Настройка Wi-Fi

Методы распространения радиосигнала в закрытом помещении. Распространение радиоволн внутри зданий и помещений

Методы распространения радиосигнала в закрытом помещении. Распространение радиоволн внутри зданий и помещений

Распространение радиоволн

Реферат выполнил: Аникин С. В.

Дальневосточный Государственный Технический Университет (ДВПИ им. В. В. Куйбышева)

Владивосток 2008

Введение

Законы распространения радиоволн в свободном пространстве сравнительно просты, но чаще всего радиотехника имеет дело не со свободным пространством, а с распространением радиоволн над земной поверхностью. Как показывают и опыт и теория, поверхность Земли сильно влияет на распространение радиоволн, причем сказываются как физические свойства поверхности (например, различия между морем и сушей), так и ее геометрическая форма (общая кривизна поверхности земного шара и отдельные неровности рельефа - горы, ущелья и т. п.). Влияние это различно для волн разной длины и для разных расстояний между передатчиком и приемником. Способы распространения радиоволн существенно зависят от длины волны, от освещённости земной атмосферы Солнцем и от ряда других факторов.

Распространение радиоволн

В процессе распространения, радиоволны испытывают ослабление, связанное с рядом причин. По мере удаления от передатчика энергия распространяется все в большем объеме, следовательно, плотность потока энергии уменьшается. Среда, в которой распространяются радиоволны, также вызывает их ослабление. Это связано с поглощением энергии волн вследствие тепловых потерь и уменьшением напряженности поля волны при огибании препятствий в виде выпуклости земного шара или возвышенностей.

Рис. 1. Структура электромагнитных волн для некоторого момента времени.

В каждой точке пространства вектор напряженности электрического поля волны Е перпендикулярен вектору напряженности магнитного поля Н, и оба вектора перпендикулярны направлению распространения волны.

Распространение радиоволн подчиняется определенным общим законам:

Прямолинейное распространение в однородной среде, т.е. среде, свойства которой во всех точках одинаковы.

Отражение и преломление при переходе из одной среды в другую. Угол падения равен углу отражения.

Дифракция. Встречая на своем пути непрозрачное тело, радиоволны огибают его. Дифракция проявляется в разной мере в зависимости от соотношения геометрических размеров препятствия и длины волны.

Рефракция. В неоднородных средах, свойства которых плавно изменяются от точки к точке, радиоволны распространяются по криволинейным траекториям. Чем резче изменяются свойства среды, тем больше кривизна траектории.

Полное внутреннее отражение. Если при переходе из оптически более плотной среды в менее плотную, угол падения превышает некоторые критические значения, то луч во вторую среду не проникает и полностью отражается от границы раздела сред. Критический угол падения называют углом полного внутреннего отражения.

Интерференция. Это явление наблюдается при сложении в пространстве нескольких волн. В различных точках пространства получается увеличение или уменьшение амплитуды результирующей волны в зависимости от соотношения фаз складывающихся волн.

Радиоволны, распространяющиеся у поверхности земли и, вследствие дифракции, частично огибающие выпуклость земного шара, называются поверхностными волнами. Распространение поверхностных волн сильно зависит от свойств земной поверхности.

Радиоволны, распространяющиеся на большой высоте в атмосфере и возвращающиеся на землю вследствие отражения от атмосферных неоднородностей, называются пространственными волнами.

Область существенная для распространения волн

При распространении радиоволн в однородном безграничном пространстве различные области этого пространства неодинаково влияют на процесс формирования поля в точке приема. Чтобы определить существенную область пространства, которая играет определяющую роль, обратимся к принципу волноводной оптики – принципу Гюйгенса-Френеля.

Предположим, что в точке А расположен точечный излучатель: требуется определить напряженность электрического поля EB точке В на расстоянии R от излучателя. Проведем мысленно вокруг излучателя произвольную замкнутую поверхность S (рис.2).

Согласно принципу Гюйгенса – Френеля: каждую точку на поверхности S можно считать источником вторичных сферических волн (виртуальным источником), а поле в точке В можно определить в результате векторного суммирования полей всех таких вторичных излучателей на поверхности S. Каждый из вторичных излучателей обладает диаграммой направленности, максимум его излучения совпадает с нормалью к поверхности S в данной точке.

Чтобы проследить процесс формирования поля в точке В, предположим, что на расстоянии R1 от точки В перпендикулярно линии АВ расположен экран, непрозрачный для радиоволн бесконечных размеров. Замкнутую вокруг точки А поверхность S выберем состоящей из плоскости экрана и бесконечно удаленной полусферы, охватывающей точку А и опирающейся на экран. Если отверстия в экране нет, то из-за непрозрачности экрана поле в точке В будет равно 0

Рис.2 Распространение радиоволн в однородном безграничном пространстве

Рис. 3. Формирование поля радиоволн

Влияние поверхности Земли на распространение радиоволн

Влияние поверхности Земли на распространение радиоволн зависит от расположения радиотрассы относительно её поверхности. Распространение радиоволн - пространственный процесс, захватывающий большую область. Но наиболее существенную роль в этом процессе играет часть пространства, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах которого А и В расположены передатчик и приёмник (рис. 4).

Рис. 4. Область, существенная при распространении радиоволн: А - передающая антенна; В - приёмная; Z1 и Z2 - их высоты над поверхностью Земли.

Большая ось эллипсоида практически равна расстоянию R между передатчиком и приёмником, а малая ось ~. Чем меньше , тем уже эллипсоид, в оптическом диапазоне он вырождается в прямую линию (световой луч). Если высоты Z1 и Z2, на которых расположены антенны передатчика и приёмника относительно поверхности Земли, велики по сравнению с , то эллипсоид не касается поверхности Земли (рис. 4, а). Поверхность Земли не оказывает в этом случае влияния на распространение радиоволн (свободное распространение). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 4, б) и на прямую волну, идущую от передатчика к приёмнику, належится поле отражённой волны. Если при Z1>> и Z2>>, то это поле можно рассматривать как луч, отражённый земной поверхностью по законам геометрической оптики. Поле в точке приёма определяется интерференцией прямого и отражённого лучей. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля (рис. 5). Условие Z1 и Z2>> практически может выполняться только для метровых и более коротких волн, поэтому лепестковая структура поля характерна для ультракоротких волн (УКВ).

Рис. 5. Лепестковая структура поля в точке приёма.

