Настройка Wi-Fi

Индуктивное сопротивление зависимость u i. Реактивное сопротивление XL и XC

Индуктивное сопротивление зависимость u i. Реактивное сопротивление XL и XC

§ 54. Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L - индуктивность катушки;
- скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается X L и измеряется в омах.


Таким образом, индуктивное сопротивление катушки X L , зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

X L = ωL , (58)

где X L - индуктивное сопротивление, ом ;
ω - угловая частота переменного тока, рад/сек ;
L - индуктивность катушки, гн .
Так как угловая частота переменного тока ω = 2πf , то индуктивное сопротивление

X L = 2πf L , (59)

где f - частота переменного тока, гц .

Пример. Катушка, обладающая индуктивностью L = 0,5 гн , присоединена к источнику переменного тока, частота которого f = 50 гц . Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц ;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц .
Решение . Индуктивное сопротивление переменному току при f = 50 гц

X L = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом .

При частоте тока f = 800 гц

X L = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом .

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки X L равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.
Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.
На графике (рис. 57, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции е с, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.


Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U . В связи с этим напряжение и э. д. с. самоиндукции е с также сдвинуты по фазе друг относительно друга на 180°.
Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.
Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе (рис. 57, б.)
Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.
Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.
Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.
В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии - генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.
Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.
Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии.
Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Индуктивное сопротивление

Приложим переменное напряжение к катушке, пренебрегая активным сопротивлением (катушка выполнена из провода большого сечения).

По катушке будет протекать ток меньший, чем при постоянном токе из-за влияния ЭДС самоиндукции.

В момент времени t в цепи протекает ток

i = I m sin ωt, а спустя очень малый промежуток времени ∆t ток будет равен

i + ∆i = I m (sin ω (t + ∆t),

значит за это время ток изменится на величину

∆i = I m (sin ω (t + ∆t) - sin ωt)

Синус суммы sin ω (t + ∆t) = sin ωt cos ω ∆t + cos ωt sin ω ∆t

Косинус очень малого угла ω ∆t примерно равен 1, а синус этого угла равен соответствующей дуге sin ω ∆t = ω ∆t. Поэтому получаем

∆i = I m (sin ω t + ω ∆t cos ωt - sin ωt) = I m ω ∆t cos ωt.

Скорость изменения синусоидального тока ∆i/∆t = I m ω cos ωt, тогда

u = е L = L I m ω cos ωt = I m ω L sin (ωt + 90 0).

Напряжение измеряется в В, ток в А, тогда ω L измеряется в Омах и называется индуктивным сопротивлением

Индуктивное сопротивление возрастает с увеличением частоты тока.

В катушке будет наводиться ЭДС самоиндукции от изменения собственного магнитного потока. Эта ЭДС уравновешивает приложенное напряжение. По второму закону Кирхгофа в любой момент времени u + e = 0

Отсюда для мгновенных значений u = - e. В любой момент времени напряжение, приложенное к катушке, уравновешивается наведенной в ней ЭДС.

Отсюда

Найдем производную тока

.

Тогда

С использованием формул приведения получаем

На катушке напряжение опережает ток на 90 0 или ток отстает от напряжения на 90 0 . Нетрудно видеть, чтобы размерности левой и правой частей совпадали необходимо, чтобы имела размерность В/А, а это Ом и обозначается X L

X L = ω L - индуктивное сопротивление. Индуктивное сопротивление зависит от частоты тока и от индуктивности. С увеличением частоты индуктивное сопротивление возрастает.

Отставание тока, изменяющегося по синусоиде, от напряжения, изменяющегося по косинусоиде, ясно видно из графиков (рис.1.3).

Рисунок 1.3 - Синусоиды тока и напряжения

Изображать переменный ток, переменное напряжение синусоидами громоздко. Поэтому синусоиду заменим вектором. Для этого изобразим синусоиду в функции угла поворота ротора генератора α = ωt . (рис. 1.4). Все турбогенераторы электростанций России вращаются с одинаковой частотой 50 об/с., что соответствует 50 периодам изменения синусоиды напряжения.

