Безопасность

Измерение постоянного тока и напряжения на arduino. Аналоговые измерения с Arduino

Измерение постоянного тока и напряжения на arduino. Аналоговые измерения с Arduino

Если вы очень переживаете за расход электро энергии и жуть как хочется вычислить виновника - это ваш день. Мы соберем датчик тока напишем простую логику для обработки входных значений для пересчета значений в киловаты/ч.

Для сборки я использовал плату Arduino nano (никто не мешаем вам использовать тот же код для ESP или STM плат), LCD экранный шилд, резистор на 56 Ом, резисторы 100 кОм, конденсатор 10 мКф, датчик тока CT - Talema AC103 (с номинальным измерением 30A и максимальным 75A).

Что такое датчик тока?


Датчик тока - это магнитопровод с зазором и обмоткой компенсации, а так же встроенный датчик Холла и плата управления. Датчик Холла размещается в зазоре магнитопровода и реагирует на создаваемое катушкой магнитное поле. Чем сильнее напряженность магнитного поля, тем сильнее датчик Холла подает сигнал, который усиливается платой управления.
Датчики тока бывают для измерения переменного тока и постоянного тока. Наш - CT-Talema AC103 - для переменного.

Соберем наше устройство согласно схеме:


LCD шилд уже имеет выводы для подключения наших аналоговых портов для измерения сигнала - и это удобно.
Через датчик тока нужно пропустить единственный вводной кабель фазы т.к. на нулевой провод зачастую приходит не все напряжение - часть может уходить через заземление.


Не забываем, что нам нужно выполнить калибровку нагрузочного резистора R3. Формула расчета R = V / I - R = 2,5 / 0,042 = 59,5 Ом где 2,5 - опорное напряжение на плате, а 42mA - потребление платы. По тому принимаем самый близкий резистор по номиналу - 56 Ом.
Для деление основного напряжения питания до опорного 5/2 вам потребуется поставить два одинаковых резистора R1 и R2.

Остается только загрузить пример кода в Arduino:

//Michael Klements //The DIY Life //27 October 2014 #include int currentPin = 1; //Assign CT input to pin 1 double kilos = 0; int peakPower = 0; LiquidCrystal lcd(8, 9, 4, 5, 6, 7); //Assign LCD screen pins, as per LCD shield requirements void setup() { lcd.begin(16,2); // columns, rows. use 16,2 for a 16x2 LCD, etc. lcd.clear(); lcd.setCursor(0,0); // set cursor to column 0, row 0 (the first row) lcd.print("Running"); } void loop() { int current = 0; int maxCurrent = 0; int minCurrent = 1000; for (int i=0 ; i<=200 ; i++) //Monitors and logs the current input for 200 cycles to determine max and min current { current = analogRead(currentPin); //Reads current input and records maximum and minimum current if(current >= maxCurrent) maxCurrent = current; else if(current <= minCurrent) minCurrent = current; } if (maxCurrent <= 517) { maxCurrent = 516; } double RMSCurrent = ((maxCurrent - 516)*0.707)/11.8337; //Calculates RMS current based on maximum value int RMSPower = 220*RMSCurrent; //Calculates RMS Power Assuming Voltage 220VAC, change to 110VAC accordingly if (RMSPower > peakPower) { peakPower = RMSPower; } kilos = kilos + (RMSPower * (2.05/60/60/1000)); //Calculate kilowatt hours used delay (2000); lcd.clear(); lcd.setCursor(0,0); // Displays all current data lcd.print(RMSCurrent); lcd.print("A"); lcd.setCursor(10,0); lcd.print(RMSPower); lcd.print("W"); lcd.setCursor(0,1); lcd.print(kilos); lcd.print("kWh"); lcd.setCursor(10,1); lcd.print(peakPower); lcd.print("W"); }

Завершающим шрихом нашей установки станет калибровка. Ее лучше выполнять при включенной эталонной нагрузке известной мощности. Для этого хорошо подходят мощные лампы накаливания. Возьмем лампу на 100 Ват. Включаем плату и высчитываем поправочный коэффициент:
Двойной RMSCurrent = ((maxCurrent - 516) * 0,707) /11,8337 где 11.8337 - подобранный коэффициент для компенсации расхождений в измерениях.

Аналоговые входы платы Ардуино.

