заметить, что в столбцах записана исходная задача, а в строках –двойственная.

Как было показано, при решении прямой задачи на любой итерации разность , т.е. величина -коэффициента при переменной , равна разности между правой и левой частями соответствующего ограничения двойственной задачи. Если при решении прямой задачи с максимизируемой целевой функцией итерация не приводит к оптимальному решению, то по крайней мере для одной переменной и только в оптимуме для всех разность .

Рассматривая это условие с учетом двойственности, можно записать

.

Таким образом, если , то . Это означает, что, когда решение прямой задачи неоптимальное, решение двойственной задачи недопустимое. С другой стороны при . Отсюда следует, что оптимальному решению прямой задачи соответствует допустимое решение двойственной задачи.

Это позволило разработать новый метод решения задач линейного программирования, при использовании которого сначала получается недопустимое, но «лучшее, чем оптимальное» решение (в обычном симплекс-методе сначала находится допустимое , но неоптимальное решение). Новый метод, получивший название двойственного симплекс-метода , обеспечивает выполнение условия оптимальности решения и систематическое «приближение» его к области допустимых решений. Когда полученное решение оказывается допустимым, итерационный процесс вычислений заканчивается, так как это решение является и оптимальным.

Двойственный симплекс-метод позволяет решать задачи линейного программирования, системы ограничений которых при положительном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограничений, а также размера симплексной таблицы. Рассмотрим применение двойственного симплекс-метода на примере.

Пример . Найти минимум функции

при ограничениях

.

Перейдем к канонической форме:

при ограничениях

Начальная симплекс-таблица имеет вид

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 4

x 5

–3

–4

–1

–3

–3

–6

–2

–1

Начальное базисное решение оптимальное, но не допустимое.

Как и обычный симплексный метод, рассматриваемый метод решения основан на использовании условий допустимости и оптимальности.

Условие допустимости . В качестве исключаемой переменной выбирается наибольшая по абсолютной величине отрицательная базисная переменная (при наличии альтернатив выбор делается произвольно). Если все базисные переменные неотрицательные, процесс вычислений заканчивается, так как полученное решение допустимое и оптимальное.

Условие оптимальности . Включаемая в базис переменная выбирается из числа небазисных переменных следующим образом. Вычисляются отношения коэффициентов левой части -уравнения к соответствующим коэффициентам уравнения, ассоциированного с исключаемой переменной. Отношения с положительным или нулевым значением знаменателя не учитываются. В задаче минимизации вводимой переменной должно соответствовать наименьшее из указанных отношений, а в задаче максимизации – отношение, наименьшее по абсолютной величине (при наличии альтернатив выбор делается произвольно). Если знаменатели всех отношений равны нулю или положительные, задача не имеет допустимых решений.

После выбора включаемой в базис и исключаемой переменных для получения следующего решения осуществляется обычная операция преобразования строк симплекс-таблицы.

В рассматриваемом примере исключаемой переменной является . Отношения, вычисленные для определения новой базисной переменной, приведены в следующей таблице:

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

–2

–4

–1

–3

Отношение

В качестве включаемой переменной выбирается x 2 . Последующее преобразование строк приводит к новой симплекс-таблице:

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 2

x 5

–1

–1

Новое решение также оптимальное, но все еще недопустимое. В качестве новой исключаемой переменной выберем (произвольно) x 3 . Определим включаемую переменную.

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

отношение

Двойственный симплекс-метод

Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов Pi , составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции

при условиях

и среди чисел имеются отрицательные.

В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) - (56), так как среди его компонент имеются отрицательные числа.

Поскольку векторы - единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа

Таким образом, можно найти:

На основе исходных данных составляют симплекс-таблицу, в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54) - (56), поскольку, по предположению, все. Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс-таблицы к другой до тех пор, пока из столбца вектора P0 не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)-й строки, т.е. для любого

Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора Po отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое-нибудь одно из них: пусть это число b l . Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор P l . Чтобы определить, какой вектор следует ввести в базис, находим

Пусть это минимальное значение принимается при j=r, тогда в базис вводят вектор Р r . Число является разрешающим элементов. Переход к новой симплекс-таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р 0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i -й строке симплекс-таблицы в столбце вектора Р 0 стоит отрицательное число b i , а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.

Таким образом, отыскание решения задачи двойственным симплекс-методом включает следующие этапы:

  • 1. Находят псевдоплан задачи.
  • 2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.
  • 3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р 0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m +1)-и строки к соответствующим отрицательным элементам разрешающей строки.
  • 4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.

