Интернет

Кадр сетевые технологии. Форматы кадров технологии Ethernet

Кадр сетевые технологии. Форматы кадров технологии Ethernet

П – преамбула (8 байт):

· используется для синхронизации станций сети;

· содержит код 10101010 в первых семи байтах и код 10101011 в последнем байте.

АН – адрес назначения (6 байт):

· длина поля составляет 6 байт, но может быть 2 байта, если адрес установлен администратором ЛВС только для внутреннего пользования;

· старший (самый первый) бит в поле адреса (рис.3.21) указывает тип адреса (I/G – Individual/Group):

- 0 – адрес назначения является индивидуальным , т.е. кадр предназначен конкретной рабочей станции; в остальных разрядах поля адреса назначения указывается уникальный физический адрес (МАС-адрес) конкретной рабочей станции;

- 1 – адрес назначения является групповым , т.е. кадр предназначен группе рабочих станций (тогда в последующих разрядах указывается адрес конкретной группы рабочих станций), или широковещательным , если все остальные разряды равны 1, то есть кадр адресован всем рабочим станциям в ЛВС;

· второй бит в поле адреса указывает способ назначения адреса (U/L – Universal/Local):

- 0 – адрес является универсальным физическим адресом в ЛВС, т.е. адрес сетевого адаптера назначен централизованно комитетом IEEE, который распределяет между производителями сетевых адаптеров так называемые организационно уникальные идентификаторы (Organizationally Unique Identifier, OUI), размещаемые в первых трех байтах адреса, а в следующих трех байтах помещается номер сетевого адаптера, присваиваемый производителем;

- 1 – адрес локальный , т.е. назначен администратором ЛВС и используется только в пределах этой сети.

АИ – адрес источника (6 байт):

· длина поля составляет 6 байт, но, как и адрес назначения, может иметь длину 2 байта;

· старший бит первого байта (поля I/G) всегда равен 0;

· не может содержать широковещательный адрес:

FF-FF-FF-FF-FF-FF.

Тип – тип протокола (2 байта):

· идентифицирует тип протокола более высокого уровня, используемого для его передачи или приема, и позволяющего множеству протоколов высокого уровня разделять ЛВС без вникания в содержимое кадров друг друга;

· примеры значений поля «тип», идентифицирующих различные протоколы:

IP (Internet Protocol) 080016

ARP (Adress Resolution Protocol) 080616

Reverse ARP 803516

Apple Talk 809B16

NetWare IPX/SPX 813716

(здесь индекс 16 – означает шестнадцатеричное число).

Данные – поле данных (46-1500 байт):

· может иметь длину от 46 до 1500 байт.

КС – контрольная сумма:

· содержит остаток избыточной циклической суммы (Cyclic Redundancy Checksum – CRC), вычисленной с помощью полиномов типа CRC-32 для всех полей кадра: АН+АИ+Тип+Данные (без преамбулы).

Таким образом, минимальная длина кадра Ethernet (без преамбулы) 64 байта, а максимальная 1518 байтов.

Основные отличия этого кадра от кадра Ethernet II заключаются в следующем:

1) из восьмибайтового поля преамбулы П , которое стало длиной 7 байт, выделено однобайтовое поле НО – «Начальный ограничитель кадра», которое содержит код 10101011, указывающий на начало кадра;

2) вместо поля «Тип протокола» появилось двухбайтовое поле Д – «Длина», которое определяет длину поля данных в кадре; отсутствие поля «Тип протокола» обусловлено тем, что кадр 802.3/Novell соответствует только протоколу IPX/SPX и лишь этот протокол может работать с ним;

3) поле данных может содержать от 0 до 1500 байт , но если длина поля меньше 46 байт, то используется дополнительное поле Н – «Набивка», с помощью которого кадр дополняется до минимально допустимого значения в 46 байт, если поле данных меньше 46 байт.

Таким образом, длина кадра находится в диапазоне от 64 до 1518 байт, не считая преамбулы и признака начала кадра. Важной особенностью стандарта IEEE 802.3 является возможность передачи прикладным процессом данных длиной менее 46 байтов , благодаря тому, что кадр автоматически дополняется до нужного размера пустыми символами в поле «Набивка». В стандарте Ethernet II такие ситуации рассматриваются как ошибочные.