При увеличении существенная область расширяется и пересекает поверхность Земли. В этом случае уже нельзя представлять волновое поле как результат интерференции прямой и отражённой волн. Влияние Земли на распространение радиоволн этом случае обусловлено несколькими факторами: земля обладает значительной электропроводностью, поэтому распространение радиоволн вдоль поверхности Земли приводит к тепловым потерям и ослаблению волны. Потери энергии в земле увеличиваются с уменьшением .

Рис.6. Распространение радиоволн.

Помимо ослабления, происходит также изменение структуры поля волны. Если антенна у поверхности Земли излучает поперечную линейно-поляризованную волну, у которой напряжённость электрического поля Е перпендикулярна поверхности Земли, то на больших расстояниях от излучателя волна становится эллиптически поляризованной 1 (рис. 6). Величина горизонтальной компоненты Ex значительно меньше вертикальной Ez и убывает с увеличением проводимости s земной поверхности. Возникновение горизонтальной компоненты позволяет вести приём земных волн на т. н. земные антенны (2 проводника, расположенные на поверхности Земли или на небольшой высоте). Если антенна излучает горизонтально-поляризованную волну (Е параллельно поверхности Земли), то поверхность Земли ослабляет поле тем больше, чем больше s, и создаёт вертикальную составляющую. Уже на небольших расстояниях от горизонтального излучателя вертикальная компонента поля становится больше горизонтальной. При распространении вдоль Земли фазовая скорость земных волн меняется с расстоянием, однако уже на расстоянии приблизительно нескольких от излучателя она становится равной скорости света, независимо от электрических свойств почвы.

Рис. 7. Высота шарового сегмента, характеризующая выпуклость Земли

Выпуклость Земли является своеобразным "препятствием" на пути радиоволн, которые, дифрагируя, огибают Землю и проникают в "область тени". Т. к. дифракция волн заметно проявляется тогда, когда размеры препятствия соизмеримы или меньше , а размер выпуклости Земли можно охарактеризовать высотой шарового сегмента h (рис. 7), отсекаемого плоскостью, которая проходит через хорду, соединяющую точки расположения приёмника и передатчика (см. табл. 1), то условие h выполняется для метровых и более длинных волн. Если учесть, что с уменьшением увеличиваются потери энергии в Земле, то практически только километровые и более длинные волны могут проникать глубоко в область тени (рис. 8).

Рис.8. График изменения напряжённости поля с расстоянием r (в км). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

Высота шарового сегмента h для различных расстояний между передатчиком и приёмником

Таблица 1

Расстояние, км

Земная поверхность неоднородна, наиболее существенное влияние на распространение радиоволн оказывают электрические свойства участков трассы, примыкающих к передатчику и приёмнику. Если радиотрасса пересекает линию берега, т. е. проходит над сушей, а затем над морем, то при пересечении береговой линии резко изменится напряжённость поля (рис. 9), т. е. амплитуда и направление распространения волны (береговая рефракция). Однако береговая рефракция является местным возмущением поля радиоволны, уменьшающимся по мере удаления от береговой линии.

Рис. 9. Изменение напряжённости электрического поля на границе двух сред

Рельеф земной поверхности также влияет на распространение радиоволн. Это влияние зависит от соотношения между высотой неровностей поверхности h, горизонтальной протяжённостью l и углом падения q волны на поверхность (рис. 7). Если выполняются условия:

(1)

то неровности считаются малыми и пологими. В этом случае они мало влияют на радиоволн. При увеличении q условия (1) могут нарушаться. При этом энергия волны рассеивается, и напряжённость поля в направлении отражённого луча уменьшается (возникают диффузные отражения).

Высокие холмы, горы и т.п., кроме того, сильно "возмущают" поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых от поверхности Земли волн (рис. 10).

Рис. 10. Усиление радиоволн при дифракции на непологих неровностях.

Подземная и подводная радиосвязь.

Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры удельная проводимость 10-3-10-2 Ом-1м-1. Кроме того, для сред с большой удельной проводимостью коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

Рис. 11. Принцип подземной радиосвязи.

В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности, и затем принимается подземной приёмной антенной (рис. 11). Глубина погружения антенн достигает десятков метров. Системы этого типа обеспечивают дальность до нескольких сотен километров и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы - слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся каменная соль, поташ и др. Эти породы залегают на глубинах до сотен метров и обеспечивают дальность распространения радиоволн до нескольких десятков километров. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 12). На глубине 3-7 км удельная проводимость может уменьшиться до 10-11 Ом-1м-1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км, в котором возможно распространения радиоволн на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи - расчёт излучения и передачи энергии от антенн, расположенных в проводящей среде.

Рис. 12. Изменение проводимости Земли s с глубиной.

Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

Список литературы

Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961;

Альперт Я. Л., Распространение электромагнитных волн и ионосфера, М., 1972;

Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973;

Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973;

Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967;

Чернов Л. А., Распространение волн в среде со случайными неоднородностями, М., 1958;

Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1967;

Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972

Для подготовки данной работы были использованы материалы с сайта http://referat.ru/

1 Наклон фронта волны – при распространении радиоволны, которая обычно имеет круговую поляризацию над полупроводящей землей, вследствие неодинакового значения параметров почвы для электрической и магнитной составляющей радиоволны круговая поляризация переходит в эллиптическую. Чем выше проводимость почвы, тем больше эксцентриситет эллипса, и тем ближе поляризация к плоской.

Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой ДН обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более, в сантиметровом диапазоне, в то время как остронаправленная антенна для длин волн порядка 10 км имела бы совершенно неприемлемые габариты.

Всякая система передачи сигналов состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена - соединяющей линии. Для радиосистем промежуточным звеном является среда - пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т.е. в условиях, когда средой служат земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.

Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов с не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой - применять широкополосные системы модуляции, например, частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.

При распространении радиоволн в среде происходит изменение амплитуды поля волны (обычно - уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:

  • рассчитать энергетические параметры линии радиосвязи (определить мощность передающего устройства или мощность сигнала на входе приемного устройства);
  • определить оптимальные рабочие волны при заданных условиях распространения;
  • определить истинную скорость и направление прихода сигналов;
  • учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.

Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны), называют земными радиоволнами (1 на рис. 6.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь, с относительной диэлектрической проницаемостью е , равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.