Найти максимальное значение функции

при условиях :

Решение . Запишем исходную задачу линейного программирования в форме основной задачи: найти максимум функции при условиях

Составим для последней задачи двойственную задачу. Такой является задача, в результате решения которой требуется найти минимальное значение функции

Строим симплекс таблицу:

Итерация 0:

Условие допустимости выполняется, так как в графе «Решение» все значения положительные, но не выполняется условие оптимальности, так как -строка содержит отрицательный коэффициент.Продолжаем наши действия

Итерация 1:

Двойственный симплексный метод основан на теории двойственности (см. решение двойственной задачи) и используется для решения задач линейного программирования, свободные члены которых b i могут принимать любые значения, а система ограничений задана неравенствами смысла «≤», «≥» или равенством «=».

Назначение сервиса . Онлайн-калькулятор используется для решения задач линейного программирования P-методом в следующих формах записи: базовой форме записи симплекс-метода, в виде симплексной таблицы, модифицированным симплекс-методом.

Инструкция для решения задач двойственным симплекс-методом . Выберите количество переменных и количество строк (количество ограничений), нажмите Далее. Полученное решение сохраняется в файле Word (см. пример решения двойственным симплекс-методом).

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте.

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

В P-методе оптимальный план получается в результате движения по псевдопланам. Псевдоплан - план, в котором условия оптимальности удовлетворяются, а среди значений базисных переменных x i имеются отрицательные числа. Алгоритм двойственного симплекс-метода включает следующие этапы:

  1. Составление псевдоплана . Систему ограничений исходной задачи приводят к системе неравенств смысла «≤».
  2. Проверка плана на оптимальность . Если в полученном опорном плане не выполняется условие оптимальности, то задача решается симплексным методом .
  3. Выбор ведущих строки и столбца . Среди отрицательных значений базисных переменных выбираются наибольшие по абсолютной величине. Строка, соответствующая этому значению, является ведущей.
  4. Расчет нового опорного плана . Новый план получается в результате пересчета симплексной таблицы методом Жордана-Гаусса . Далее переход к этапу 2.
Более подробный алгоритм двойственного симплекс-метода . Особенности двойственного симплекс-метода Используются при решении методом Гомори .

Пример . Предприятию необходимо выпустить по плану продукции А1 единиц, А2 единиц, А3 единиц. Каждый вид изделия может производиться на двух машинах.
Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальны? Дана матрица затрат и ресурс времени каждой машины. Записать модель исследуемой операции в форме, допускающей использование P–метода.

Известно, что содержание n питательных веществ A, B и С в рационе должно быть не менее m1, m2, m3 единиц соответственно. Указанные питательные вещества содержат три вида продуктов. Содержание единиц питательных веществ в одном килограмме каждого из видов продукта приведено в таблице. определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах.

Задание : Решить задачу, используя алгоритм двойственного симплекс-метода.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = 4x 1 + 2x 2 + x 3 при следующих условиях-ограничений.
- x 1 - x 2 ≤-10
2x 1 + x 2 - x 3 ≤8
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).
В первом неравенстве смысла (≤) вводим базисную переменную x 4 . Во втором неравенстве смысла (≤) вводим базисную переменную x 5 .
-1x 1 -1x 2 + 0x 3 + 1x 4 + 0x 5 = -10
2x 1 + 1x 2 -1x 3 + 0x 4 + 1x 5 = 8
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A =
-1 -1 0 1 0
2 1 -1 0 1
Решим систему уравнений относительно базисных переменных:
x 4 , x 5 ,
Полагая, что свободные переменные равны нулю, получим первый опорный план:
X1 = (0,0,0,-10,8)
Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0

Итерация №1

План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.


Ведущей будет первая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.

Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0
θ 0 -4: (-1) = 4 -2: (-1) = 2 - - -

4. Пересчет симплекс-таблицы. Выполняем преобразования симплексной таблицы методом Жордано-Гаусса .
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0

Представим расчет каждого элемента в виде таблицы:
B x 1 x 2 x 3 x 4 x 5
-10: -1 -1: -1 -1: -1 0: -1 1: -1 0: -1
8-(-10 1):-1 2-(-1 1):-1 1-(-1 1):-1 -1-(0 1):-1 0-(1 1):-1 1-(0 1):-1
0-(-10 -2):-1 -4-(-1 -2):-1 -2-(-1 -2):-1 -1-(0 -2):-1 0-(1 -2):-1 0-(0 -2):-1

Итерация №2
1. Проверка критерия оптимальности.
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной.
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет вторая строка, а переменную x 5 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует третьему столбцу, т.е. переменную x 3 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-1).