Кадр 802.3/LLC (кадр 802.3/802.2)

Кадр 802.3/LLC (802.3/802.2) содержит те же поля, что и Raw 802.3 (рис.3.23). Отличие состоит лишь в том, что в поле данных вставляется пакет подуровня управления логическим соединением LLC (без граничных флагов), содержащий в качестве заголовка три однобайтовых поля:

· DSAP (Destination Service Access Point) – точка доступа к услугам получателя (1 байт) определяет тип протокола верхнего (сетевого) уровня получателя кадра;

· SSAP (Source Service Access Point) – точка доступа к услугам источника (1 байт) определяет тип протокола верхнего (сетевого) уровня источника кадра;

· У – управление (1 или 2 байта) – содержит информацию для управления одним из трех сервисов, предоставляемых подуровнем LLC;

Поля DSAP , SSAP и У образуют заголовок пакета LLC .

Так как поле «Управление» пакета LLC имеет длину 1 (в режиме LLC1) или 2 байта (в режиме LLC2), то максимальный размер поля данных уменьшается до 1497 или 1496 байт соответственно.

Кадр Ethernet SNAP

Кадр Ethernet SNAP (SNAP – SubNetwork Access Protocol), протокол доступа к подсетям) предназначен для устранения разнообразия в форматах кадров и в кодировках типов протоколов, сообщения которых вложены в поле данных кадров Ethernet.

Структура кадра SNAP является развитием структуры кадра 802.3/LLC за счет введения дополнительного заголовка протокола SNAP , который находится за заголовком пакета LLC и включает в себя 2 поля:

· идентификатор организации (3 байта) содержит идентификатор той организации, которая контролирует коды протоколов, указываемые в поле «тип» (коды протоколов для ЛВС контролирует IEEE, который имеет идентификатор организации, равный 000000; если в будущем потребуются другие коды протоколов, то достаточно указать другой идентификатор организации, назначающей эти коды, не меняя старые значения кодов);

· тип (2 байта) – состоит из 2-х байт и соответствует полю «Тип» кадра Ethernet II, то есть в нем используются те же значения кодов протоколов более высокого сетевого уровня.

При этом 3 поля заголовка пакета LLC в кадре Ethernet SNAP имеют вполне конкретные значения:

· DSAP

· SSAP (1 байт) всегда содержит AA16 и указывает на то, что кадр имеет формат типа Ethernet SNAP;

· управление (1 байт) содержит число 0316.

Алгоритм определения типа кадра

Практически все сетевые адаптеры Ethernet могут работать со всеми четырьмя типами кадров, автоматически распознавая их.

Поскольку для кодирования типа протокола в двухбайтовом поле «Тип/Длина» указываются значения, превышающие значение максимальной длины поля данных, равное 1500 или в шестнадцатеричной системе счисления 05DC16, кадры Ethernet II легко отличить от других типов кадров по значению этого поля. Затем проверяется наличие или отсутствие полей LLC, которые могут отсутствовать только в том случае, если за полем длины следует заголовок пакета IPX, а именно 2-байтовое поле заполненное единицами. Затем проверяются значения полей DSAP и SSAP: если они равны АА16, то это кадр Ethernet SNAP, в противном случае – кадр 802.3/LLC.

Протокол CSMA/CD

Битовый интервал – это интервал, соответствующий передаче одного бита, то есть это время между появлением двух последовательных бит.

Поскольку протокол CSMA/CD применяется в ЛВС Ethernet с пропускными способностями среды передачи данных 10 Мбит/с, 100 Мбит/с и 1 Гбит/с, использование понятия битового интервала позволяет обобщить описание протокола CSMA/CD для всех этих сетей.

При передаче данных согласно протоколу CSMA/CD станции выполняют следующие этапы.

1. Прослушивание до начала передачи.

2. Задержка передачи, если канал занят.

3. Начало передачи кадра, если канал свободен.

4. Передача кадра и прослушивание коллизий ..