Плата Arduino UNO содержит 6 аналоговых входов предназначенных для измерения напряжения сигналов. Правильнее сказать, что 6 выводов платы могут работать в режиме, как дискретных выводов, так и аналоговых входов.

Эти выводы имеют номера от 14 до 19. Изначально они настроены как аналоговые входы, и обращение к ним можно производить через имена A0-A5. В любой момент их можно настроить на режим дискретных выходов.

pinMode(A3, OUTPUT); // установка режима дискретного вывода для A3
digitalWrite(A3, LOW); // установка низкого состояния на выходе A3

Чтобы вернуть в режим аналогового входа:

pinMode(A3, INPUT); // установка режима аналогового входа для A3

Аналоговые входы и подтягивающие резисторы.

К выводам аналоговых входов, так же как и к дискретным выводам, подключены подтягивающие резисторы. Включение этих резисторов производится командой

digitalWrite(A3, HIGH); // включить подтягивающий резистор к входу A3

Команду необходимо применять к выводу настроенному в режиме входа.

Надо помнить, что резистор может оказать влияние на уровень входного аналогового сигнала. Ток от источника питания 5 В, через подтягивающий резистор, вызовет падение напряжения на внутреннем сопротивлении источника сигнала. Так что лучше резистор отключать.

Аналого-цифровой преобразователь платы Ардуино.

Собственно измерение напряжение на входах производится аналого-цифровым преобразователем (АЦП) с коммутатором на 6 каналов. АЦП имеет разрешение 10 бит, что соответствует коду на выходе преобразователя 0…1023. Погрешность измерения не более 2 единиц младшего разряда.

Для сохранения максимальной точности (10 разрядов) необходимо, чтобы внутреннее сопротивление источника сигнала не превышало 10 кОм. Это требование особенно важно при использовании резисторных делителей, подключенных к аналоговым входам платы. Сопротивление резисторов делителей не может быть слишком большим.

Программные функции аналогового ввода.

int analogRead(port)

Считывает значение напряжения на указанном аналоговом входе. Входное напряжение диапазона от 0 до уровня источника опорного напряжения (часто 5 В) преобразовывает в код от 0 до 1023.

При опорном напряжении равном 5 В разрешающая способность составляет 5 В / 1024 = 4,88 мВ.

Занимает на преобразование время примерно 100 мкс.

int inputCod; // код входного напряжения
float inputVoltage; // входное напряжение в В

inputCod= analogRead(A3); // чтение напряжения на входе A3
inputVoltage= ((float)inputCod * 5. / 1024.); // пересчет кода в напряжение (В)

void analogReference(type)

Задает опорное напряжение для АЦП. Оно определяет максимальное значение напряжения на аналоговом входе, которое АЦП может корректно преобразовать. Величина опорного напряжения также определяет коэффициент пересчета кода в напряжение:

Напряжение на входе = код АЦП * опорное напряжение / 1024.

Аргумент type может принимать следующие значения:

  • DEFAULT – опорное напряжение равно напряжению питания контроллера (5 В или 3,3 В). Для Arduino UNO R3 – 5 В.
  • INTERNAL – внутреннее опорное напряжение 1,1 В для плат с контроллерами ATmega168 и ATmega328, для ATmega8 – 2,56 В.
  • INTERNAL1V1 – внутреннее опорное напряжение 1,1 В для контроллеров Arduino Mega.
  • INTERNAL2V56 – внутреннее опорное напряжение 2,56 В для контроллеров Arduino Mega.
  • EXTERNAL – внешний источник опорного напряжения, подключается к входу AREF.

analogReference(INTERNAL); // опорное напряжение равно 1,1 В

Двухканальный вольтметр на Ардуино.

В качестве примера использования функций аналогового ввода создадим проект простого цифрового вольтметра на Ардуино. Устройство должно измерять напряжения на двух аналоговых входах платы, и передавать измеренные значения на компьютер по последовательному порту. На примере этого проекта я покажу принципы создания простых систем измерения и сбора информации.

Решим, что вольтметр должен измерять напряжение в пределах не меньше 0…20 В и разработаем схему подключения входов вольтметра к плате Arduino UNO.

Если мы зададим опорное напряжение равным 5 В, то аналоговые входы платы будут измерять напряжение в пределах 0…5 В. А нам надо как минимум 0…20 В. Значит надо использовать делитель напряжения.