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0
θ 0 - - -1: (-1) = 1 - -

4. Пересчет симплекс-таблицы. Выполняем преобразования.
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1
Или более подробно:
B x 1 x 2 x 3 x 4 x 5
10-(-2 0):-1 1-(1 0):-1 1-(0 0):-1 0-(-1 0):-1 -1-(1 0):-1 0-(1 0):-1
-2: -1 1: -1 0: -1 -1: -1 1: -1 1: -1
20-(-2 -1):-1 -2-(1 -1):-1 0-(0 -1):-1 -1-(-1 -1):-1 -2-(1 -1):-1 0-(1 -1):-1

В базисном столбце все элементы положительные. Переходим к основному алгоритму симплекс-метода.

Итерация №3
1. Проверка критерия оптимальности.
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1

Оптимальный план можно записать так: x 1 = 0, x 2 = 10, x 3 = 2
F(X) = 2 10 + 1 2 = 22

Рассмотрен пример решения задачи симплекс методом, а также пример решения двойственной задачи.

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

Итак, последовательные переходы от одного сопряженного базиса к другому производят до тех пор, пока не получат решение задачи или не установят ее неразрешимость. Каждый переход от одного псевдоплана к другому составляет одну итерацию (один шаг) .

Каждая итерация содержит два этапа. На первом этапе выясняют, не является ли псевдоплан оптимальным планом прямой задачи, и если нет, то разрешима ли задача. Для этого необходимо вычислить и установить их знаки. Второй этап состоит в осуществлении элементарного преобразования - (одной итерации) метода полного исключения Жордана-Гауса, приводящего к новому псевдоплану с меньшим значением целевой функции.

Описание алгоритма . Задача ЛП должна быть задана в канонической форме (1.1), (1.2) или сведена к ней. Отыскивают сопряженный базис двойственной задачи и обозначают его . Разложим А 0 по векторам базиса А і1 ,.,А іm в соответствии с (1.9) и найдем псевдоплан прямой задачи.

Исследуем знаки {х i0 } . Если имеет место случай , то начальный псевдоплан является оптимальным планом прямой задачи. При наличии отрицательных компонент {х i0 } вычисляем коэффициенты разложения векторов A j по векторами сопряженного базиса {х ij } в соответствии с (1.8).

Если для некоторого r такого, что х r0 <0 , все то задача не разрешима (второй случай), и на этом процесс вычислений заканчивается.

Если имеет место третий случай (то есть для каждого r такого, что х r0 <0 , по крайней мере одна из компонент х rj <0 ), то переходим к второму этапу. С этой целью составляют таблицу k -й итерации (аналогичную симплекс-таблице ), которая состоит (m+2) строк и (n+1) -го столбца (табл. 6.1).

Столбец В x таблицы, как обычно, содержит векторы {A i } базиса псевдоплана хk , а столбец А 0 - базисные компоненти псевдоплана {х i0 (k)} . Строка (m+1) -индексная, ее заполняют параметрами , являющимися оценками векторов А j :

величина - значение целевой функции при псевдоплане

Итерацию k завершают заполнением главной части таблицы (от первой до (m+1) -й строк).

Таблица 6.1.
C C 1 C 2 . C j . C n
B x A 0 A 1 A 2 . A j . A n
C 1 X 1 X 10 X 11 X 12 . X 1j . X 1n
C 2 X 2 X 20 X 21 X 22 . X 2j . X 2n
. . . . . . . . .
C i X i X i0 X i1 X i2 . X ij . X in
. . . . . . . . .
C m X m X m0 X m1 X m2 . X mj . X mn
. .
. .

На первом этапе (k+1) -и итерации выясняют, имеет ли место первый, второй или третий случай.

В третьем случае переходим ко второму этапу. Сначала определяют вектор А r , который необходимо вывести из базиса. Его индекс r определяют из условия

В строке заполняют лишь те позиции, для которых x rj <0 . Вектор А l , который должен быть введен в базис, находят из условия

Определив направляющую строку r и столбец l , вычисляют элементы главной части таблицы (k+1) -й итерации по рекуррентным соотношениям

(1.15)

Где x ri - направляющий элемент преобразования.

Вычислительная схема алгоритма двойственного симплекс-метода похожа на вычислительную схему симплекс-метода . Аналогичны и формы таблиц.

Различие между методами заключается в том, что при симплекс -методе производят последовательный переход от одного допустимого базисного решения (опорного плана) задачи к другому, а при двойственном симплеск-методе - переход от одного псевдоплана к другому.

Формальное различие между вычислительными схемами этих методов проявляется только в правилах перехода от одного базиса к другому, а также в признаках оптимальности и неразрешимости задачи. В симплекс -методе сначала определяют вектор, вводимый в базис, а затем - вектор,исключаемый из базиса, а в двойственном симплекс-методе этот порядок - обратный.

Отметим некоторые важные свойства двойственного симплекс-метода .

В отличие от прямого