Если коллизия возникла, но другие станции еще не обнаружили ее, они могут попытаться начать передачу. Кадры этих станций тогда будут вовлечены в новую коллизию. Для исключения такой ситуации вовлеченные в коллизию станции начинают передавать сигнал затора с тем, чтобы все остальные станции сегмента удостоверились в том, что линия занята. Сигнал затора – специальная последовательность из 32 бит, называемая jam-последовательностью . Станции, вовлеченные в коллизию, увеличивают на 1 свои счетчики числа попыток передачи . Станция считает, что она управляет сегментом кабеля, если ею уже передано более 64 байт . Коллизия, возникающая с кадром длиной более 64 байт, называется поздней коллизией , что обычно свидетельствует о некорректном монтаже кабельной системы, например, о том, что какой-то сегмент может быть длиннее, чем это определено спецификацией для данного типа кабельной системы.

5. Ожидание перед повторной передачей.

6. Повторная передача или прекращение работы.

При приёме данных станция, находящаяся в сети, должна выполнять следующие действия.

1. Просмотр поступающих кадров данных и обнаружение фрагментов.

2. Проверка адреса получателя.

3. Проверка целостности кадра данных.

Для того, чтобы избежать обработки искаженных при передаче по каналу или некорректно сформированных на передающей станции кадров, принимающая станция должна проверить:

· длину кадра: если кадр длиннее 1518 байт, он считается переполненным; переполненные кадры могут появляться в результате неисправностей сетевого драйвера;

· контрольную последовательность кадра с помощью циклического избыточного кода;

· если контрольная последовательность некорректна, проверяется выравненность кадра: все кадры должны содержать целое число байт (например, не 122,5 байт).

Если контрольная последовательность кадра некорректна, но кадр содержит целое число байт (корректно выровнен), считается, что имеет место ошибка контрольной последовательности.

Таким образом, проверка кадра принимающей станцией заключается в определении:

· является ли кадр фрагментом;

· не слишком ли велика его длина;

· ошибочна ли его контрольная последовательность;

· корректно ли он выровнен.

Если какая-либо проверка завершилась неудачей, кадр уничтожается

и его содержимое не передается для обработки протоколу сетевого уровня.

4. Обработка кадра.

Многосегментные ЛВС Ethernet. Условие корректности ЛВС. Расчёт времени двойного оборота (PDV). Расчёт уменьшения межкадрового интервала (PVV). Расчет показателей производительности ЛВС Ethernet. Достоинства и недостатки ЛВС Ethernet.

ЛВС Ethernet может объединять сегменты, построенные на основе разных типов кабелей: толстого или тонкого коаксиального кабеля, витой пары, волоконно-оптического кабеля. При этом количество сегментов в сети может превышать указанное ранее в соответствии с правилом «5-4-3» значение 5. Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий:

· количество станций в сети не более 1024;

· максимальная длина каждого сегмента не более величины,

определенной в соответствующем стандарте физического уровня (500 м и

185 м – соответственно для толстого и тонкого коаксиального кабеля;

100 м – для неэкранированной витой пары; 2000 м – для оптоволоконного кабеля);

· время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала;

· сокращение межкадрового интервала (Path Variability Value, PVV) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала. Так как при отправке кадров конечные узлы обеспечивают начальное межкадровое расстояние в 96 битовых интервалов, то после прохождения повторителей оно должно быть не меньше, чем 96–49=47 битовых интервала.

Соблюдение этих требований обеспечивает корректность работы сети даже в тех случаях, когда нарушаются правила конфигурирования, определяющие максимальное количество повторителей и общую длину сети в 2500 м.

Условие корректности ЛВС

Для корректной работы сети Ethernet необходимо, чтобы станции всегда могли обнаружить коллизию, если она возникла в процессе передачи кадра. Если станция прекратит прослушивание среды передачи раньше, чем коллизия может произойти, передаваемый кадр будет потерян. Поэтому передающая станция должна обнаружить коллизию, которую вызвал переданный ею кадр, еще до того, как она закончит передачу этого кадра. Поскольку до начала передачи все станции сети прослушивают канал, то коллизия в худшем случае может возникнуть при передаче кадров между наиболее удаленными друг от друга станциями сети.