В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простирающийся до тропопаузы (переходного слоя между тропосферой и стратосферой), лежащей над экватором на высоте 16-18 км, в умеренных широтах - на 10-12 км и в полярных областях - на 7-10 км. В тропосфере происходит искривление траектории земных радиоволн, называемое рефракцией. Распространение тропосферных радиоволн (2 на рис. 6.1) возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазона в тропосфере поглощаются.

Рис. 6.1.

Стратосфера простирается от тропопаузы до высот 50-60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30-35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высотах 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т.е. имеется большое число свободных электронов (примерно 10 3 ... 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис. 6.1). На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Условия распространения радиоволн (4 , 5 на рис. 6.1) при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Земли.

3.2.1. Основные свойства радиоволн

Радиоволны представляют собой переменные связанные электрические и магнитные поля. Электромагнитное поле описывается уравнениями Максвелла, который обосновал гипотезу о том, что переменное электрическое поле возбуждает в окружающем пространстве переменное магнитное поле и наоборот. Основные свойства электромагнитного поля:

1. В однородном пространстве радиоволны распространяются прямолинейно, скорость распространения волн в воздушном пространстве равна 300.000 км\с.

2. Распространение волн в проводящей среде (земле, воде, ионизированном газе) сопровождается поглощением энергии.

3. Если волны от одного и того же источника приходят в точку приема разными путями, происходит сложение этих волн - интерференция.

4. При встрече с препятствиями волны способны огибать их - это явление называется дифракцией. Дифракция уменьшается с уменьшением длины волны.

Вблизи земной поверхности радиоволны распространяются не так, как в свободном пространстве, так как среда (земная поверхность - атмосфера) является неоднородной.

Верхняя область атмосферы, содержащая свободные носители электрических зарядов, возникающие за счет влияния солнца, называется ионосферой. Электрические свойства ионосферы характеризуются концентрацией свободных зарядов - числом ионов и электронов в единице объема (1 куб.метре). Концентрация зарядов зависит от времени года (летом больше, чем зимой) и времени суток (днем больше, чем ночью). При возрастании солнечной активности и космического излучения возникают резкие изменения ионизации (магнитные бури).

Концентрация ионов и электронов в ионосфере на разных высотах различна, можно выделить несколько слоев с повышенной концентрацией ионов:

нижний слой D на высоте 60...90 км с концентрацией до 10 9 3 . Слой D образуется в дневное время, ночью слой D исчезает;

слой Е на высоте 120…150 км с концентрацией до 10 11 3 днеми до 10 10 / м 3 ночью;

слой F на высоте 180...400 км с концентрацией до10 12 3 днем и до 10 11 3 ночью.

При распространении радиоволн между земной поверхностью и ионосферой происходит потеря их энергии из-за взаимодействия электромагнитного поля со свободными носителями зарядов. Потери энергии радиоволны зависят от длины волны (частоты).

При распространении радиоволн необходимо отдельно рассматривать радиоволны, распространяющиеся вдоль земной поверхности (поверхностные или земные) и радиоволны, попадающие в ионосферу и отражающиеся от нее (пространственные или ионосферные).

Потери земных волн за счет частичного проникновения в землю тем больше, чем меньше длина волны, т.е. чем больше частота.


Потери пространственных волн тем больше, чем больше длина волны, т.е. чем меньше частота.

При попадании в слои ионосферы радиоволны отражаются от них или преломляются, причем возможность отражения зависит от степени ионизации ионосферы, частоты и угла падения волны. Максимальная частота, которая может отразиться от ионизированного слоя при вертикальном падении на его границу, называется критической частотой и определяется выражением fкр =9ÖN, где N - концентрация свободных зарядов.

3.2.2. Особенности распространения радиоволн различных диапазонов

В зависимости от условий распространения радиоволны делятся на диапазоны:

__________________________________________________________________

диапазон длина волны частота

________________________________________________________________________________

сверхдлинные (СДВ) >10000 м <30 кГц ОНЧ (VLF)

длинные (ДВ) 10000...1000 м 30...300 кГц НЧ (LF)

средние (СВ) 1000...100 м 300...3000 кГц СЧ (MF)

короткие (КВ) 100...10 м 3...30 МГц ВЧ (HF)

ультракороткие (УКВ) <10 м >30 МГц

метровые 10...1 м 30...300 МГц ОВЧ (VHF)

дециметровые 100...10 см 300...3000 МГц УВЧ (UHF)

сантиметровые 10...1 см 3...30 ГГц СВЧ (SHF)

миллиметровые 10...1 мм 30...300 ГГц КВЧ (EHF)


Распространение радиоволн

Оглавление

А1.0 ТИПЫ МОДЕЛЕЙ РАСПРОСТРАНЕНИЯ

А1.1 Модель Free space + RMD

А1.2 Модель FCC + RMD

А1.3 Модель CCIR + RMD

А1.4 Модель Okumura (Hata)

А1.5 Модель Hata/Davidson/Epstein-Peterson Diffraction

A1.6 Модель TIREM-EDX

А1.7 Модель FCC - EDX

А1.8 Модель FCC - FCC

А1.9 Модель CCIR - EDX

А1.10 Модель FCC - Pt.22

А1.11 Модель COST 231 - Hata

А1.12 Заказная модель

А2.0 Методы вычисления затухания на трассе.

А2.1 RMD.

А2.1.1 Вычисление коэффициента отражения.

А2.1.2 Определение потерь из-за дифракции.

А2.1.3 Потери из-за препятствий на местности

А2.3 Ослабление сигнала по причине поглощения в атмосфере.

А3.0 Нестабильность

А3.1 Временная нестабильность

А3.2 Пространственная нестабильность

А1.0 ТИПЫ МОДЕЛЕЙ РАСПРОСТРАНЕНИЯ

При работе с программным обеспечением компании EDX можно выбрать одну из нескольких различных моделей распространения для выполнения расчетов затухания на трассе, принимаемой мощности, или напряженности поля. Кроме того, для большинства моделей вы можете независимо определить временную и пространственную статистику и доверительную маржу (запас). Вы можете также выбирать из семи различных климатических зон, которые оказывают воздействие на временную статистику.

Доступные модели распространения:

1. Free space + RMD

4. Okumura (Hata)

5. Hata/Davidson/Epstein-Peterson Diffraction

11. COST 231 - Hata

12. Custom (заказная)

Каждая из этих моделей объясняется более подробно в следующих разделах этого Приложения. Выбор соответствующей модели и статистики уровня сигнала для вашей проектируемой системы будет зависеть от типа системы и области, где она будет использоваться. Может потребоваться некоторое экспериментирование с различными моделями, уровнями сигнала, и статистикой уровня сигнала, чтобы достигнуть удовлетворительных результатов для вашего типа системы.