Напряжение на входе и выходе делителя связаны соотношением:

Uвыхода = (Uвхода / (R1 + R2)) * R2

Коэффициент передачи:

K = Uвыхода / Uвхода = R2 / (R1 + R2)

Нам необходим коэффициент передачи 1/4 (20 В * 1/4 = 5 В).

Для сохранения максимальной точности (10 разрядов) необходимо, чтобы внутреннее сопротивление источника сигнала не превышало 10 кОм. Поэтому выбираем резистор R2 равным 4,22 кОм. Рассчитываем сопротивление резистора R1.

0,25 = 4,22 / (R1 + 4,22)
R1 = 4,22 / 0.25 – 4,22 = 12,66 кОм

У меня с ближайшим номиналом нашлись резисторы сопротивлением 15 кОм. С резисторами R1 = 15 кОм и R2 = 4,22:

5 / (4,22 / (15 + 4,22)) = 22,77 В.

Схема вольтметра на базе Ардуино будет выглядит так.

Два делителя напряжения подключены к аналоговым входам A0 и A1. Конденсаторы C1 и C2 вместе с резисторами делителя образуют фильтры нижних частот, которые убирают из сигналов высокочастотные шумы.

Я собрал эту схему на макетной плате.

Первый вход вольтметра я подключил к регулируемому источнику питания, а второй к питанию 3,3 В платы Ардуино. Для контроля напряжения к первому входу я подключил вольтметр. Осталось написать программу.

Программа для измерения напряжения с помощью платы Ардуино.

Алгоритм простой. Надо:

  • с частотой два раза в секунду считывать код АЦП;
  • пересчитывать его в напряжение;
  • посылать измеренные значения по последовательному порту на компьютер;
  • программой монитор порта Arduino IDE отображать полученные значения напряжений на экране компьютера.

Приведу скетч программы сразу полностью.

// программа измерения напряжения
// на аналоговых входах A0 и A1

#include

время периода измерения
#define R1 15. // сопротивление резистора R1
#define R2 4.22 // сопротивление резистора R2


float u1, u2; // измеренные напряжения

void setup() {
Serial.begin(9600); //

MsTimer2::start(); // разрешение прерывания
}

void loop() {

// период 500 мс
if (timeCount >= MEASURE_PERIOD) {
timeCount= 0;

//

// чтение кода канала 2 и пересчет в напряжение
u2= ((float)analogRead(A1)) * 5. / 1024. / R2 * (R1 + R2);

// передача данных через последовательный порт
Serial.print("U1 = "); Serial.print(u1, 2);
Serial.print(" U2 = "); Serial.println(u2, 2);
}
}

// обработка прерывания 1 мс
void timerInterupt() {
timeCount++;
}

Поясню строчку, в которой пересчитывается код АЦП в напряжение:

// чтение кода канала 1 и пересчет в напряжение
u1= ((float)analogRead(A0)) * 5. / 1024. / R2 * (R1 + R2);

  • Считывается код АЦП: analogRead(A0) .
  • Явно преобразуется в формат с плавающей запятой: (float) .
  • Пересчитывается в напряжение на аналоговом входе: * 5. / 1024. Точка в конце чисел показывает, что это число с плавающей запятой.
  • Учитывается коэффициент передачи делителя: / R2 * (R1 + R2) .

Загрузим программу в плату, запустим монитор последовательного порта.

Два бегущих столбика показывают значения измеренных напряжений. Все работает.

Измерение среднего значения сигнала.

Подключим первый канал нашего вольтметра к источнику напряжения с большим уровнем пульсаций. Увидим такую картину на мониторе.

Значения напряжения первого канала на экране монитора все время дергаются, скачут. А показания контрольного вольтметра вполне стабильны. Это объясняется тем, что контрольный вольтметр измеряет среднее значение сигнала, в то время как плата Ардуино считывает отдельные выборки каждые 500 мс. Естественно, момент чтения АЦП попадает в разные точки сигнала. А при высоком уровне пульсаций амплитуда в этих точках разная.

Кроме того, если считывать сигнал отдельными редкими выборками, то любая импульсная помеха может внести значительную ошибку в измерение.

Решение – сделать несколько частых выборок и усреднить измеренное значение. Для этого:

  • в обработчике прерывания считываем код АЦП и суммируем его с предыдущими выборками;
  • отсчитываем время усреднения (число выборок усреднения);
  • при достижении заданного числа выборок – сохраняем суммарное значение кодов АЦП;
  • для получения среднего значения сумму кодов АЦП делим на число выборок усреднения.