Подуровень управления доступом к среде

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологий локальных сетей. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

Сеть Ethernet

Историческая справка. Зарождение Ethernet

Манчестерский код

Ни в одной из версий Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 В и бита 1 - напряжением 5В, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая может интерпретировать ее как 10000000 или 01000000, так как они не смогут отличить отсутствие сигнала (0 В) от бита 0 (0 В). Можно, конечно, кодировать единицу положительным напряжением +1 В, а ноль - отрицательным напряжением -1 В. Но при этом все равно возникает проблема, связанная с синхронизацией передатчика и приемника. Разные частоты работы их системных часов могу привести к рассинхронизации и неверной интерпретации данных. В результате приемник может потерять границу битового интервала. Особенно велика вероятность этого в случае длинной последовательности нулей или единиц. Таким образом, принимающей машине нужен способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Это реализуется с помощью манчестерского кодирования. В манчестерском коде каждый временной интервал передачи одного бита делится на два равных периода. Бит со значением 1 кодируется высоким уровнем напряжения в первой половине интервала и низким - во второй половине, а нулевой бит кодируется обратной последовательностью - сначала низкое напряжение, затем высокое. Такая схема гарантирует смену напряжения в середине периода битов, что позволяет приемнику синхронизироваться с передатчиком. Недостатком манчестерского кодирования является то, что оно требует двойной пропускной способности линии по отношению к прямому двоичному кодированию, так как импульсы имеют половинную ширину. Например, для того чтобы отправлять данные со скоростью 10 Мбит/с, необходимо изменять сигнал 20 миллионов раз в секунду.

Формат кадра Ethernet

Преамбула (8 байт). Ethernet-кадр начинается с 8-байтового поля преамбулы. В каждый из первых 7 байт преамбулы записывается значение 10101010, а в последний байт - значение 10101011. Первые 7 байт должны «разбудить» принимающие адаптеры и помочь им синхронизировать свои таймеры с часами отправителя. Как уже отмечалось, адаптер А должен передать кадр со скоростью 10 Мбит/с, 100 Мбит/с или 1 Гбит/с в зависимости от типа локальной Ethernet-сети. Однако поскольку ничего не бывает абсолютно точным в реальном мире, скорость передачи всегда будет несколько отличаться от номинала. Величина этого отклонения скорости другим адаптерам локальной сети заранее не известна. Таким образом, первые 62 бита преамбулы, представляющие собой чередующиеся нули и единицы, позволяют приемнику с достаточной точностью настроиться на скорость передатчика, а последние два разряда (две единицы подряд) сообщают адаптеру В, что преамбула закончилась и следом идет уже первый информационный байт поля кадра. Адаптер В понимает, что следующие 6 байт содержат адрес получателя.

Адрес получателя (6 байт). Это поле содержит LAN-адрес принимающего адаптера. Получив Ethernet-кадр с адресом получателя, отличным от собственного физического адреса или широковещательного адреса локальной сети, адаптер отбрасывает кадр. В противном случае он передает содержимое поля данных сетевому уровню.

Адрес отправителя (6 байт). Это поле содержит LAN-адрес адаптера, передающего кадр в локальную сеть. Поле типа (2 байта). Поле типа позволяет локальной Ethernet-сети «мультиплексировать» протоколы сетевого уровня. Чтобы понять, что это означает, вспомним, что хосты могут помимо протокола IP использовать и другие протоколы. В самом деле, любой хост может поддерживать несколько протоколов сетевого уровня - разные протоколы для разных приложений. По этой причине, получив Ethernet-кадр, адаптер В должен знать, какому протоколу сетевого уровня он должен передать (то есть демультиплексировать) содержимое поля данных. Каждому сетевому протоколу (например, IP, Novell IPX или AppleTalk) присвоен зафиксированный в стандарте номер. Обратите внимание, что поле типа аналогично полю протокола в дейтаграмме сетевого уровня и полю номера порта сегмента транспортного уровня. Все эти поля служат для связи протокола одного уровня с протоколом уровнем выше.