Используя одну из этих моделей можно определить значение затухания на поверхности. Это потери, которые происходят на трассе в дополнение к потерям в свободном пространстве.

В данной модели при вычислении потерь на трассе можно учесть естественные препятствия на местности, фактор временной и пространственной статистики, застройку и деревья. Это все подробнее рассматривается ниже в разделах A2.1 - A2.4. Эта модель наиболее подходит для анализа прохождения радиоволн в микроволновом диапазоне, для систем типа MMDS , где используются стационарные приемные станции с направленными антеннами.

Этот метод подобен FCC+RMD за исключением того, что вместо графиков FCC используются кривые, рекомендованные CCIR (Rec 370-5). Диапазоны расстояний от передатчика до приемника дляхарактеристик FCC и кривых CCIR отличны. Кривые FCC могут использоваться в основном для расстояний в пределах от 1 до 200 или 300 км. Кривые CCIR начинаются с 10 км и простираются до 500 км. Если Вы выбираете CCIR + RMD метод, и расстояния меньше чем 10 км, программа назначит по умолчанию использование потерь на трассе свободного пространства. Это часто приводит к аномальной напряженности поля или полученным результатам уровня мощности при переходе от свободного пространства до кривых CCIR в отметке 10 км, особенно для низких эффективных высот антенн. При использовании этого метода, средняя высота антенны будет автоматически ограничена значениями между 37.5 и 1200 метрами. Это ограничение накладывается файлами данных на кривые CCIR .

Метод Okumura , используемый в программе - это фактически компьютерная реализация Okumura метода, который был разработан Hata . Метод Okumura был разработан на основе данных измерений уровней сигнала от передатчика в нескольких частотных диапазонах в Токио и его пригородах. Выбор этого метода следовательно наиболее предпочтителен для урбанизированных областей, где расстояние анализа относительно не велико (меньше чем 30 км), эффективная высота передающей антенны - меньше чем 200 м, эффективная высота приемной антенны - меньше чем 10м, и местность относительно плоская. Использование этого метода для других случаев или при больших расстояниях может оказаться неприемлемым. Используя Okumura(Hata) метод, вы можете выбирать типы наземных помех - "нет", "пригородная зона" или "город". Эти выбор определит соответствующие выражение для затухания.

Формулы Hata:

Основные потери на трассе для городских зон:

f - частота в МГц;

Высота антенны базовой станции (в метрах), превышающая усредненную высоту рельефа в направлении анализируемой трассы в пределах 3-15 км;

Поправочный коэффициент (см. ниже);

d = расстояние от передатчика до приемника, км.

Для среднего города:

Для большого города:

Для f200 МГц (А3)

Для f400 МГц (A4)

Высота антенны мобильной станции над землей, м.

Для пригородных областей, городские потери, рассчитанные выше корректируются следующим образом:

, dB (A5)

Для сельских, квази -открытых участков:

Для сельских открытых участков:

Это - специализированная модель, которая основана на Hata модели, описанной в разделе A1.4. В данной модели для расширения частотного диапазона, диапазона расстояний и диапазона высот антенны базовой станции, Davidson (Motorola) использовал графические методы для экстраполяции кривых к частотам от 30 до 1500 MHz, диапазона расстояний до 300 км, и антенн базовых станций от 30 до 1000 метров. После определения потерь на трассе, используя модель Hata A1.5, используются следующие уравнения, чтобы корректировать потери на трассе:

Если d> 20 км,

Если d> 64.36 км,

Если > 300 метров,

После того, как эти исправления сделаны, выполняются следующие заключительные корректировки:

Если d> 40.2 км

Потери на трассе в dB, определенные по методу Hata

Потери на трассе в dB с расширением Davidson к методу Hata

f = частота в MHz

d = расстояние от передатчика до приемника в км.

Эффективная высота базовой станции в метрах

В дополнение к исправлениям, сделанным Davidson , эта модель включает дополнительное затухание на трассе из-за дифракционных потерь на рельефе. Используемый метод - Epstein-Peterson метод множественных потерь по причине дифракций на препятствиях, который является идентичным методу, описанному в разделе A2.1.2.

Этот метод похож на FCC - RMD метод (А1.2) за исключением того, что вычисление затухания здесь основано исключительно на характеристиках распространения FCC , без учета потерь на дифракцию и отражение (RMD). Этот метод вычисляет напряженность электрического поля точно следуя рекомендациям FCC (часть 73,22 и 90 правил FCC ). Интерполяционные алгоритмы для нахождения напряженности поля между точками и между кривыми были разработаны EDX.

Этот метод такой же как и описанный в А1.3, за исключением того, что он не учитывает потери на дифракцию и отражение сигнала (RMD), и базируется только на CCIR характеристиках распространения.

Этот метод схож с FCC - EDX методом, и отличается только тем, что определенные контурные уровни напряженности поля вызывают специальные формулы для вычислений, взятые из правил FCC.

Данная модель - вариация Hata модели, описанной раннее. Эта версия была разработана для того, чтобы получить модель, которая работала бы в диапазоне частот 1.5-2 ГГц.

При этом формула для основных потерь на трассе в городе:

0 dB для городов средних размеров и пригородов с умеренной плотностью деревьев

3 dB для столичных центров

Переменные -те же что и в Hata модели.

Здесь используются те же корректировки для сельских квази-открытых и открытых районов. Корректировки для пригородных районов не используются.

Заказная модель основана на Cost 231-Hata методе. Эта модель позволяет вам независимо корректировать каждый из основных своих параметров С1-С10:

(А27)

Аббревиатура RMD означает "Reflection plus Multiple Diffraction Loss" (отражение плюс множественные дифракционные потери). RMD часть вычислений потерь на трассе использует метод дифракционных потерь на препятствиях, взятый из технических замечаний NBS №101. В случае прямой видимости, когда нет препятствий, которые бы блокировали прямой луч от передатчика до приемника, затухание определяется путем рассматривания вклада одиночного отраженного луча от земли и векторного сложения его с прямым лучом. Для трасс, где рельефные препятствия достаточно высоки чтобы частично закрывать 0.6 от первой зоны Френеля, RMD метод включает дополнительные потери в диапазоне от 0 до 6 dB в зависимости от степени закрытия первой зоны Френеля (при затухании 6 dB прямой луч уже "царапает" препятствие). Если вы желаете игнорировать отражение от земли, введите "-1" для проводимости земли в соответствующем меню.