Задача из учебника математики 8 класса. Вот скетч программы, двух канального вольтметра среднего значения.

// программа измерения среднего напряжения
// на аналоговых входах A0 и A1

#include

#define MEASURE_PERIOD 500 // время периода измерения
#define R1 15. // сопротивление резистора R1
#define R2 4.22 // сопротивление резистора R2

int timeCount; // счетчик времени
long sumU1, sumU2; // переменные для суммирования кодов АЦП
long avarageU1, avarageU2; // сумма кодов АЦП (среднее значение * 500)
boolean flagReady; // признак готовности данных измерения

void setup() {
Serial.begin(9600); // инициализируем порт, скорость 9600
MsTimer2::set(1, timerInterupt); // прерывания по таймеру, период 1 мс
MsTimer2::start(); // разрешение прерывания
}

void loop() {

if (flagReady == true) {
flagReady= false;
// пересчет в напряжение и передача на компьютер
Serial.print("U1 = ");
Serial.print((float)avarageU1 / 500. * 5. / 1024. / R2 * (R1 + R2), 2);
Serial.print(" U2 = ");
Serial.println((float)avarageU2 / 500. * 5. / 1024. / R2 * (R1 + R2), 2);
}
}

// обработка прерывания 1 мс
void timerInterupt() {

timeCount++; // +1 счетчик выборок усреднения
sumU1+= analogRead(A0); // суммирование кодов АЦП
sumU2+= analogRead(A1); // суммирование кодов АЦП

// проверка числа выборок усреднения
if (timeCount >= MEASURE_PERIOD) {
timeCount= 0;
avarageU1= sumU1; // перегрузка среднего значения
avarageU2= sumU2; // перегрузка среднего значения
sumU1= 0;
sumU2= 0;
flagReady= true; // признак результат измерений готов
}
}

В формулу пересчета кода АЦП в напряжение добавилось /500 – число выборок. Загружаем, запускаем монитор порта (Cntr+Shift+M).

Теперь, даже при значительном уровне пульсаций, показания меняются на сотые доли. Это только потому, что напряжение не стабилизировано.

Число выборок надо выбирать, учитывая:

  • число выборок определяет время измерения;
  • чем больше число выборок, тем меньше будет влияние помех.

Основным источником помех в аналоговых сигналах является сеть 50 Гц. Поэтому желательно выбирать время усреднения кратное 10 мс – времени полупериода сети частотой 50 Гц.

Оптимизация вычислений.

Вычисления с плавающей запятой просто пожирают ресурсы 8ми разрядного микроконтроллера. Любая операция с плавающей запятой требует денормализацию мантиссы, операцию с фиксированной запятой, нормализацию мантиссы, коррекцию порядка… И все операции с 32 разрядными числами. Поэтому необходимо свести к минимуму употребление вычислений с плавающей запятой. Как это сделать я расскажу в следующих уроках, но давайте хотя бы оптимизируем наши вычисления. Эффект будет значительный.

В нашей программе пересчет кода АЦП в напряжение записан так:

(float)avarageU1 / 500. * 5. / 1024. / R2 * (R1 + R2)

Сколько здесь вычислений, и все с плавающей запятой. А ведь большая часть вычислений – операции с константами. Часть строки:

/ 500. * 5. / 1024. / R2 * (R1 + R2)

(float)avarageU1 * 0.00004447756

Умные компиляторы сами распознают вычисления с константами и рассчитывать их на этапе компиляции. У меня возник вопрос, насколько умный компилятор Андруино. Решил проверить.

Я написал короткую программу. Она выполняет цикл из 10 000 проходов, а затем передает на компьютер время выполнения этих 10 000 циклов. Т.е. она позволяет увидеть время выполнения операций, размещенных в теле цикла.

// проверка оптимизации вычислений

int x= 876;
float y;
unsigned int count;
unsigned long timeCurrent, timePrev;

void setup() {
Serial.begin(9600);
}

void loop() {
count++;
// y= (float)x / 500. * 5. / 1024. / 4.22 * (15. + 4.22);
// y= (float)x * 0.00004447756 ;

if (count >= 10000) {
count= 0;
timeCurrent= millis();
Serial.println(timeCurrent - timePrev);
timePrev= timeCurrent;
}
}

В первом варианте, когда в цикле операции с плавающей запятой закомментированы и не выполняются, программа выдала результат 34 мс.