Поле данных (от 46 до 1500 байт). Это поле содержит IP-дейтаграмму. Максимальная единица передачи (Maximal Transfer Unit, MTU) в Ethernet-сети составляет 1500 байт. Это означает, что если размер IP-дейтаграммы превышает 1500 байт, тогда хост должен разбить ее на отдельные фрагменты (см. подраздел «Фрагментация IP-дейтаграмм» в разделе «Интернет-протокол» главы 4). Минимальный размер поля данных равен 46 байт. Это означает, что если размер IP-дейтаграммы меньше 46 байт, то данные, помещаемые в это поле, дополняются байтами-заполнителями. При этом сетевой уровень получает дейтаграмму от канального уровня с этими дополнительными байтами и отсекает все лишнее сам, ориентируясь на поле длины в заголовке IP-дейтаграммы. Вот почему на практике в WireShark мы иногда получали 6 нулевых байтов в приходящем пакете.

CRC (4 байта). Назначение поля CRC заключается в том, чтобы получающий адаптер мог определить, не исказился ли кадр при передаче, то есть обнаружить ошибки в кадре. Искажение битов в кадре может быть вызвано ослаблением сигнала в канале, скачками напряжения, наводками в кабелях и интерфейсных платах.

Минимальный размер кадра

Если кадр короткий, а расстояние между компьютерами большое, то отправитель может не обнаружить коллизии. Если отправитель закончит отсылать кадр до прихода сигнала о коллизии, то он подумает, что сигнал о коллизии относится не к нему.

Связь характеристик канала

Пусть M - минимальный размер кадра

P – пропускная способность канала

M/P – время записи кадра в канал

Связь между скоростью, длиной канала и минимальным размером кадра:

M/P > 2T, где T=L/c

P=10 Mb/s M=64 B тогда L<7680 м

P=10 Gb/s M=64 B тогда L<7,68 м

Между тем, кроме верхней границы размера поля данных очень важна и нижняя граница. Поле данных, содержащее 0 байт, вызывает определенные проблемы. Дело в том, что когда приемопередатчик обнаруживает столкновение, он обрезает текущий кадр, а это означает, что отдельные куски кадров постоянно блуждают по кабелю. Чтобы было легче отличить нормальные кадры от мусора, сети Ethernet требуется кадр размером не менее 64 байт (от поля адреса получателя до поля контрольной суммы включительно). Если в кадре содержится меньше 46 байт данных, в него вставляется специальное поле Pad, с помощью которого размер кадра доводится до необходимого минимума. Другой (и даже более важной) целью установки ограничения размера кадра снизу является предотвращение ситуации, когда станция успевает передать короткий кадр раньше, чем его первый бит дойдет до самого дальнего конца кабеля, где он может столкнуться с другим кадром. Эта ситуация показана на рис. 4.17. В момент времени 0 станция А на одном конце сети посылает кадр. Пусть время прохождения кадра по кабелю равно т. За мгновение до того, как кадр достигнет конца кабеля (то есть в момент времени т - е), самая дальняя станция В начинает передачу. Когда станция В замечает, что получает большую мощность, нежели передает сама, она понимает, что произошло столкновение. Тогда она прекращает передачу и выдает 48-битный шумовой сигнал, предупреждающий остальные станции. Примерно в момент времени 2т отправитель замечает шумовой сигнал и также прекращает передачу. Затем он выжидает случайное время и пытается возобновить передачу. Если размер кадра будет слишком маленьким, отправитель закончит передачу прежде, чем получит шумовой сигнал. В этом случае он не сможет понять, произошло это столкновение с его кадром или с каким-то другим, и, следовательно, может предположить, что его кадр был успешно принят. Для предотвращения такой ситуации все кадры должны иметь такую длину, чтобы время их передачи было больше 2т. Для локальной сети со скоростью передачи 10 Мбит/с при максимальной длине кабеля в 2500 м и наличии четырех повторителей (требование спецификации 802.3) (мое: вероятно L=2500*5, где 5 – максимальное количество участков кабеля между компьютерами) минимальное время передачи одного кадра должно составлять в худшем случае примерно 50 мкс, включая время на прохождение через повторитель, которое, разумеется, отлично от нуля. Следовательно, длина кадра должна быть такой, чтобы время передачи было по крайней мере не меньше этого минимума. При скорости 10 Мбит/с на передачу одного бита тратится 1000 не, значит, минимальный размер кадра должен быть равен 500 бит. При этом можно гарантировать, что система сможет обнаружить коллизии в любом месте кабеля. Из соображений большей надежности это число было увеличено до 512 бит или 64 байт. Кадры меньшего размера с помощью поля Pad искусственно дополняются до 64 байт. По мере роста скоростей передачи данных в сети минимальный размер кадра должен увеличиваться, или должна пропорционально уменьшаться максимальная длина кабеля. Для 2500-метровой локальной сети, работающей на скорости 1 Гбит/с, минимальный размер кадра должен составлять 6400 байт. Или же можно использовать кадр размером 640 байт, но тогда надо сократить максимальное расстояние между станциями сети до 250 м. По мере приближения к гигабитным скоростям подобные ограничения становятся все более суровыми.

