Программы

Esr неполярных конденсаторов. Как измерить ESR конденсатора с помощью осциллографа и генератора сигналов

Esr неполярных конденсаторов. Как измерить ESR конденсатора с помощью осциллографа и генератора сигналов

В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры. Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре - ESR.
Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре.

Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя.
1. В этот раз не конструктор, а скорее «полуфабрикат»
2. Паять в этом обзоре я ничего не буду.
3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему.
4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника».
5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен.
6. Обзор будет маленьким

Для начала, как всегда, упаковка.

К упаковке прибора претензий не возникло, простенько и компактно.

Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.

Инструкция также не блещет информативностью, общие фразы и картинки.

Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком.
Сопротивление
Диапазон - 0,01 - 20 Ом
Точность - 1% + 2 знака.

Эквивалентное последовательное сопротивление (ESR)
Диапазон - 0,01 - 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ
Точность - 2% + 2 знака

Емкость
Диапазон - 0,1мкФ - 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.1-3мкФ - 72КГц)
Точность - зависит от частоты измерения, но составляет около 2% ± 10 знаков

Индуктивность
Диапазон - 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц.
Точность - 2% + 2 знака.

Для начала я расскажу что же это такое - ESR.
Многие довольно часто слышали слово - конденсатор, а некоторые даже их видели:)
Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.

В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже.
На картинке показаны -
C - эквивалентная емкость, r - сопротивление утечки, R - эквивалентное последовательное сопротивление, L - эквивалентная индуктивность.

А если упрощенно, то
Эквивалентная емкость - это конденсатор в «чистом» виде, т.е. без недостатков.
Сопротивление утечки - это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность - Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR - Вот и тот параметр, который мы и рассматриваем.
Его можно представить как резистор, включенный последовательно с идеальным конденсатором.
Это сопротивление выводов, обкладок, физические ограничения и т.д.
В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR.
А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.

Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор.
Но самое плохое то, что обычный измеритель емкости его не измеряет.
У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого).
Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева.
Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает.

Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает.
Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома.
Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции - Go.
Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы.
Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее:)

Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса.
Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые:)

С правого торца прибора расположены клеммы для подключения измеряемого элемента.
К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний.
В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет.
Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).

Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).

Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо.
На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.

В собранном виде конструкция выглядит как то так.

Включается и управляется прибор всего одной кнопкой.
Включение - нажатие дольше 1 сек.
Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR.
Выключение - нажатие кнопки более чем 2 секунды.

При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой.
При удержании кнопки более двух секунд высвечивается надпись - Выключение питания и при отпускании кнопки прибор отключается.

Как я выше писал, прибор имеет два рабочих режима.
1. измерение индуктивности
2. измерение емкости, сопротивления (или ESR).
В обоих режима на экране отображается напряжение питания прибора.

Естественно посмотрим что из себя представляет начинка этого прибора.
На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.

Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило - черный цвет текстолита.

Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество.
На всякий случай напоминаю, что все фото в моих обзорах кликабельны.



«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.

Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально.
Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.

Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.

Судя по всему это узел переключения питания между батареей и USB разъемом.

Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет:(

Но я нашел интересное даже на пустой печатной плате:)))
Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все.
Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке).
Сначала я ткнул key2, на что получил на экране - калибровка нуля (вольный перевод) - ОК.
Ха, думаю, ну щаззз мы тебя.
А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было .

Замыкание других пар контактов выводит на экран значения констант (судя по всему).
причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись - Сохранено ОК (на англ ессно).

Но вернемся к калибровке.
Прибор сопротивлялся всем своими силами.
Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов.
После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ.
И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) - Use 3cm thick copper wire for short circuit to clear
В переводе это означало - используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины.
Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так.
Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки.

Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор.
На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот.
Все компоненты проверялись от меньшего номинала к большему.

Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы.
Судя по показаниям осциллографа частота установлена примерно на 72КГц.