Рисунок 1.4 - Замена синусоиды вектором

Когда ωt = 0, вектор, равный амплитуде синусоиды, расположим горизонтально, направленный вправо. Мгновенные значения напряжений в любой момент времени будем определять, проектируя вектор на вертикальную ось (ордината вектора). Тогда мгновенное значение через 45 0 синусоидальной величины будет равно ab. Но при повороте вектора на 45 0 мгновенное значение (ордината)также равно ab. При повороте вектора на 90 0 мгновенное значение равно амплитуде, то же самое отражается на синусоиде. Значит, любую синусоидальную величину можно заменить вращающимся вектором с частотой ω против часовой стрелки.

Промежуток времени, необходимый для совершения переменной ЭДС полного цикла (круга) своих изменений называется периодом колебаний или сокращенно периодом .

Размерность угловой частоты ω =360 0 /Т, где Т =1/f - период колебания или полный цикл изменения мгновенных значений тока, напряжения и любой синусоидальной величины.

Угловую частоту выражают в радианах, 1 радиан = 57 0 17’, тогда окружность 360 0 = 2π рад ≈ 6,28 рад..

ω = 2 π f; ω = 2 ∙3,14∙ 50 = 314 рад/с = 314 1/с.- это синхронная частота вращения ротора генератора и магнитного поля, создаваемого ротором. С такой частотой изменяется мгновенное значение синусоиды тока или напряжения в сети

Соотношение между синусоидальными различными электрическими величинами и их взаимное расположение на плоскости, выраженное графически в виде векторов, называется векторной диаграммой .

Рассмотрим цепочку, в которой к источнику напряжения U подключены активное сопротивление и катушка индуктивности.

Рисунок 1.5 - Подключение к источнику активного и индуктивного сопротивлений

Вектор тока направим горизонтально. В этом же направлении расположится вектор падения напряжения на активном сопротивлении U R . На индуктивности ток отстает от напряжения U L на 90 0 . Напряжение источника U ИСТ получим в результате сложения векторов U R и U L

U = U R + U L .

Рисунок 1.6 - Векторы напряжений на активном и индуктивном сопротивлениях

Полученная диаграмма показывает, что в рассматриваемой цепи с катушкой индуктивности ток отстает от напряжения источника на угол φ.

На векторной диаграмме если

U R = I R , то U L = I Х L ,

Индуктивность катушки, находящейся в воздухе, является величиной постоянной и определяется конструкцией (числом витков, размерами катушки). А индуктивное сопротивление зависит от частоты тока и находится по выражению

.

Угол φ (см. рис.1.6) зависит от соотношения индуктивного и активного сопротивлений.

.

Кроме индуктивного сопротивления в электрических цепях следует учитывать другое реактивное - емкостное сопротивление, величина которого зависит от частоты и величины емкости

.

С увеличением частоты емкостное сопротивление конденсатора переменному току снижается. В отличии от индуктивности ток на емкости опережает напряжение. Обкладки конденсатора перезаряжаются каждый полупериод переменного напряжения.

Но, если к конденсатору подведено постоянное напряжение, (от аккумулятора), то после заряда ток через конденсатор не протекает.

Соотношение сопротивлений и мощностей на переменном токе

На переменном токе следует учитывать не только активное сопротивление проводников, но и реактивное (емкостное или чаще индуктивное). Из векторной диаграммы напряжений на активном и индуктивном сопротивлениях (см. рис.1.6) ясно, что векторы U R и U L расположены под 90 0 друг относительно друга, а три вектора U R , U L и U ИСТ образуют прямоугольный треугольник.