Стандарт на технологию Ethernet, описанный в документе 802.3, дает описание единственного формата кадра МАС-уровня. Так как в кадр МАС-уровня должен вкладываться кадр уровня LLC, описанный в документе 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, образованный комбинацией заголовков МАС и LLC подуровней. Тем не менее, на практике в сетях Ethernet на канальном уровне используются заголовки 4-х типов. Это связано с длительной историей развития технологии Ethernet до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся. Затем, после принятия стандартов IEEE и появления двух несовместимых форматов кадров канального уровня, была сделана попытка приведения этих форматов к некоторому общему знаменателю, что привело еще к одному варианту кадра.

Различия в форматах кадров могут иногда приводить к несовместимости аппаратуры, рассчитанной на работу только с одним стандартом, хотя большинство сетевых адаптеров, мостов и маршрутизаторов умеет работать со всеми используемыми на практике форматами кадров технологии Ethernet.

Ниже приводится описание всех четырех модификаций заголовков кадров Ethernet (причем под заголовком кадра понимается весь набор полей, которые относятся к канальному уровню):

Кадр 802.3/LLC (или кадр Novell 802.2)

Кадр Raw 802.3 (или кадр Novell 802.3)

Кадр Ethernet DIX (или кадр Ethernet II)

Кадр Ethernet SNAP

Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка:

Поле преамбулы состоит из семи байтов синхронизирующих данных. Каждый байт содержит одну и ту же последовательность битов - 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом. Преамбула используется для того, чтобы дать время и возможность схемам приемопередатчиков (transceiver) прийти в устойчивый синхронизм с принимаемыми тактовыми сигналами.

Начальный ограничитель кадра состоит из одного байта с набором битов 10101011. Появление этой комбинации является указанием на предстоящий прием кадра.

Адрес получателя - может быть длиной 2 или 6 байтов (MAC-адрес получателя). Первый бит адреса получателя - это признак того, является адрес индивидуальным или групповым: если 0, то адрес указывает на определенную станцию, если 1, то это групповой адрес нескольких (возможно всех) станций сети. При широковещательной адресации все биты поля адреса устанавливаются в 1. Общепринятым является использование 6-байтовых адресов.

Адрес отправителя - 2-х или 6-ти байтовое поле, содержащее адрес станции отправителя. Первый бит - всегда имеет значение 0.

Двухбайтовое поле длины определяет длину поля данных в кадре.

Поле данных может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, чтобы дополнить кадр до минимально допустимой длины.

Поле заполнения состоит из такого количества байтов заполнителей, которое обеспечивает определенную минимальную длину поля данных (46 байт). Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется.

Поле контрольной суммы - 4 байта, содержащие значение, которое вычисляется по определенному алгоритму (полиному CRC-32). После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.

Кадр 802.3 является кадром MAС-подуровня, в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Формат кадра LLC был описан выше.

Результирующий кадр 802.3/LLC изображен в левой части рисунка 4. Так как кадр LLC имеет заголовок длиной 3 байта, то максимальный размер поля данных уменьшается до 1497 байт.

Рис. 4

Справа на этом рисунке приведен кадр, который называют кадром Raw 802.3 (то есть "грубый" вариант 802.3) или же кадром Novell 802.3. Из рисунка видно, что это кадр MAC-подуровня стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных - там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Теперь, когда необходимость идентификации протокола верхнего уровня появилась, компания Novell стала использовать возможность инкапсуляции в кадр MAC-подуровня кадра LLC, то есть использовать стандартные кадры 802.3/LLC. Такой кадр компания обозначает теперь в своих операционных системах как кадр 802.2, хотя он является комбинацией заголовков 802.3 и 802.2.