В плане измерения индуктивности показания вполне сошлись с указанными на компонентах.
1. индуктивность 22мкГн
2. индуктивность 150мкГн
Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.

С индуктивностью 150мкГн форма сигнала на клеммах выглядела так

С конденсаторами небольшой емкости также не возникло проблем.
1. 100нФ 1%
2. 0.39025 мкФ 1%

Форма сигнала при измерении конденсатора 0.39025 мкФ

Дальше пошли электролиты.
1. 4.7мкФ 63В
2. 10мкФ 450В
3. 470мкФ 100 Вольт
4. 470мкФ 25 В lowESR
Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.

1. 680мкФ 25 Вольт низкоимпедансный
2. 680мкФ 25 Вольт lowESR.
3. 1000мкФ 35 Вольт обычный Samwha.
4. 1000мкФ 35 Вольт Samwha RD серия.

Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha.
По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.

1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.

Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов.
Для измерения я взял пару резисторов
1. 0.1 Ома 1%
2. 0.47 Ома 1%
Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.

Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему:(
То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц.
Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.

Резюме
Плюсы
В работе прибор показал довольно неплохую точность (правда после калибровки)
Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло».
Двойное питание.

Минусы
Полное отсутствие информации по калибровке прибора
Узкий диапазон измерения
У меня прибор нормально начал работать только после калибровки.

Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.
Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц.
Я даже не знаю, рекомендовать его или нет. Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.
Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости.

В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор. Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +45 Добавить в избранное Обзор понравился +48 +115

Как известно, эквивалентное последовательное сопротивление (ЭПС) зависит от многих факторов. Поэтому результаты измерений этого параметра разными ESR-метрами порой сильно различаются. Некоторые приборы даже имеют специальную таблицу с допустимыми значениями ESR для сравнения.

В Таблице №1 указаны величины ESR новых , ранее нигде не применявшихся электролитических конденсаторов . Значения получены путём измерения эквивалентного последовательного сопротивления с помощью тестера LCR T4 , о котором я уже рассказывал на страницах сайта. Думаю, данная таблица будет полезна при оценке качества электролитических конденсаторов и принятии решения о пригодности их повторного использования или замене при ремонте.

На данный момент таблица №1 не заполнена полностью, так как у меня не оказалось в наличии конденсаторов некоторых номиналов. Несмотря на это, таблица постепенно будет дополняться новыми данными.

Таблица №1. ESR новых электролитических конденсаторов (тестер LCR T4).

мкф/вольты 6,3V 10V 16V 25V 35V 50V 63V 160V 250V 400V 450V
1 4,3 10
2,2
4,7 1,7 2,6
10 2 1,1 2,7 2,2
22 0,69 1,2 0,77
33 0,44 0,91
47 0,84 0,87 0,49 0,68
68 0,33
82 0,57 0,55/0,89
100 0,46 0,75 0,17 0,4 0,29 0,43 0,77 0,35
220 0,53 0,25 0,49
330 0,25 0,22
470 0,16 0,13 0,12 0,08
1000 0,07 0,08 0,07
2200 0,03 0,02 0,03
4700 0,03

В качестве образцов для измерения ESR (Таблица №1 ) использовались новые конденсаторы разных производителей. Преимущественно это конденсаторы Jamicon серии TK - с широким температурным диапазоном (значения выделены жирным шрифтом), а также ELZET, SAMWHA и GEMBIRD. Стоит отметить, что при проверке конденсаторы Jamicon показали более низкое значение ESR по сравнению с другими.

Отмечу и то, что производители выпускают конденсаторы с разными характеристиками и свойствами. Их делят на серии. В приведённой таблице приводится ESR обычных конденсаторов.

Кроме них выпускаются и конденсаторы Low ESR и Low Impedance , ЭПС которых, как правило, очень мал и порой составляет сотые доли ома.

Заносить величину ESR или импеданса таких конденсаторов в таблицу нет особого смысла, так как он очень мал и его легко узнать из документации на серию.