Т.е. 10 000 пустых циклов выполняются за 34 мс.

Затем я открыл строку:

y= (float)x / 500. * 5. / 1024. / 4.22 * (15. + 4.22);

повторяет наши вычисления. Результат 10 000 проходов за 922 мс или

(922 – 34) / 10 000 = 88,8 мкс.

Т.е. эта строка вычислений с плавающей запятой требует на выполнение 89 мкс. Я думал будет больше.

Теперь я закрыл эту строку комментарием и открыл следующую, с умножением на заранее рассчитанную константу:

y= (float)x * 0.00004447756 ;

Результат 10 000 проходов за 166 мс или

(166 – 34) / 10 000 = 13,2 мкс.

Потрясающий результат. Мы сэкономили 75,6 мкс на одной строке. Выполнили ее почти в 7 раз быстрее. У нас таких строк 2. Но ведь их в программе может быть и гораздо больше.

Вывод – вычисления с константами надо производить самим на калькуляторе и применять в программах как готовые коэффициенты . Компилятор Ардуино их на этапе компиляции не рассчитает. В нашем случае следует сделать так:

#define ADC_U_COEFF 0.00004447756 // коэффициент перевода кода АЦП в напряжение

Serial.print((float)avarageU1 * ADC_U_COEFF, 2);

Оптимальный по быстродействию вариант – это передать на компьютер код АЦП, а вместе с ним и все вычисления с плавающей запятой. При этом на компьютере принимать данные должна специализированная программа. Монитор порта из Arduino IDE не подойдет.

О других способах оптимизации программ Ардуино я буду рассказывать в будущих уроках по мере необходимости. Но без решения этого вопроса невозможно разрабатывать сложные программы на 8ми разрядном микроконтроллере.

На сайте появился еще один урок (

Схема самодельного прибора на основе Arduino Uno, который предназначен для измерения частоты и напряжения в розетке с отображением результатов на дисплее 1602A . Прибор очень прост в изготовлении, благодаря применению готового модуля ARDUINO UNO.

Принципиальная схема

Индикатором служит ЖК-дисплей типа 1602А, он стандартный, на основе контроллера HD44780. Обозначение 1602А фактически значит, что он на две строки по 16 символов в строке.

Основой прибора служит ARDUINO UNO, это относительно недорогой готовый модуль, - небольшая печатная плата, на которой расположен микроконтроллер ATMEGA328, а так же вся его «обвязка», необходимая для его работы, включая USB-программатор и источник питания.

Прибор питается от электросети и измеряет вышеуказанные параметры. Источник питания одновременно служит и датчиком для получения данных о частоте и напряжении в электросети. Источник питания сделан на основе маломощного готового трансформатора Т1, у которого есть две одинаковые обмотки по 9V переменного напряжения каждая.

Рис. 1. Принципиальная схема измерителя частоты и значения напряжения в электросети, использованы Arduino Uno и 1602A.

Одна обмотка служит для получения напряжения питания. Переменное напряжение с неё поступает на выпрямительный мост на диодах VD1-VD4. Конденсатор С3 сглаживает пульсации выпрямленного напояжения.

На С3 полVчается постоянное напряжение около 12V, которое поступает на разъем для подачи питания на плату ARDUINO UNO, на вход имеющегося на этой плате стабилизатора напряжения 5V, которым и питается вся плата и индикатор Н1.

Другая вторичная обмотка трансформатора служит датчиком измерения параметров электросети. Переменное напряжение с неё через R1 поступает на формирователь импульсов с частотой электросети, выполненный на транзисторе VТ1 по схеме ключа. Эти импульсы поступают на цифровой порт D10 платы ARDUINO UNO.

Переменное напряжение сети измеряется при помощи выпрямителя на диоде VD5 и конденсаторе С2. Величина переменного напряжения в сети определяется по величине постоянного напряжения на этом конденсаторе и через настраиваемый делитель на резисторах R4 и R5 поступает на аналоговый вход А1 платы ARDUINO UNO.

Программа

Программа на C++ с подробными комментариями приведена в таблице 1. Для измерения частоты используется функция pulseln , которая измеряет в микросекундах длительность положительного либо отрицательного перепада входного импульса.

Таблица 1.

Рис. 2. Исходный код программы для измерения частоты и значения напряжения в электросети.