Кадр стандарта Ethernet DIX, называемый также кадром Ethernet II, похож на кадр Raw 802.3 тем, что он также не использует заголовки подуровня LLC, но отличается тем, что на месте поля длины в нем определено поле типа протокола (поле Type). Это поле предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра. Для кодирования типа протокола используются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II и 802.3 легко различимы.

Еще одним популярным форматом кадра является кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа к подсетям). Кадр Ethernet SNAP определен в стандарте 802.2H и представляет собой расширение кадра 802.3 путем введения дополнительного поля идентификатора организации, которое может использоваться для ограничения доступа к сети компьютеров других организаций.

В таблице 2 приведены данные о том, какие типы кадров Ethernet обычно поддерживают реализации популярных протоколов сетевого уровня.

Таблица 2

Спецификации физической среды Ethernet

Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0.5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных в качестве общей шины. Метод доступа CSMA/CD и все временные параметры Ethernet остаются одними и теми же для любой спецификации физической среды.

Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных:

  • 10Base-5 - коаксиальный кабель диаметром 0.5 дюйма, называемый "толстым" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).
  • 10Base-2 - коаксиальный кабель диаметром 0.25 дюйма, называемый "тонким" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).
  • 10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию с концентратором. Расстояние между концентратором и конечным узлом - не более 100 м.
  • 10Base-F - оптоволоконный кабель. Топология аналогична стандарту на витой паре. Имеется несколько вариантов этой спецификации - FOIRL, 10Base-FL, 10Base-FB.

Число 10 обозначает битовую скорость передачи данных этих стандартов - 10 Мб/с, а слово Base - метод передачи на одной базовой частоте 10 МГц (в отличие от стандартов, использующих несколько несущих частот, которые называются broadband - широкополосными).

Стандарт 10Base-5

Стандарт 10Base-5 соответствует экспериментальной сети Ethernet фирмы Xerox и может считаться классическим Ethernet"ом. Он использует в качестве среды передачи данных коаксиальный кабель с диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм ("толстый" Ethernet).

Кабель используется как моноканал для всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов.

Различные компоненты сети, выполненной на толстом коаксиале, показаны на рисунке 5.

Станция должна подключаться к кабелю при помощи приемопередатчика - трансивера. Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера (рис. 6). Трансивер может подсоединяться к кабелю как методом прокалывания, обеспечивающим непосредственный физический контакт, так и бесконтактным методом.

Трансивер соединяется с сетевым адаптером интерфейсным кабелем AUI (Attachment Unit Interface) длиной до 50 м, состоящим из 4 витых пар (адаптер должен иметь разъем AUI). Допускается подключение к одному сегменту не более 100 трансиверов, причем расстояние между подключениями трансиверов не должно быть меньше 2.5 м.


Рис. 5

Трансивер - это часть сетевого адаптера, которая выполняет следующие функции:

прием и передача данных с кабеля на кабель,

определение коллизий на кабеле,

электрическая развязка между кабелем и остальной частью адаптера,

защита кабеля от некорректной работы адаптера.

Последнюю функцию часто называют контролем болтливости (jabber control) . При возникновении неисправностей в адаптере может возникнуть ситуация, когда на кабель будет непрерывно выдаваться последовательность случайных сигналов. Так как кабель - это общая среда для всех станций, то работа сети будет заблокирована одним неисправным адаптером. Чтобы этого не случилось, на выходе передатчика ставится схема, которая проверяет количество битов, переданных в пакете. Если максимальная длина пакета превышается, то эта схема просто отсоединяет выход передатчика от кабеля.

Упрощенная структурная схема трансивера показана на рисунке 7. Детектор коллизий определяет наличие коллизии в коаксиальном кабеле по повышенному уровню постоянной составляющей сигналов. Если постоянная составляющая превышает определенный порог, то значит на кабель работает более чем один передатчик.

К достоинствам стандарта 10Base-5 относятся:

хорошая защищенность кабеля от внешних воздействий,

сравнительно большое расстояние между узлами,

возможность простого перемещения рабочей станции в пределах длины кабеля AUI.