В колонке на 450V для ёмкости 82μF указано два значения ESR. Первое - среднее значение для конденсаторов SAMWHA (SD, 85 0 C(M )). Второе, выделенное цветом , это ESR конденсатора CapXon (LY, 105 0 C) для ЖК-телевизоров в вытянутом корпусе (13х50).

Отмечу ещё раз, что разные модели ESR-метров могут показывать разную величину ESR у одного и того же конденсатора. Как уже говорилось, эквивалентное последовательное сопротивление зависит от многих факторов, да и методика его измерения у различных приборов отличается. Поэтому здесь и указано, какой прибор применялся для измерений.

Для сравнения приведу ещё одну таблицу. Перед вами Таблица №2 с ориентировочными значениями ESR для электролитических конденсаторов разной ёмкости. Данная таблица используется Бобом Паркером в разработанном им ESR-метре K7214.

Таблица №2. Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214.

0,08 0,07 0,05 0,06 4700 0,23 0,2 0,12 0,06 0,06

Как видно, некоторые ячейки таблицы №2 пусты. Для конденсаторов ёмкостью до 10 мкФ максимально допустимой величиной ESR приемлемо считать 4 - 5 Ом.

Не помешает помнить одно простое правило:

У любого исправного электролитического конденсатора ESR не превышает 20 Ом (Ω).

Собственно, как я уже когда-то очень давно обещал, расскажу про простейший измеритель ESR. В дальнейшем буду писать не ESR, а ЭПС(эквивалентное последовательное сопротивление), поскольку лень переключать раскладку. И так, кратко, что же такое ЭПС.

ЭПС можно представить в виде резистора, включенного последовательно с кондесатором.
На данной картинке - R. Собственно, у исправного конденсатора этот показатель измеряется долями Ома, для конденсаторов малой емкости (до 100мкф) может достигать 2-3 Ом. Более подробно значения ЭПС для исправных конденсаторов можно найти в справочных данных производителей. Со временем, из-за испарения электролита, это сопротивление увеличивается, что приводит к повышению мощности потерь. Как результат конденсатор сильнее нагревается, что еще сильнее ускоряет процесс испарения электролита и приводит к потере емкости.
На практике ремонта точное измерение ЭПС не нужно. Достаточно считать любой конденсатор с ЭПС выше 1-2 Ом неисправным. Можно считать это спорным утверждением, в интернете достаточно легко найти целые таблицы с значениями ЭПС для конденсаторов различной емкости. Однако я убеждался неоднократно, что приблизительной оценки вполне достаточно. Не говоря уже о том, что результаты измерения ЭПС одних и тех же конденсаторов(новых), одного и того же производителя сильно разнятся в зависимости от партии, времени года и фазы луны.
Я использую простой измеритель на копеечной микросхеме. Разработал его Manfred Mornhinweg .


Конструкция довольно простая, но привлекательна своей нетребовательностью к трансформатору. Из недостатков - шкала получается «широкая», в моем случае 0-20ом. Соответственно, нужна большая измерительная головка, т.н. «магнитофонные» (из индикаторов уровня магнитофонов), не подойдут - будет неудобно работать.
В качестве трансформатора автор намотал две обмотки 400 и 20 витков на ферритном кольце 19х16х5мм 2000НМ. Однако можно поступить значительно проще - использовать трансформатор дежурки из любого ATX блока питания. Достаточно заменить R8 на подстроечный многооборотный резистор 3296W сопротивлением 51к. При помощи этого резистора можно будет увеличить коэффициент усиления измерительного усилителя и компенсировать недостаточный коэффициент трансформации. LM7805 необходимо заменить на LM1117-5, это снизит потребляемый ток, плюс нижний порог напряжения питания опустится примерно до 6.5В. Стабилизатор обязателен, иначе шкала будет плавать в зависимости от напряжения питания. Для питания я использовал обычную «Крону». Саму микросхему обязательно поставьте в панельку!
Настройка прибора сводится к установке «нуля» и калибровке шкалы. Для калибровки шкалы используются низкоомные резисторы с допусками 0.5% и сопротивлениями от 0 до 2-5 Ом. Калибровка производится следующим образом - снимаем защитное стекло с индикаторной головки. Включаем прибор и измеряем сопротивление эталонных резисторов. Смотрим, куда отклоняется стрелка и ставим в этом месте на шкале метку с соответствующим сопротивлением. Так размечаем шкалу.
Измеряемые низковольтные конденсаторы(до 50-80 вольт без проблем) разряжаются резисторами R5, R6 и первичной обмоткой трансформатора. «Сетевые» емкости(те, которые после диодного моста в импульсных БП) я предварительно разряжаю приспособой, сделанной из резистора 510 Ом/1Вт, иглы от шприца, крокодила и корпуса гелевой ручки. В теории цепочка R5-R6 должна разрядить и такие емкости, но на практике, выбивает TL062:) Именно поэтому ее надо ставить в панельку -чтобы быстро заменить. Но надежнее - предварительно разрядить «сетевую» емкость.
В целом - очень удачный прибор - дешев, прост, не требователен к трансформатору.