Так что, для того чтобы узнать период нужно сложить длительность положительного и отрицательного полупериодов, а чтобы узнать частоту в герцах нужно 1000000 разделить на вычисленный период.

Измерение длительности периода состоит из двух частей, сначала измеряются длительности положительной и отрицательной полуволны в строках:

Htime=pulseln(10,HIGH);

Ltime=pulseln(10,LOW);

Затем, происходит вычисление полного периода в строке:

Ttime=Htime+Ltime ;

И потом, вычисление частоты в строке:

frequency=1000000/Ttime;

Действие программы по измерению напряжения основано на чтении данных с аналогового входа и расчета результата измерения. Выход аналогового порта преобразуется АЦП микроконтроллера в цифровую форму. Для получения результата в единицах вольт, нужно его умножить на 5 (на опорное напряжение, то есть, на напряжение питания микроконтроллера) и разделить на 1024.

Для того чтобы можно было измерять напряжение более 5V, вернее, более напряжения питания микроконтроллера, потому что реальное напряжение на выходе 5-вольтового стабилизатора на плате ARDUINO UNO может отличаться от 5V, и обычно немного ниже, нужно на входе применить обычные резистивные делители. Здесь это делитель напряжения на резисторах R5 и R4.

К тому же играет роль и применение трансформатора, а так же отличие значение постоянного напряжения от переменного. Поэтому добавляется исходный коэффициент деления величиной 0,016. Чтение данных с аналогового порта происходит в строке:

vout=analogRead(analogInput);

Затем, производится вычисление фактического напряжения с учетом коэффициента деления делителя входного напряжения:

volt=vout*5.0/1024.0/0.016;

В этой строке число 5.0 - это напряжение на выходе стабилизатора платы ARDUINO UNO. В идеале должно быть 5V, но для точной работы вольтметра это напряжение нужно предварительно измерить.

Подключите источник питания напряжением 12V и измерьте достаточно точным вольтметром напряжение +5V на разъеме POWER платы. Что будет, то и вводите в эту строку вместо 5.0, например, если будет 4.85V, строка будет выглядеть так:

volt=vout*4.85/1024.0/0.016;

Затем, результаты измерений выводятся на ЖК-дисплей. Напряжение вносится в первую строку дисплея, а частота во вторую. Единицы измерения указаны как «V» и «Hz». Что касается измерения частоты, - налаживание не требуется вообще. А вот для измерения напряжения нужно откалибровать прибор по образцовому подстройкой резистора R5.

Каравкин В. РК-10-17.

Представлена полезная схема для любителей поэкспериментировать с Ардуино. Это простой цифровой вольтметр, которым надежно можно измерять постоянное напряжение в диапазоне 0 – 30В. Плату Ардуино, как обычно, можно питать от 9В батареи.

Как вам вероятно известно, аналоговые входы Ардуино можно использовать для измерения постоянного напряжения в диапазоне 0 – 5В и этот диапазон можно увеличить,
используя два резистора в качестве делителя напряжения. Делитель уменьшит измеряемое напряжение до уровня аналоговых входов Ардуино. А затем программа вычислит реальную величину напряжения.

Аналоговый датчик на плате Ардуино определяет наличие напряжения на аналоговом входе и преобразует его в цифровую форму для дальнейшей обработки микроконтроллером. На рисунке напряжение подается на аналоговый вход (А0) через простой делитель напряжения, состоящий из резисторов R1 (100кОм) и R2 (10кОм).

При этих значениях делителя на плату Ардуино можно подавать напряжение от 0 до
55В. На входе А0 имеем измеряемое напряжение деленное на 11,т.е.55В / 11=5В. Иначе говоря, при измерении 55В на входе Ардуино имеем максимально допустимое значение 5В. На практике лучше на этом вольтметре написать диапазон “0 – 30В”, чтобы оставался
Запас по безопасности!

Примечания

Если показания дисплея не совпадают с показаниями промышленного (лабораторного) вольтметра, то необходимо точным прибором измерить величину сопротивлений R1 и R2 и вставить эти значения вместо R1=100000.0 и R2=10000.0 в коде программы. Затем следует измерить лабораторным вольтметром реальное напряжение между выводами 5В и “Земля” платы Ардуино. Получится значение меньшее, чем 5В, например, получилось 4.95В. Это реальное значение следует вставить в строке кода
vout = (value * 5.0) / 1024.0 вместо 5.0.
Кроме того, старайтесь применять прецизионные резисторы с допуском 1%.