Угол φ показывает, насколько ток в сопротивлении Z отстает от напряжения. Величина cos φ называется коэффициентом мощности . Длины отрезков этого треугольника разделим на ток I, получим сопротивления R, X L и Z, представляющие стороны также прямоугольного треугольника, из него получаем



,

где Z - полное сопротивление участка сети переменному току.

Рисунок 1.7 - Треугольник сопротивлений

Если известно активное сопротивление и угол φ, то Z = R/cos φ. Любой элемент сети, по которому протекает переменный ток, имеет приведенное соотношение сопротивлений. В комплексной форме соотношение сопротивлений записывается

Z = R + jX.

Активное сопротивление на переменном токе практически совпадает с сопротивлением на постоянном токе, поэтому его можно измерить омметром. А полное сопротивление переменному току вычисляют по закону Ома через измеренное напряжение и ток, а затем вычислить

Z = U ПЕР /I ПЕР.

Переменный ток в цепи с индуктивностью отстает от приложенного напряжения (см рис.1.6)). Построим векторную диаграмму напряжения U и тока I . Для удобства повернем векторную диаграмму напряжений так, чтобы вектор напряжения расположился вертикально. После этого разложим вектор тока на активную составляющую I A и реактивную составляющую I Р, получим треугольник токов (рис.1.8).

Рисунок 1.8 - Разложение тока на составляющие

Между активной составляющей и полным током на участке угол φ. Умножим каждую сторону треугольника токов на напряжение U, тогда стороны составят

где S - полная мощность; Р - активная мощность; Q - реактивная мощность.

Рисунок 1.9 - Соотношение мощностей

Из треугольника мощностей получаем вывод, что коэффициент мощности cos φ = P / S показывает, какую долю от полной мощности составляет активная мощность. На любом участке сети соблюдается соотношение

Активным сопротивлением R называется физическая величина, равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника. http://www.sip2-kabel.ru/ литкульт провод ппсрвм 1 характеристики.

Пусть в цепь переменного тока включена катушка. Тогда при изменении силы тока по закону в катушке возникает ЭДС самоиндукции . Т.к. электрическое сопротивление катушки равно нулю, то ЭДС равна минус напряжению на концах катушки, созданному внешним генератором (??? Каким еще генератором???) . Следовательно, изменение силы тока вызывает изменение напряжения, но со сдвигом по фазе . Произведение является амплитудой колебаний напряжение, т.е. . Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний тока называется индуктивным сопротивлением .

Пусть в цепи находится конденсатор. При его включение он четверть периода заряжается, потом столько же разряжается, потом то же самое, но со сменой полярности. При изменении напряжения на конденсаторе по гармоническому закону заряд на его обкладках равен . Ток в цепи возникает при изменении заряда: , аналогично случаю с катушкой амплитуда колебаний силы тока равна . Величина, равная отношению амплитуды к силе тока, называется емкостным сопротивлением .

В цепь переменного тока, под действием непрерывно изменяющегося напряжения происходят изменения этого тока. В свою очередь, эти изменения вызывают генерацию магнитного поля, которое периодический возрастает или убывает. Под его влиянием в катушке индуцируется встречное напряжение, препятствующее изменениям тока. Таким образом, протекание тока происходит под непрерывным противодействием, получившим название индуктивного сопротивления.

Данная величина связана напрямую с частотой приложенного напряжения (f) и значением индуктивности (L). Формула индуктивного сопротивления будет выглядеть следующим образом: XL = 2πfL . Прямая пропорциональная зависимость, в случае необходимости, позволяет путем преобразования основной формулы вычислить частоту или значение индуктивности.

От чего зависит индуктивное сопротивление

Под действием переменного тока, проходящего по проводнику, вокруг этого проводника образуется переменное магнитное поле. Действие этого поля приводит к наведению в проводнике электродвижущей силы обратного направления, известной еще как ЭДС самоиндукции. Противодействие или сопротивление ЭДС переменному току получило название реактивного индуктивного сопротивления.