В загоризонтной или закрытой препятствиями местности, затухание на трассе вычисляется с помощью подхода Эпштейна-Петерсона путем объединения дифракционных потерь над десятью стоящими одно за одним рельефными препятствиями. Потери вычисляются отдельно для каждого препятствия, при этом для каждого последующего препятствия, выступающего в роли "приемника" , предыдущее препятствие является "передатчиком".

Специфичность метода и формулы для вычислений вклада отражения и дифракции при определении затухания на трассе рассматриваются в следующих разделах.

Коэффициент отражения принимается во внимание в модели RMD когда приемник и передатчик находятся на линии прямой видимости. Если проводимость земной поверхности не установлена равной -1, то программа находит точку отражения на трассе от передатчика до приемника, в которой угол падения равен углу отражения. Обычно нет таких точек, в которых бы угол падения в точности совпадал с углом отражения, поэтому программа допускает некоторую небольшую угловую погрешность. В том случае, если не существует точек отражения, никакого вклада мощности от отраженного луча не допускается.

Если точка отражения найдена, программа вычислит комплексный коэффициент отражения для горизонтальной или вертикальной поляризации, используя следующие формулы:

(А28)

(А29)

Перпендикулярные и параллельные индексы показывают коэффициенты отражения для излучения которое является перпендикулярным или параллельным плоскости падения. Когда луч отражается от земли, то перпендикуляр относится к горизонтальной поляризации, а параллель - к вертикальной поляризации.

Комплексные коэффициенты отражения данные выше - для гладкой поверхности.

Комплексная диэлектрическая проницаемость вычисляется так:

(А30)

где - относительная диэлектрическая постоянная отражающей поверхности, - проводимость отражающей поверхности в Сименс/метр (обе величины вводятся в меню Prop_Info) и - длинна волны, излучаемая передатчиком. Коэффициент отражения на гладкой отражающей поверхности изменяется в случае изрезанной поверхности, принимая во внимание коэффициент затухания на неровностях:

(А32)

где - среднеквадратичное отклонение неровностей поверхности.

В алгоритме модели RMD коэффициент отражения вычисляется как описано выше для вертикальной и горизонтальной поляризации чтобы найти амплитуду и фазу отраженного луча. Этот отраженный луч затем векторно складывается с прямым лучом для нахождения напряженности поля в месте приема.

При выборе определенного типа помех программа добавляет соответствующий коэффициент ослабления при вычислении напряженности поля и уровня принимаемой мощности. При вычислении потерь этот коэффициент учитывает ослабление сигнала из-за строений и лесопосадок вокруг места приема. Эти потери будут учитываться во всех точках области анализа.

Если вы выбираете тип помехи "None", то никакие дополнительные потери из-за строений или лесопосадок не вносятся. При выборе типа помехи "Urban" (центр города), дополнительное затухание по причине помех вычисляется по следующей формуле:

где f - частота в МГц, d - расстояние от передатчика до приемника в км. Это выражение было взято из "Radio Propagation in Urban Areas. Report 78-144 Anita Longley." При выборе типа помехи "Suburban" (пригород), дополнительное затухание, вычисленное по предыдущей формуле уменьшается на 12 dB. Если вы выбираете тип помехи "Dense foliage" (плотная листва), дополнительное затухание вычисляется при помощи следующего выражения:

Это эмпирическая формула была получена для наиболее широкого представления (систематизации) данных, извлеченных из различных опубликованных статей по теме ослабления сигнала из-за деревьев, леса и кустарников. Если вы выбираете тип помехи "Sparse foliage" (Редкая листва), то потери из-за присутствия помехи уменьшаются на 6 dB относительно помех (А44).

Оценки ослабления по причине помех, данные выше должны рассматриваться с известной долей скепсиса т.е. как приблизительные, так как они получены чисто статистическим путем, и не могут гарантировать точных вычислений в некоторых случаях.

Для модели распространения сигнала, базирующейся на методе Okumura (Hata), "Urban" и "Suburban" коэффициенты вычисляются в соответствии с оригинальной методикой Hata, и при этом поправочные коэффициенты, данные выше не применяются.

Вы также можете включать более детальные препятствия при анализе, используя базу данных groundcover (земное покрытие). Это наиболее усовершенствованный способ включать локальные помехи при проведении анализа. И если вы используете базу данных groundcover то должны выбрать тип помехи в меню Prop_Info как "None".

Временная нестабильность - изменение уровня сигнала как функции времени в фиксированном месте приема при постоянных других параметрах среды. Строго говоря, изменение уровня сигнала происходит из-за зависимых от времени изменений в атмосфере, в основном из-за преломлений. Эти изменения могут приводить к изменению зон уверенного приема. Это называется "медленное изменение уровня мощности" и определяется из ежечасных измерений уровней мощности сигналов, что усредняет быстрые замирания, которые обсуждаются ниже.

Второй тип временной нестабильности - быстродействующее изменение, наблюдаемое в микроволновых системах, в которых переменные атмосферные условия изменяют относительную длину, и сдвиги фазы сигнала на трассе так, что прямые и отраженные лучи складываются либо в фазе, либо нет в зависимости от времени. Результирующий сигнал в месте приема имеет временную нестабильность которая подобна классическому распределению замираний Рэлея. Обычное ослабление мощности в таких случаях несколько dB, причем с большими изменениями при увеличении длины пути. Быстрые замирания Рэлеевского типа могут быть до 40dB и больше, это зависит от времени дня, сезона, типа климата.

Вы можете выбрать тип климата, что будет затем оказывать влияние на вычисление временной нестабильности. Для коротких трасс временная нестабильность приводит к изменению уровня сигнала на несколько dB. Быстрые временные изменения не учитываются в программах MSITE/SHDMAP и CVR, FMSR, и TVSR. Программы TPATH и RPATH принимают во внимание этот тип нестабильности.

Многое из, что описывается как временная нестабильность - фактически пространственная нестабильность, пространственная нестабильность в общем случае любое изменение в расположении приемника относительно любого элемента в среде. Так, например, уровень мощности в фиксированном месте приема может меняться по причине отражения сигнала от проезжающего мимо автомобиля, автомобиль - часть среды распространения, и поэтому изменение уровня сигнала, которые он вызывает должно рассматриваться как пространственная нестабильность, даже если при этом не изменяется местоположение приемника.