Этот проект был задуман как способ проверки пригодности конденсатора к работе. Я покупаю много старых радиоэлектронных устройств старше 25-60 лет и состояние электролитических конденсаторов бывает подозрительным. Мне требовался быстрый способ проверки конденсаторов.

Что такое ESR?
"ESR" означает эквивалентное последовательное сопротивление. ESR является одной из характеристик, которые определяют производительность электролитического конденсатора. Чем ниже ESR конденсатора, тем лучше, так как при высоком ESR конденсатор разогревается при прохождении тока через него, а это разрушает его. Со временем ESR конденсатора может увеличиться от 10 до 30 раз, либо конденсатор вообще перестанет пропускать ток. Типичный срок службы электролитических конденсаторов 2000-15000 часов и очень сильно зависит от температуры окружающей среды. Когда ESR увеличивается, конденсатор начинает хуже работать и в конечном итоге схема не работает.

Почему ESR метр так полезен?
Большинство ESR метров требует, чтобы конденсатор был выпаян из схемы. Когда конденсаторов в схеме много, это очень утомительно, и есть риск повредить плату. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц) для измерения конденсаторов. Измерение без выпаивания из схемы возможно из-за низкого напряжения, которого хватает конденсатору, но для других деталей мало, поэтому они не мешают измерению. Большинство ESR метров будут повреждены, если вы измерите ими заряженный конденсатор. Эта схема выдерживают до 400V заряда на конденсаторе (Это напряжение опасно для жизни. Будьте осторожны! ). Мой опыт показал, что ESR метр распознает около 95% негодных конденсаторов.

Характеристики ESR измерителя:
- измерение электролитических конденсаторов емкостью > 1мкФ
- полярность конденсатора не важна
- допускает подключение заряженных конденсаторов до 400В
- низкий уровень энергопотребления (около 25 мА), что дает около 20 часов автономной работы при использовании 4 батареек АА
- измерение ESR в диапазоне 0-75 Ом.

Описание схемы
Схема начинается с 150 кГц генератора на одном элементе 74hc14. Остальные элементы используются для увеличения напряжения идущего в фильтр низких частот. Фильтр низких частот необходим, потому что прямоугольный сигнал содержит много помех и гармоник. Сигнал с фильтра идет на 10Ом резистор, который обеспечивает низкий уровень сигнала при измерении конденсатора. Диоды D5 и D6 защищают цепь от разряда при подключении заряженного конденсатора. R18 является гасящим резистором для C5. C5 защищает цепь от постоянного тока напряжением до 400В.