Данная величина зависит от многих факторов. В первую очередь на нее оказывает влияние как значение тока не только в собственном проводнике, но и в соседних проводах. То есть увеличение сопротивления и потока рассеяния происходит по мере увеличения расстояния между фазными проводами. Одновременно снижается воздействие соседних проводов.

Существует такое понятие, как погонное индуктивное сопротивление, которое вычисляется по формуле: X0 = ω x (4,61g x (Dср/Rпр) + 0,5μ) x 10-4 = X0’ + X0’’, в которой ω является угловой частотой, μ - магнитной проницаемостью, Dср - среднегеометрическим расстоянием между фазами ЛЭП, а Rпр - радиусом провода.

Величины X0’ и X0’’ представляют собой две составные части погонного индуктивного сопротивления. Первая из них X0’ представляет собой внешнее индуктивное сопротивление, зависящее только от внешнего магнитного поля и размеров ЛЭП. Другая величина - X0’’ является внутренним сопротивлением, зависящим от внутреннего магнитного поля и магнитной проницаемости μ.

На линиях электропередачи высокого напряжения от 330 кВ и более, проходящие фазы расщепляются на несколько отдельных проводов. Например, при напряжении 330 кВ фаза разделяется на два провода, что позволяет снизить индуктивное сопротивление примерно на 19%. Три провода используются при напряжении 500 кВ - индуктивное сопротивление удается снизить на 28%. Напряжение 750 кВ допускает разделение фаз на 4-6 проводников, что способствует снижению сопротивления примерно на 33%.

Погонное индуктивное сопротивление имеет величину в зависимости от радиуса провода и совершенно не зависит от сечения. Если радиус проводника будет увеличиваться, то значение погонного индуктивного сопротивления будет соответственно уменьшаться. Существенное влияние оказывают проводники, расположенные рядом.

Индуктивное сопротивление в цепи переменного тока

Одной из основных характеристик электрических цепей является сопротивление, которое может быть активным и реактивным. Типичными представителями активного сопротивления считаются обычные потребители - лампы, накаливания, резисторы, нагревательные спирали и другие элементы, в которых электрический .

К реактивному относятся индуктивное и емкостное сопротивления, находящиеся в промежуточных преобразователях электроэнергии - индуктивных катушках и конденсаторах. Эти параметры в обязательном порядке учитываются при выполнении различных расчетов. Например, для определения общего сопротивления участка цепи, . Сложение осуществляется геометрическим, то есть, векторным способом, путем построения прямоугольного треугольника. В нем оба катета являются обоими сопротивлениями, а гипотенуза - полным. Длина каждого катета соответствует действующему значению того или иного сопротивления.

В качестве примера можно рассмотреть характер индуктивного сопротивления в простейшей цепи переменного тока. В нее входит источник питания, обладающий ЭДС (Е), резистор, как активная составляющая (R) и катушка, обладающая индуктивностью (L). Возникновение индуктивного сопротивления происходит под действием ЭДС самоиндукции (Еси) в катушечных витках. Индуктивное сопротивление увеличивается в соответствии с ростом индуктивности цепи и значения тока, протекающего по контуру.

Таким образом, закон Ома для такой цепи переменного тока будет выглядеть в виде формулы: Е + Еси = I x R. Далее с помощью этой же формулы можно определить значение самоиндукции: Еси = -L x Iпр, где Iпр является производной тока от времени. Знак «минус» означает противоположное направление Еси по отношению к изменяющемуся значению тока. Поскольку в цепи переменного тока подобные изменения происходят постоянно, наблюдается существенное противодействие или сопротивление со стороны Еси. При постоянном токе данная зависимость отсутствует и все попытки подключения катушки в такую цепь привели бы к обычному короткому замыканию.