Обратите внимание, что изменения уровня сигнала, наблюдаемые в точках на трассе, которые затенены или, например, находятся на линии взгляда - не является пространственной нестабильностью, здесь различие в уровнях сигнала объясняется либо ситуацией прямой видимости, либо затенением. Другими словами, пространственная нестабильность обусловлена изменением уровня сигнала, которое определяется изменением в среде распространения, и она явно не рассматривается. Если в среде распространения все фиксировано, как и местоположение приемника, то пространственная нестабильность будет нулевой. Изменение уровня сигнала будет происходить по причине временной нестабильности.

Пространственная нестабильность характеризуется случайной величиной с распределением, подобным распределению Рэлея. Степень изменения может быть оценена принимая во внимание то, что уровень сигнала уменьшается примерно на 10 dB при увеличении на порядок процента вероятности. Например, если предсказанный уровень сигнала в 50% мест -100 dBmW, то уровень сигнала в 90% мест -110 dBmW, в 99% мест -120dBmW. По аналогии, уровень сигнала, гарантированный в 10% мест -90 dBmW, в 1% мест -80dBmW.

Область пространства существенная при распространении радиоволн 1 Основы распространения радиоволн подвижной радиосвязи в свободном пространстве Система передачи информации состоит из трех основных частей: передающего устройства приемного устройства и промежуточного звена соединяющей линии. При распространении радиоволн по естественным трассам т. При распространении радиоволн в среде происходят изменение амплитуды поля волны изменение скорости и направления распространения поворот плоскости поляризации и искажение передаваемых сигналов....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Распространение радиоволн в свободном пространстве

1 Основы распространения радиоволн подвижной радиосвязи в св о бодном пространстве

3 Радиолинии 1-ого и 2-ого рода

о странении радиоволн

1 Основы распространения радиоволн подвижной радиосвязи в свободном пространстве

Система передачи информации состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена — соединяющей линии. Промежуточным звеном является среда — пространство, в котором распространяются радиоволны. При ра с пространении радиоволн по естественным трассам, т. е. в условиях, к о гда средой служит земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практ и чески не поддается управлению.

При распространении радиоволн в среде происходят изменение амплитуды поля волны, изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых си г налов. В связи с этим, проектируя линии радиосвязи, необходимо:

  1. Рассчитать мощность передающего устройства или мощность си г нала на входе приемного устройства (определить энергетические параметры линий);
  2. Определить оптимальные рабочие волны при заданных условиях распространения;
  3. Определить истинную скорость и направление прихода сигналов;
  4. Учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические сво й ства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн. Земная поверхность оказывает существенное влияние на распространение радиоволн:

  • в полупроводящей поверхности Земли радиоволны поглощаются;
    • при падении на земную поверхность они отражаются;
    • сферическая форма земной поверхности препятствует прямол и нейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, называют земными радиоволнами (рис.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь с относительной диэлектрической проницаемостью, равной единице. Влияние атмосферы учитывают отдельно, внося необх о димые поправки.

В окружающей Землю атмосфере различают три области, оказ ы вающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не ре з ко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простир а ющийся до высоты 7-18 км. В области тропосферы температура во з духа с высотой убывает. Тропосфера неоднородна как в вертикальном направлении, так и вдоль земной поверхности. Ее электрические параметры меняются при изменении метеорологических условий. В троп о сфере происходит искривление траектории земных радиоволн (1 на рис.1), называемое рефракцией. Распространение тропосферных р а диоволн (2 на рис.1) возможно из-за рассеяния и отражения их от н е однородностей тропосферы. Радиоволны миллиметрового и сантиметрового ди а пазонов в тропосфере поглощаются.

Стратосфера простирается от тропопаузы до высот 50—60 км. Стр а тосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30—35 км температура постоянна, а далее до высоты 60 км резко п о вышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высоте 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т. е. имеется большое число свободных электронов. Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. Радиоволны, распр о страняющиеся путем отражении от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис.1). На условия распространения ионосферных волн свойства земной поверхности и троп о сферы влияют мало.

Условия распространения радиоволн (4,5 на рис.1) при космич е ской радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Зе м ли.

Рис. 1 Условия распространения радиоволн

Свойства канала подвижной связи зависят от множества факт о ров, в первую очередь от параметров используемых антенн, свойств физической среды, в которой распространяются радиоволны, особе н ностей электронных цепей, участвующих в передаче и приеме сигнала, а также от скоростей перемещения подвижных станций. Чтобы упр о стить рассмотрение свойств канала подвижной связи, целесообразно ввести основные термины, касающиеся антенн, и разобрать идеальный случай – распространение сигнала в свободном пространстве.

В теории антенн рассматривается теоретический случай, когда антенна излучает сигнал мощностью (Ватт) одинаково во всех направлениях. Такая антенна называется изотропной . Это идеальное ус т ройство, которое практически невозможно реализовать. Однако оно служит эталоном для других типов антенн. Если вокруг изотропной а н тенны нарисовать сферу радиуса , то во всех точках поверхности этой сферы электромагнитное поле, индуцируемое антенной, будет один а ково. Реальные антенны фокусируют излучаемую энергию в определенных направлениях, поэтому на практике нормированная хара к теристика излучающей антенны описывается следующим выражением:

(1)

где – напряженность поля в точке сферы с координатами, определяемыми углами φ и θ; – максимальное значение напр я женности поля на поверхности сферы.

Изотропная антенна расположена в начале координат. Её норм и рованная характеристика представляет собой идеальную сферу – рис. 2. Легко заметить, что нормированная характеристика не зависит от радиуса сферы.

Рис. 2. Нормированная характеристика изотропной антенны

Термин плотность [потока] энергии (ППЭ) тесно связан с норм и рованной характеристикой. Это энергия, излучаемая в заданном направлении в единицу телесного угла 1 . Обе характеристики антенны св я заны выражением:

, (2)

где – максимальная ППЭ.

Суммарная мощность, излучаемая антенной, представляется в виде интеграла по телесному углу, т. е.