Остальная часть схемы является транзисторным усилителем с коэффициентом усиления около 10.5. Это усиливает сигнал, пришедший с конденсатора, до нескольких вольт в амплитуде. Усиленное напряжение должно быть достаточно большим, чтобы преодолеть 2 диода, после чего шкала начнет реагировать. Правильное функционирование схемы можно проверить, подключая на вход резисторы разного сопротивления (1 Ом - около 90% от полной шкалы, 10 Ом - около 40% шкалы и 47 Ом - около 10% шкалы). Показания тестера могут немного меняться в зависимости от температуры. Ниже можно скачать фотографии и рисунок ПП.

Файлы проекта:
Сборочный чертеж - esrbuildit.png
ПП вид снизу - esrpcb.png
ПП вид снизу - esrxray.png
ПП и схема в формате - ESR meter.zip
/SWCadiii - esr.asc

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ИС буфера, драйвера

CD74HC14

1 В блокнот
Q1 Биполярный транзистор

2N2222

1 В блокнот
D1-D4 Выпрямительный диод

1N4148

4 В блокнот
D5, D6 Выпрямительный диод

1N4004

2 В блокнот
С1-С3 Конденсатор 0.01 мкФ 3 В блокнот
С4 Конденсатор 0.047 мкФ 1 В блокнот
С5 Конденсатор 0.47 мкФ 400 В 1 В блокнот
С6 Конденсатор 0.1 мкФ 1 В блокнот
С7 Электролитический конденсатор 10 мкФ 1 В блокнот
R1 Резистор

1 кОм

1 В блокнот
R2-R6 Резистор

680 Ом

5 В блокнот
R7, R8 Резистор

10 Ом

2 В блокнот
R9 Резистор

100 кОм

1 В блокнот
R10 Подстроечный резистор 25 кОм 1 В блокнот
R11 Резистор

2.2 кОм

1 В блокнот
R12 Резистор

100 Ом

1 В блокнот
R17 Резистор

Каждому, кто регулярно занимается ремонтом электронной техники, известно, какой процент неисправностей выпадает на долю дефектных электролитических конденсаторов. При этом если существенную потерю емкости удается диагностировать при помощи обычного мультиметра, то такой весьма характерный дефект как возрастание эквивалентного последовательного сопротивления (ЭПС, англ. ESR) обнаружить без специальных устройств принципиально невозможно.

Долгое время при проведении ремонтных работ мне удавалось обходиться без специализированных приборов для проверки конденсаторов путем подстановки параллельно «подозреваемым» конденсаторам заведомо исправных, в звуковой аппаратуре использовать проверку тракта прохождения сигнала на слух при помощи наушников, а также использовать методы косвенного дефектирования, основанные на личном опыте, накопленной статистике и профессиональной интуиции. Когда же пришлось приобщиться к массовому ремонту компьютерной техники, в которой на совести электролитических конденсаторов оказывается добрая половина всех неисправностей, необходимость контроля их ЭПС стала без преувеличения стратегической задачей. Существенным обстоятельством явился также тот факт, что в процессе ремонта неисправные конденсаторы очень часто приходится заменять не новыми, а демонтированными из других устройств, и их исправность совсем не гарантирована. Поэтому неизбежно наступил момент, когда пришлось всерьез задуматься о том, чтобы разрешить эту проблему обзаведшись, наконец, ЭПС-метром. Поскольку о покупке подобного прибора по ряду причин речь заведомо не шла, напрашивался однозначный выход – собрать его самостоятельно.

Анализ схемотехнических решений построения ЭПС-метров, имеющихся на просторах Сети, показал, что спектр подобных устройств чрезвычайно широк. Они отличаются функциональностью, напряжением питания, применяемой элементной базой, частотой генерируемых сигналов, наличием/отсутствием моточных элементов, формой отображения результатов измерений и т.п.

Основными критериями выбора схемы являлись ее простота, низкое напряжение питания и минимальное количество моточных узлов.

С учетом всей совокупности факторов было принято решение повторить схему Ю. Куракина, опубликованную в статье из журнала «Радио» (2008 г., №7, с.26-27). Ее отличает целый ряд положительных особенностей: предельная простота, отсутствие высокочастотных трансформаторов, малый потребляемый ток, возможность питания от одного гальванического элемента, низкая частота работы генератора.