Резисторы R1 и R2 обеспечивают некоторую защиту от повышенных входных напряжений.Однако следует помнить, что любые напряжения выше 55В могут вывести из строя плату Ардуино. Кроме того, в этой конструкции не предусмотрены другие виды защиты(от скачков напряжения, от переполюсовки или повышенного напряжения).

Программа цифрового вольтметра

/*
DC Voltmeter
An Arduino DVM based on voltage divider concept
T.K.Hareendran
*/
#include
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
int analogInput = 0;
float vout = 0.0;
float vin = 0.0;
float R1 = 100000.0; // resistance of R1 (100K) -see text!
float R2 = 10000.0; // resistance of R2 (10K) – see text!
int value = 0;
void setup(){
pinMode(analogInput, INPUT);
lcd.begin(16, 2);
lcd.print(“DC VOLTMETER”);
}
void loop(){
// read the value at analog input
value = analogRead(analogInput);
vout = (value * 5.0) / 1024.0; // see text
vin = vout / (R2/(R1+R2));
if (vin<0.09) {
vin=0.0;//statement to quash undesired reading !
}
lcd.setCursor(0, 1);
lcd.print(“INPUT V= “);
lcd.print(vin);
delay(500);
}

Принципиальная схема Ардуино-вольтметра

Перечень компонентов

Плата Arduino Uno
100 кОм резистор
10 кОм резистор
100 Ом резистор
10кОм Подстроечный резистор
LCD дисплей 16?2 (Hitachi HD44780)

С некоторыми дополнениями.

Мало известная фишка Ардуино и многих других AVR чипов это возможность измерить внутренний источник опорного напряжения 1.1 В. Эта функция может быть использована для повышения точности функции Arduino — analogRead при использовании стандартного опорного напряжения 5 В (на платформах с напряжением питания 5 В) или 3.3 В (на платформах с напряжением питания 3.3 В). Она также может быть использована для измерения Vcc , поданного на чип , обеспечивая средство контроля напряжения батареи без использования драгоценных аналоговый выводов .

Мотивация

Есть, по крайней мере, две причины для измерения напряжения, питающего наш Arduino (Vcc). Одним из них является наш проект, питающийся от батареи, если мы хотим следить за уровнем напряжения батареи. Кроме того, когда питание от батареи (Vcc) не может быть 5,0 вольт(например питание от 3-х элементов 1.5 В), а мы хотим сделать аналоговые измерения более точными - мы должны использовать либо внутренний источник опорного напряжения 1,1 В либо внешний источник опорного напряжения. Почему?

Обычно предполагают при использовании analogRead () то, что аналоговое напряжение питания контроллера составляет 5.0 вольт, когда в действительности это может быть совсем не так(например питание от 3-х элементов 1.5 В). Официальная документация Arduino даже может привести нас к этому неправильному предположению. Дело в том, что питание не обязательно 5,0 вольт, независимо от текущего уровня это питание подано на Vcc чипа. Если наше питание не стабилизировано или если мы работаем от аккумулятора, это напряжение может меняться совсем немного. Вот пример кода, иллюстрирующий эту проблему:

Double Vcc = 5.0; // не обязательно правда int value = analogRead(0); / читаем показания с А0 double volt = (value / 1023.0) * Vcc; // верно только если Vcc = 5.0 вольт Для того чтобы измерить напряжение точно, необходимо точное опорное напряжение. Большинство чипов AVR обеспечивает три источника опорного напряжения:

  • 1,1 в от внутреннего источника, в документации он проходит как bandgap reference (некоторые из них 2,56 В, например ATMega 2560). Выбор осуществляется функцией analogReference() с параметром INTERNAL : analogReference(INTERNAL) ;
  • внешний источник опорного наптяжения, на ардуинке подписан AREF. Выбор: analogReference(EXTERNAL);
  • Vcc - источник питания самого контроллера. Выбор: analogReference(DEFAULT).

В Arduino нельзя просто взять и подключить Vcc к аналоговому пину напрямую - по умолчанию AREF связан с Vcc и вы всегда будете получать максимальное значение 1023, от какого бы напряжения вы не питались. Спасает подключение к AREF источника напряжения с заранее известным, стабильным напряжением, но это - лишний элемент в схеме.