, (3)

, (4)

Излучаемая мощность может быть выражена в виде произвед е ния средней ППЭ и величины полного телесного угла, которая равна 4π. Средняя плотность излучения может быть интерпретирована как плотность потока энергии изотропной антенны, которая излучает ту же самую суммарную мощность , что и заданная антенна. Отношение плотности потока энергии к средней ППЭ называется коэффициентом направленного действия антенны. Его максимальное зн а чение называется направленностью антенны D и описывается выраж е нием

(5)

Термин направленность означает, что плотность излучения в направлении максимального излучения в раз больше, чем плотность излучения изотропной антенны той же суммарной мощности, что и данная антенна. В реальной антенне излучаемая мощность представляет собой только часть подаваемой на ее вход мощности. Часть мо щ ности рассеивается и преобразуется в тепло. Таким образом, антенна характеризуется энергетической эффективностью (или коэфф и циентом полезного действия):

. (6)

Для учета рассеяния мощности вводится термин коэффициент усиления антенны . Он определяется выражением

. (7)

Коэффициент усиления антенны обычно применяется при опр е делении эквивалентной изотропно излучаемой мощности (ЭИИМ, англ. Effective Isotropic Radiated Power – EIRP ), описываемой произвед е нием: .

Эквивалентная изотропная излучаемая мощность определяется как мощность, которую необходимо подать на изотропную антенну для того, чтобы получить в точке приема точно такое же поле, которое б у дет получено в ней при помощи антенны с коэффициентом усиления, на вход которой подана мощность. Геометрически это иллюстр и рует рис. 3.

Рис. 3 Геометрическое представление эквивалентной изотропной и з лучаемой мощности

В качестве другого типа эталонной антенны используется пол у волновой симметричный вибратор.

Если сравнить мощность сигнала от антенны с коэффициентом усиления с таковой от полуволнового вибратора, то можно опред е лить так называемую эквивалентную излучаемую мощность (ЭИМ, англ. Effective Radiated Power ).

Коэффициент усиления полуволнового вибратора относительно изотропной антенны равен 1,64, что соответствует 2,15 дБ. Поэтому э к вивалентная излучаемая мощность заданной антенны будет на 2,15 дБ меньше, чем ее эквивалентная изотропная излучаемая мощность.

В зависимости от принятого типа эталонной антенны, единицы измерения коэффициента усиления антенны обозначаются дБи – для изотропной антенны или дБb – для полуволнового вибратора.

На основании изложенного выше в большинстве случаев переход от коэффициента усиления антенны к коэффициенту направленности осуществляется достаточно просто – путем увеличения первого пар а метра в 1,64 раза или на 2,15 дБ (по мощности ).

2. Формула идеальной радиопередачи

Свободное пространство можно рассматривать как однородную не поглощающую среду с. В действительности таких сред не с у ществует, однако выражения, описывающие условия распространения радиоволн в этом простейшем случае, являются фундаментальными. Распространение радиоволн в более сложных случаях характеризуется теми же выражениями с внесением в них множителей, учитывающих влияние конкретных условий распространения.

Для свободного пространства плотность энергии (Вт/м 2 ) на расстоянии (м) от точечного источника, излучающего радиоволны равномерно во всех направлениях, связана с мощностью, излучаемой этим источником (Вт) следующей зависимостью:

, (8)

где – модуль вектора Пойнтинга. На практике антенна излучает эне р гию по разным направлениям неравномерно. Для учета степени неравномерности излучения вводят коэффициент направленного де й ствия антенны.

Коэффициент направленного действия антенны D показывает, во сколько раз изменяется плотность мощности на данном расстоянии от излучателя при направленном излучателе по сравнению с ненаправле н ным (изотропным) излучателем.

При использовании направленного излучателя происходит пр о странственное перераспределение мощности, в результате чего в некоторых направлениях плотность мощности повышается, а в других снижается по сравнению со случаем использования изотропного излучат е ля. Применение направленных антенн позволяет получить в D раз большую плотность мощности в точке приема или в D раз снизить мо щ ность передатчика.

Величина является функцией углов наблюдения: в горизо н тальной плоскости и в вертикальной (рис 2). Обычно антенна с о здает максимальное излучение лишь в некотором направлении, для которого приобретает максимальное значение. Зависимость величин от углов и называют диаграммой направленности антенны по мощности, а отношение - нормированной диаграммой направле н ности по мощности (рис.4).

Рис. 4. Диаграммы направленности антенны по мощности: 1 – изотро п ного излучателя; 2 – направленной антенны

Плотность мощности на расстоянии от направленной излуча ю щей антенны

. (9)

Амплитуда напряженности электрического поля радиоволны в свободном пространстве связана с плотностью энергии этой волны (через сопротивление свободного пространства)

, (10)

откуда определяется амплитудное значение напряженности электрич е ского поля в свободном пространстве (В/м) на заданном расст о янии (м) от излучателя:

(11)

Мощность на входе приемника, согласованного с антенной, находящейся на расстоянии от излучателя,

, (12)

где — эффективная площадь приемной антенны, х а рактеризующая площадь фронта волны, из которой антенна извлекает энергию.

Мощность удобно определять непосредственно через мощность и величину излучающей антенны:

. (13)

Это выражение называется формулой идеальной радиопередачи .

Ослабление мощности при распространении радиоволн в св о бодном пространстве, определяемое как отношение, называют потерями передачи в свободном пространстве. При ненаправле н ных передающей и приемной антеннах это отношение (дБ) рассч и тывают по формуле:

, (14)

где — мощность, Вт; — расстояние, км; — частота, МГц.

Применение направленных антенн эквивалентно увеличению и з лучаемой мощности в
раз.

3 Радиолинии 1-ого и 2-ого рода.

При расчете и проектировании радиолиний, особенно в диапаз о нах сантиметровых и дециметровых волн, необходимо знать мощность сигнала на входе приемника. Эта мощность определяется различно для радиолиний двух типов. На радиолинии I типа передача информации ведется непосредственно из пункта передачи в пункт приема (рис. 5).

Рис 5 Радиолиния I -го типа

На радиолиниях II типа принимаются сигналы, испытавшие па с сивную ретрансляцию на пути от передатчика к приемнику (рис. 6).

Рис. 6 Радиолиния II -го типа

На этих линиях непосредственная передача энергии волны от и с точника до точки приема по каким-либо причинам невозможна (напр и мер, этот путь перекрыт препятствием). На наземных радиолиниях с пассивной ретрансляцией на пути распространения имеется специал ь ное антенное устройство, которое облучается первичным полем и п е реизлучает его в виде вторичного поля, предназначенного для приема.