Детали и конструкция. Собранный на макете прибор заработал сразу и после нескольких дней практических экспериментов со схемой было принято решение о его окончательной конструкции: прибор должен быть предельно компактным и представлять собой нечто вроде тестера, позволяющего максимально показательно отображать результаты измерений.

С этой целью в качестве измерительной головки был использован стрелочный индикатор типа М68501 от магниторадиолы «Сириус-324 пано» с током полного отклонения 250 мкА и оригинальной шкалой, отградуированной в децибелах, который оказался под рукой. Позднее в Сети мною было обнаружены сходные решения с применением магнитофонных индикаторов уровня в исполнении других авторов, что подтвердило правильность принятого решения. В качестве корпуса прибора был использован корпус от неисправного зарядного устройства для ноутбука LG DSA-0421S-12, идеально подходящий по габаритам и имеющий, в отличие от многих своих собратьев, легкоразборный корпус, скрепляющийся шурупами.

В устройстве использованы исключительно общедоступные и широкораспространенные радиоэлементы, имеющиеся в хозяйстве любого радиолюбителя. Итоговая схема полностью идентична авторской, исключение составляют лишь номиналы некоторых резисторов. Сопротивление резистора R2 в идеале должно составлять 470 кОм (в авторском варианте – 1МОм, хотя при этом примерно половина хода движка все равно не используется), но резистора такого номинала, имеющего необходимые габариты, у меня не нашлось. Однако этот факт позволил доработать резистор R2 таким образом, чтобы он одновременно являлся и выключателем питания при повороте его оси в одно из крайних положений. Для этого достаточно соскрести острием ножа часть резистивного слоя у одного из крайних контактов «подковки» резистора, по которой скользит его средний контакт, на участке длиной примерно 3…4 мм.

Номинал резистора R5 подбирается исходя из тока полного отклонения используемого индикатора таким образом, чтобы даже при глубоком разряде элемента питания ЭПС-метр сохранял свою работоспособность.

Тип применяемых в схеме диодов и транзисторов абсолютно некритичен, поэтому предпочтение было отдано элементам, имеющим минимальные габариты. Гораздо более важен тип применяемых конденсаторов – они по возможности должны быть максимально термостабильны. В качестве С1…С3 были использованы импортные конденсаторы, которые удалось отыскать в плате от неисправного ИБП компьютера, обладающие очень малым ТКЕ и имеющие гораздо меньшие габариты в сравнении с отечественными К73-17.

Дроссель L1 выполнен на ферритовом кольце с магнитной проницаемостью 2000НМ, имеющем размеры 10×6×4,6 мм. Для частоты генерации 16 кГц необходимо 42 витка провода ПЭВ-2 диаметром 0,5 мм (длина проводника для намотки составляет 70 см) при индуктивности дросселя 2,3 мГн. Разумеется, можно использовать любой другой дроссель с индуктивностью 2…3,5 мГн, что будет соответствовать частотному диапазону 16…12 кГц, рекомендованному автором конструкции. У меня при изготовлении дросселя была возможность воспользоваться осциллографом и измерителем индуктивности, поэтому необходимое количество витков я подобрал экспериментальным путем исключительно из соображений вывести генератор точно на частоту 16 кГц, хотя практической необходимости в этом, конечно же, не было.

Щупы ЭПС-метра выполнены несъемными – отсутствие разъемных соединений не только упрощает конструкцию, но и делает ее более надежной, устраняя потенциальную возможность нарушения контактов в низкоомной измерительной цепи.

Печатная плата устройства имеет габариты 27×28 мм, ее чертеж в формате.LAY6 можно скачать по ссылке https://yadi.sk/d/CceJc_CG3FC6wg . Шаг сетки – 1,27 мм.

Компоновка элементов внутри готового устройства приведена на фото.