Рис. 7

К недостаткам следует отнести:

высокую стоимость кабеля,

сложность его прокладки из-за большой жесткости,

наличие специального инструмента для заделки кабеля,

при повреждении кабеля или плохом соединении происходит останов работы всей сети,

необходимо заранее предусмотреть подводку кабеля ко всем возможным местам установки компьютеров.

Шаблон технологии Ethernet, написан в доке IEEE 802,3. Это единственное описание кадра формата уровня MAC. В сети Ethernet реализован только один тип кадра канального уровня, заголовок которого есть множество заголовков подуровней MAC и LLC что есть некой .

  • Ethernet DIX/Ethernet II , появился в 1980 году в результате совместной роботы трех фирм Xerox, Intel и Digital которые представил версию 802,3в качестве международного стандарта;
  • Комитет принял 802,3 и немного переделал его. Так появились 802,3/LLC, 802,3/802,2 или Novell 802,2 ;
  • Raw 802,3 или Novell 802,3 — созданы для ускорения работы своего стека протоколов в сетях Ethernet;
  • Ethernet SNAP является итогом комитета 802,2 которые приведен к общему стандарту и стал гибок к будущим возможным добавлением полей;

Сегодня сетевое аппаратное и программное обеспечение умеют работать со всеми форматами кадров, и распознавание кадров работает автоматически что уменьшает и одним из . Форматы кадров показано на рис.1.

Рисунок 1

Кадр 802.3/LLC

Заголовок этого кадра объединяет поля заголовком кадров IEEE 802,3 и 802,2. Стандарт 802,3 состоит из:

  • Поле преамбулы — называется полем синхронизирующих байтов — 10101010. В манчестерском кодировании этот код модифицируется в физической среде в сигнал с частотой 5 МГц.
  • Начальный ограничитель кадра — является одним байтом 10101011. Это поле указывает на то, что следующий байт — это первый байт заголовка кадра.
  • Адрес назначения — это поле может быть длиной 6 или 2 байта. Обычно это поле используют для MAC-адреса в 6 байт.
  • Адрес источника — это поле которое содержит 6 или 2 байта MAC-адреса узла отправителя. Первый бит всегда является — 0.
  • Длина — поле которое имеет размер 2 байта, и содержит длину поля данных в кадре.
  • Поле данных — поле может иметь от 0 до 1500 байт. Но если вдруг данные занимают меньше 46 байт, то используется поле заполнителя , который дополняет поле до 46 байт.
  • Поле заполнителя — Обеспечивает заполнение поля данных, если там вес меньший 46 байт. Нужен для корректной работы механизму обнаружений коллизий.
  • Поле контрольной последовательности кадра — в этом поле записывается контрольная сума размером в 4 байта. Используется алгоритм CRC-32/

Этот кадр есть кадр подуровня MAC, в его поле данных влажуется кадр подуровня LLC с удаленными флагами в конце и начала кадра который передается через .

Кадр Raw 802.3/Novell 802,3

Раньше этот кадр был протоколом сетевого уровня в ОС MetWare. Но теперь, когда нужда в идентификации протокола верхнего уровня отпала, то кадр был инкапсулирован в кадр MAC кадра LLC.

Кадр Ethernet DIX/Ethernet II

Этот кадр имеет структуру, которая похожа на структуру Ras 802,3. Но 2-байтовое поле длины здесь имеет назначения поля типа протокола. Указывает тип протокола верхнего уровня, вложившей свой пакет в поле данных этого кадра. Различают эти кадры по длине поля, если значении меньше 1500 то это поле длины, если больше — то типа.

Кадр Ethernet SNAP

Кадр появился в результате устранения разнобоя в кодировках типов протоколов. Протокол используется также в протоколе IP при инкапсуляции следующих сетей: Token Ring, FDDI, 100VC-AnyLan. Но при передаче IP пакетов через Ethernet протокол использует кадры Ethernet DIX.

Протокол IPX

Этот протокол может использовать все четыре типа кадра Ethernet. Он определяет тип по проверки отсутствия или наличия поля LLC. Также за полями DSAP/SSAP. Если значение полей равны 0хАА, то это кадр SNAP иначе это 802,3/LLC.