Для преодоления ЭДС самоиндукции, на выводах катушки источником питания должна создаваться такая разность потенциалов, чтобы она могла хотя-бы минимально компенсировать сопротивление Еси (Uкат = -Еси). Поскольку увеличение переменного тока в цепи приводит к возрастанию магнитного поля, происходит генерация вихревого поля, которое и вызывает рост противоположного тока в индуктивности. В результате, между током и напряжением происходит смещение фаз.

Индуктивное сопротивление катушки

Катушка индуктивности относится к категории пассивных компонентов, используемых в электронных схемах. Она способна сохранять электроэнергию, превращая ее в магнитное поле. В этом и состоит ее основная функция. Катушка индуктивности по своим характеристиками и свойствам напоминает конденсатор, сохраняющий энергию в виде электрического поля.

Индуктивность, измеряемая в Генри, заключается в появлении вокруг проводника с током магнитного поля. В свою очередь, связано с электродвижущей силой, которая противодействует приложенному переменному напряжению и силе тока в катушке. Данное свойство и есть индуктивное сопротивление, находящееся в противофазе с емкостным сопротивлением конденсатора. Индуктивность катушки возможно повысить за счет увеличения количества витков.

Для того чтобы выяснить, чему равно индуктивное сопротивление катушки, следует помнить, что оно, в первую очередь, противодействует переменному току. Как показывает практика, каждая индуктивная катушка сама по себе имеет определенное сопротивление.

Прохождение переменного синусоидального тока через катушку, приводит к возникновению переменного синусоидального напряжения или ЭДС. В результате, возникает индуктивное сопротивление, определяемое формулой: XL = ωL = 2πFL, в которой ω является угловой частотой, F - частотой в герцах, L - индуктивностью в генри.

Активное сопротивление, индуктивность и емкость в цепи переменного тока.

Изме­нения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вооб­ще говоря, различны. Поэтому если начальную фазу силы тока ус­ловно принять за нуль, то начальная фаза напряжения будет иметь некоторое значение φ. При таком условии мгновенные значения силы тока и нап­ряжения и будут выражаться следующими формулами:

i = I m sinωt

u = U m sin(ωt + φ)

a) Активное сопротивление в цепи переменного тока. Сопротивление цепи, которое обу­словливает безвозвратные потери элект­рической энергии на тепловое действие тока, называют активным . Это сопротив­ление для тока низкой частоты можно счи­тать равным сопротивлению R этого же проводника постоянному току.

В цепи переменного тока, имеющей только активное сопротивле­ние, например, в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. φ = 0. Это означает, что ток и напряжение в такой цепи изменяются в оди­наковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

Будем счи­тать, что напряжение на зажимах цепи меняется по гармоническому закону: и = U т cos ωt.

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значе­ния силы тока можно применить закон Ома:

по фазе с колебаниями напряже­ния.

b) Катушка индуктивности в цепи переменного тока. Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление X L , которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. само­индукции тем больше, чем больше индуктивность цепи и чем быст­рее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω: X L = ωL.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь. Для это­го предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри про­водника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой.

Равенство нулю напряженности поля оказывается возможным потому, что напряженность вих­ревого электрического поля E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Е к, создаваемого в про­воднике зарядами, расположенными на зажимах источни­ка и в проводах цепи.

Из равенства E i = -Е к следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции e i) равна по моду­лю и противоположна по знаку удельной работе кулонов­ского поля . Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно запи­сать: e i = -и.

При изменении силы тока по гармоническому закону i = I m sin соsωt, ЭДС самоиндукции равна: е i = -Li" = -LωI m cos ωt. Так как e i = -и, то напряжение на концах катушки ока­зывается равным

и = LωI m cos ωt = LωI m sin (ωt + π/2) = U m sin (ωt + π/2)

гдеU m = LωI m - амплитуда напряжения.

Следовательно, колебания напряжения на катушке опе­режают по фазе колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колеба­ний напряжения на π/2.