Результаты испытаний. Отличительной особенностью примененного в устройстве индикатора явилось то, что диапазон измерения ЭПС составил от 0 до 5 Ом. При проверке конденсаторов значительной емкости (100 мкФ и более), наиболее характерных для фильтров цепей питания материнских плат, блоков питания компьютеров и телевизоров, зарядных устройств ноутбуков, преобразователей сетевого оборудования (коммутаторов, маршрутизаторов, точек доступа) и их выносных адаптеров этот диапазон чрезвычайно удобен, поскольку шкала прибора является максимально растянутой. На основании усредненных экспериментальных данных для ЭПС электролитических конденсаторов различной емкости, приведенных в таблице, отображение результатов измерений оказывается очень наглядным: конденсатор можно считать исправным лишь в том случае, если стрелка индикатора при измерении располагается в красном секторе шкалы, соответствующем положительным значениям децибелов. Если стрелка располагается левее (в черном секторе), конденсатор из указанного выше диапазона емкостей является неисправным.

Разумеется, прибором можно тестировать и конденсаторы малой емкости (примерно от 2,2 мкФ), при этом показания прибора будут находиться в пределах черного сектора шкалы, соответствующего отрицательным значениям децибелов. У меня получилось примерно следующее соответствие ЭПС заведомо исправных конденсаторов из стандартного ряда емкостей градуировке шкалы прибора в децибелах:

Прежде всего, эту конструкцию следует рекомендовать начинающим радиолюбителям, еще не имеющим достаточного опыта в конструировании радиоаппаратуры, но осваивающим азы ремонта электронной техники. Низкая цена и высокая повторяемость данного ЭПС-метра выгодно отличают его от более дорогих промышленных устройств аналогичного назначения.

Основными достоинствами ЭПС-метра можно считать следующие:

— чрезвычайная простота схемы и доступность элементной базы для ее практической реализации при сохранении достаточной функциональности устройства и его компактности, отсутствие необходимости в высокочувствительном регистрирующем приборе;

— отсутствие необходимости в наладке, требующей наличия специальных измерительных приборов (осциллографа, частотомера);

— низкое напряжение питания и, соответственно, дешевизна его источника (не требуется дорогостоящая и малоемкая «Крона»). Устройство сохраняет свою работоспособность при разряде источника даже до 50% его номинального напряжения, то есть имеется возможность использовать для его питания элементы, которые уже не способны нормально функционировать в других устройствах (пультах ДУ, часах, фотоаппаратах, калькуляторах и т.п.);

— низкий ток потребления – около 380 мкА в момент измерения (зависит от используемой измерительной головки) и 125 мкА в режиме ожидания, что существенно продлевает срок эксплуатации источника питания;

— минимальное количество и предельная простота моточных изделий – в качестве L1 можно использовать любой подходящий дроссель или легко изготовить его самостоятельно из подручных материалов;

— сравнительно низкая частота работы генератора и возможность ручной установки нуля, позволяющие использовать щупы с проводами практически любой разумной длины и произвольного сечения. Это преимущество является неоспоримым в сравнении с универсальными цифровыми тестерами элементов, использующими для подключения проверяемых конденсаторов ZIF-панель с глубоким расположением контактов;

— визуальная наглядность отображения результатов тестирования, позволяющая быстро оценить пригодность конденсатора для дальнейшего использования без необходимости точной численной оценки величины ЭПС и ее соотнесения с таблицей значений;

— удобство эксплуатации — возможность выполнения непрерывных измерений (в отличие от цифровых ESR-тестеров, требующих нажатия кнопки измерения и выдержки паузы после подключения каждого поверяемого конденсатора), что существенно ускоряет работу;

— необязательность предварительной разрядки конденсатора перед измерением ЭПС.

К недостаткам прибора можно отнести:

— ограниченную функциональность в сравнении с цифровыми ESR-тестерами (отсутствие возможности измерения емкости конденсатора и процента его утечки);

— отсутствие точных численных значений результатов измерений в омах;

— сравнительно узкий диапазон измеряемых сопротивлений.