Еще можно соединить Vcc с AREF через диод : падение напряжение на диоде заранее известно, поэтому вычислить Vcc не составит труда. Однако, при такой схеме через диод постоянно протекает ток , сокращая жизнь батареи, что тоже не очень удачно.

Источник внешнего опорного напряжения является наиболее точным, но требует дополнительных аппаратных средств. Внутренний ИОН стабильным, но не точен + / - 10% отклонение. Vcc является абсолютно ненадежен в большинстве случаев. Выбор внутреннего источника опорного напряжения является недорогим и стабильным, но большую часть времени, мы хотели бы измеряет большее напряжение чем 1.1 В, так что использование Vcc является наиболее практичным, но потенциально наименее точным. В некоторых случаях оно может быть очень ненадежным!

Как это сделать

Многие чипы AVR включая серию ATmega и ATtiny обеспечивают средства для измерения внутреннего опорного напряжения. Зачем это нужно? Причина проста - путем измерения внутреннего напряжения, мы можем определить значение Vcc. Вот как:

  1. Установить источник опорного напряжения по умолчанию: analogReference(DEFAULT); . Используем как источник - Vcc.
  2. Снять показания АЦП для внутреннего источника 1.1 В.
  3. Расчитать значение Vcc основываясь на измерении 1.1 В по формуле:

Vcc * (Показания АЦП) / 1023 = 1.1 В

Из чего следует:

Vcc = 1,1 В * 1023 / (Показания АЦП)

Собираем все вместе и получаем код:

long readVcc() { // Read 1.1V reference against AVcc // set the reference to Vcc and the measurement to the internal 1.1V reference #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ADMUX = _BV(MUX5) | _BV(MUX0); #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) ADMUX = _BV(MUX3) | _BV(MUX2); #else ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #endif delay(75); // Wait for Vref to settle ADCSRA |= _BV(ADSC); // Start conversion while (bit_is_set(ADCSRA,ADSC)); // measuring uint8_t low = ADCL; // must read ADCL first - it then locks ADCH uint8_t high = ADCH; // unlocks both long result = (high<<8) | low; result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000 return result; // Vcc in millivolts }

Использование

Проверка напряжения Vcc или батареи

Вы можете назвать эту функцию – readVcc(), если Вы хотите мониторить Vcc. Примером может служить для проверка уровня заряда батареи. Вы также можете использовать её для определения подключены ли Вы к источнику питания или работаете от батареи.

Измерение Vcc для опорного напряжения

Вы также можете использовать её, чтобы получить правильное значение Vcc для использования с analogRead (), когда вы используете опорное напряжение (Vcc). Пока Вы не используете стабилизированный источник питания, Вы не можете быть уверенны, что Vcc = 5.0 вольт. Эта функция позволяет получить правильное значение. Хотя есть один нюанс….

В одной из статей я сделал заявление, что эта функция может использоваться, чтобы улучшить точность аналоговых измерений в тех случаях, когда Vcc было не совсем 5.0 вольт. К сожалению, эта процедура не будет давать точный результат. Почему? Это зависит от точности внутреннего источника опорного напряжения. Спецификация дает номинальное напряжение 1.1 вольт, но говорится, что оно может отличаться до 10%. Такие измерения могут быть менее точными, чем наш источник питания Arduino!

Повышаем точность

Пока большие допуски внутреннего источника питания 1.1 В. значительно ограничивают точность измерений при использовании в серийном производстве, для индивидуальных проэктов мы можем добиться большей точности. Сделать это просто, просто измерив Vcc с помощью вольтметра и нашей функции readVcc(). Далее заменяем константу 1125300L новой переменной:

scale_constant = internal1.1Ref * 1023 * 1000

internal1.1Ref = 1.1 * Vcc1 (показания_вольтметра) / Vcc2 (показания_функции_readVcc())

Это калиброванное значение будет хорошим показателем для измерений AVR чипом, но может зависеть от изменений температуры. Не стесняйтесь экспериментировать с вашим собственным измерениям.

Вывод

С этой маленькой функцией можно сделать многее. Вы можете использовать стабильное опорное напряжение близкое к 5.0 В не имея на самом деле 5.0 В на Vcc. Вы можете измерять напряжение вашей батареи или даже увидеть на каком вы питание от батареи или от стационарного источника питания.

И наконец, код будет поддерживать все Arduino, включая новый Leonardo, а также чипы ATtinyX4 и ATtinyX5 серий.