Если ввести обозначение X L = ωL, то получим . Величину X L , равную произведению циклической час­тоты на индуктивность, называют индуктивным сопротив­лением. Согласно формуле , значение силы тока связано с значением напряжения и ин­дуктивным сопротивлением соотношением, подобным за­кону Ома для цепи постоянного тока.

Индуктивное сопротивление зависит от частоты ω. По­стоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю. Чем быстрее меняется напряжение, тем больше ЭДС са­моиндукции и тем меньше амплитуда силы тока. Следует отметить, что напряжение на индуктивном со­противлении опережает по фазе ток .

c) Конденсатор в цепи переменного тока. Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерыв­но изменяется, поэтому в цепи течет переменный ток. Сила тока бу­дет тем больше, чем больше емкость конденсатора и чем чаще про­исходит его перезарядка, т. е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивле­нием Х с . Оно обратно пропорционально емкости С и круговой частоте ω: Х с =1/ωС.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением прово­дов и обкладок конденсатора можно пренебречь.

Напряжение на конденсаторе u = q/C равно напряжению на концах цепи u = U m cosωt.

Следовательно, q/C = U m cosωt. Заряд конденсатора меняется по гармоническому закону:

q = CU m cosωt.

Сила тока, представляющая со­бой производную заряда по вре­мени, равна:

i = q" = -U m Cω sin ωt =U m ωC cos(ωt + π/2).

Следовательно, колебания си­лы тока опережают по фазе ко­лебания напряжения на конден­саторе на π/2.

Величину Х с , обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины анало­гична роли активного сопротивления R в законе Ома. Значение силы тока связано с значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и поз­воляет рассматривать величину Х с как сопротивление кон­денсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток пе­резарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току беско­нечно велико, его сопротивление переменному току имеет конечное значение Х с. С увеличением емкости оно умень­шается. Уменьшается оно и с увеличением частоты ω.

В заключение отметим, что на протяжении четверти пе­риода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в кон­денсаторе в форме энергии электрического поля. В следую­щую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Из сравнения формул X L = ωL и Х с =1/ωС видно, что катушки ин­дуктивности. представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы - наоборот. Индуктивное Х L и емкостное Х C сопротивления называют реактивными.

d) Закон ома для электрической цепи переменного тока.

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конден­сатор емкостью С

Мы видели, что при включении по отдельности в цепь активного сопротивления R, конденсатора емкостью С или катуш­ки с индуктивностью L амплитуда силы тока определяется соот­ветственно формулами:

; ; I m = U m ωC .

Амплитуды же на­пряжений на активном сопротивлении, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так: U m = I m R; U m = I m ωL;

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряже­ние на контуре и напряжения на отдельных элементах цепи, ока­жется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах. Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлениями. Однако только на активном сопро­тивлении колебания напряжения и тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колеба­ний тока на π/2, а на катушке индуктивности колеба­ния напряжения опережают колебания тока на π/2. Если учесть сдвиг фаз между складываемыми напряжениями, то окажется, что

Для получения этого равенства нужно уметь скла­дывать колебания напряжений, сдвинутые по фазе друг относительно друга. Проще всего выполнить сложение нескольких гар­монических колебаний с помощью векторных диаграмм. Идея метода основана на двух довольно простых положениях.

Во-первых, проекция вектора с модулем х m вращающегося с постоянной угловой скоростью совершает гармонические колебания: х = х m cosωt

Во-вторых, при сложении двух векторов проекция суммарного векто­ра равна сумме проекций складываемых векторов.

Векторная диаграмма электрических колебаний в цепи, изображенной на рисунке, позволит нам получить соотношение между амплитудой силы тока в этой цепи и амплитудой напряжения. Так как сила тока одинакова во всех участках цепи, то построение век­торной диаграммы удобно начать с вектора силы тока I m . Этот вектор изобра­зим в виде горизонтальной стрелки. Напряжение на активном со­противлении совпадает по фазе с силой тока. Поэтому вектор U mR , должен совпадать по направлению с вектором I m . Его модуль равен U mR = I m R

Колебания напряжения на индуктивном сопротивлении опережают колебания силы тока на π/2, и соответствующий вектор U m L должен быть повернут относительно вектора I m на π/2. Его модуль равен U m L = I m ωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор U m L следует повернуть налево. (Можно было бы, конечно, поступить и наоборот.)

Его модуль равен U mC =I m /ωC . Для нахождения вектора суммарного напряжения U m нужно сложить три вектора: 1) U mR 2) U m L 3) U mC

Вначале удобнее сложить два вектора: U m L и U mC

Модуль этой суммы равен , если ωL > 1/ωС. Именно такой случай изображен на рисунке. После этого, сложив вектор (U m L + U mC) с вектором U mR получим вектор U m , изображающий колебания напряжения в сети. По теореме Пифагора:


Из последнего равенства можно легко найти амплитуду силы тока в цепи:

Таким образом, благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи, изобра­женной на рисунке, выражается так:

От амплитуд силы тока и напряжения можно перейти к дейст­вующим значениям этих величин:

Это и есть закон Ома для переменного тока в цепи, изображен­ной на рисунке 43. Мгновенное значение силы тока меняется со временем гармонически:

i = I m cos (ωt+ φ), где φ - разность фаз между силой тока и напряжением в сети. Она зависит от частоты ω и параметров цепи R, L, С.

e) Резонанс в электрической цепи. При изучении вынужденных механических колебаний мы по­знакомились с важным явлением - резонансом. Резонанс наблю­дается в том случае, когда собственная частота колебаний систе­мы совпадает с частотой внешней силы. При малом трении происходит резкое увеличение амплитуды установившихся вы­нужденных колебаний. Совпадение законов механи­ческих и электромагнитных ко­лебаний сразу же позволяет сделать заключение о возмож­ности резонанса в электриче­ской цепи, если эта цепь представляет, собой колеба­тельный контур, обладающий определенной собственной ча­стотой колебаний.

Амплитуда тока при вы­нужденных колебаниях в кон­туре, совершающихся под дей­ствием внешнего гармонически изменяющегося напряжения, определяется формулой:

При фиксированном напря­жении и заданных значениях R, L и С, сила тока достигает мак­симума при частоте ω, удовлетворяющей соотношению

Эта амплитуда особенно велика при малом R. Из этого уравнения можно определить значение циклической частоты переменного тока, при которой сила тока максимальна:

Эта частота совпадает с частотой свободных колебаний в конту­ре с малым активным сопротивлением.

Резкое возрастание амплитуды вынужденных колебаний тока в колебательном контуре с малым активным сопротивлением про­исходит при совпадении частоты внешнего переменного напря­жения с собственной частотой колебательного контура. В этом состоит явление резонанса в электрическом колебательном кон­туре.

Одновременно с ростом силы тока при резонансе резко воз­растают напряжения на конденсаторе и катушке индуктивности. Эти напряжения становятся одинаковыми и во много раз пре­восходят внешнее напряжение.

Действительно,

U м, С,рез =
U м, L ,рез =

Внешнее напряжение связано с резонансным током так:

U м = . Если тоU m , C ,рез = U m , L ,рез >> U m

При резонансе сдвиг фаз между током и напряжением стано­вится равным нулю.

Действительно, колебания напряжения на катушке индуктив­ности и конденсаторе всегда происходят в противофазе. Резо­нансные амплитуды этих напряжений одинаковы. В результате напряжения на катушке и конденсаторе полностью компенсиру­ют друг друга, и падение напряжения происходит только на активном сопротивлении.

Равенство нулю сдвига фаз между напряжением и током при резонансе обеспе­чивает оптимальные условия для поступления энергии от источ­ника переменного напряжения в цепь. Здесь полная аналогия с механическими колебаниями: при резонансе внешняя сила (ана­лог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).