На любой радиолинии мощность на входе приемника связана с плотностью потока мощности в месте приема соотношением

, (15)

где 2 - КПД фидера приемной антенны; - действующая площадь приемной антенны.

На радиолинии I типа в условиях свободного пространства пло т ность потока мощности в месте приема

, (16)

где 1, r указаны на рис. 6.

Подставляя (16) в (15), получаем для радиолинии I типа мо щ ность на входе приемника в условиях свободного пространства:

. (16)

На радиолинии II типа значение зависит от тех же параме т ров, что и на линии I типа, и, кроме того, от переизлучающих свойств ретранслятора. Если какое-либо тело облучается полем, то его способность переизлучать это поле оценивается эффективной площадью рассеяния (ЭПР). Величина ЭПР зависит от формы, размеров, электр и ческих свойств материала, из которого выполнен переизлучатель, а также от его ориентации относительно направления распространения первичного поля и направления на прием.

Если около переизлучающего тела плотность потока мощности первичного поля, то переизлученная мощность:

, (17)

а плотность потока мощности вторичного поля вблизи приемной антенны в условиях свободного пространства

(18)

Согласно (15), (17), (18) мощность на входе приемника для радиолинии II типа

. (19)

В тех случаях, когда .

(20)

Из (16) и (20) видно, что в свободном пространстве при отсу т ствии пассивного ретранслятора на линии мощность на входе приемн и ка уменьшается обратно пропорционально квадрату расстояния, а при работе с ретранслятором - обратно пропорционально четвертой степ е ни. Такое быстрое убывание поля на линиях II типа объясняется тем, что поле дважды испытывает расходимость: первичное поле - на пути от источника (передающей антенны) до ретранслятора и втори ч ное поле — на пути от источника (ретранслятора) до пункта приема.

При проектировании систем удобно иметь сведения о потерях при передаче электромагнитной энергии. Потерями передачи наз ы вают отношение мощности , подводимой к передающей антенне, к мощности на входе приемной антенны:

, (21)

где - мощность на выходе передатчика; - мощность на входе пр и емника. Для радиолинии I типа в условиях свободного пространства согласно (16) и (21) потери передачи

. (22)

Расчеты упрощаются, если в (22) выделить составляющую , кот о рая характеризует потери, обусловленные расходимостью волны при. Составляющая называется основными потерями п е редачи в условиях свободного пространства:

. (23)

Полные потери передачи обычно выражают через . Так, вместо (22) можно записать

. (24)

Для радиолинии II типа в условиях свободного пространства при согласно (20) и (21) потери передачи

(25)

или с учетом (23)

(26)

4 Зоны Френеля. Область пространства, существенная при распр о странении радиоволн.

В теории распространения радиоволн, особенно при оценке вл и яния земли, важное значение имеет понятие «существенная о б ласть».

Областью, существенной при распространении радиоволн , наз ы вают часть пространства, в котором распространяется основная д о ля энергии.

Форму и размеры существенной области, возможно, установить и аналитически, используя принцип эквивалентности. Согласно этому принципу поле в точке приема определяется суммарным действием вторичных источников, распределенных по воображаемой поверхн о сти, замкнутой вокруг источника А или точки приема В.

Выберем поверхность, которая охватывает источник, и для упрощения расчетов составим ее из бесконечной плоскости, расположенной перпендикулярно линии АВ (рис. 7), и полусферы с бе с конечным радиусом, которая замыкает плоскость.

Поля от источников, расположенных на бесконечно удаленных участках поверхности , бесконечно малы вследствие расход и мости волны. Поэтому суммарное поле формируется источниками на поверхности , расположенными на конечном расстоянии от точки В. Для облегчения суммирования разделим плоскость на зоны Френ е ля.

Построим серию ломаных (рис. 8, а), пересекающих плоскость так, чтобы длина каждой последующей ломаной была больше длины предыдущей на половину длины волны:

. (27)

Семейство ломаных линий, удовлетворяющих условиям (1.20), при пересечении с плоскостью образует на этой плоскости систему окружностей с центром в точке (рис. 8, б). Участки плоскости, ограниченные окружностями, называют зонами Френеля на плоскости. Первая зона представляет собой круг, зоны высших номеров - кольц е вые области.

Рис. 7 Использование принципа эквивалентности

Суммарное поле от всех источников рассчитывается с учетом их распределения по зонам Френеля.

Рис. 8 Представление зоны Френеля

Амплитуда поля от элемента поверхности оценивается как , а фаза, где С - константа, завис я щая от свойств первичного источника. Результирующее поле:

, (28)

т.е. напряженность поля равна половине той величины, которая созд а ется источниками первой зоны Френеля.

При суммировании полей от источников только первой зоны напряженность поля возрастает до , где - поле в свободном пространстве. При дальнейшем сложении проявляется действие противофазных полей от источников второй зоны, и результирующая напр я женность поля уменьшается. Компенсирующее действие полей от источников четных зон Френеля обусловливает немонотонный закон пр и ближения величины к при.

Существенную область обычно ограничивают примерно восемью зонами Френеля. При таком приближении ошибка в вычислении поля не превышает 16%.

Внешний радиус n -й зоны Френеля ρ n согласно рис. 8, a ) и усл о вию (27), а также с учетом того, что на реальных линиях, определяется соотношением

. (29)

Максимальный радиус соответствует середине трассы, где.

. (30)

Максимальный радиус существенного эллипсоида, ограниченн о го восемью зонами Френеля,

. (31)

Чем короче волна, тем меньше поперечные размеры существе н ного эллипсоида. Например, на волнах при протяже н ности линии радиус. При этом большая ось существенного эллипсоида, соизмеримая с длиной радиолинии, в сотни и тысячи раз больше его малой оси, т.е. эллипс сильно вытянут вдоль трассы.

Понятие существенной области широко применяется при изуч е нии условий распространения на линиях, где электрические параметры тракта распространения неоднородны. Например, при распространении радиоволн над земной поверхностью ослабление поля зависит от ст е пени затенения существенной области поверхностью Земли. Если выс о ты антенн таковы, что часть существенной области затенена, то потери на линии значительно возрастают.

В заключение отметим, что существенная область имеет форму эллипсоида вращения только при использовании ненаправленных а н тенн в точках передачи и приема. Реально ее форма более сложная и зависит от ДН антенн.

Литература:

1 Ерохин Г.А., Чернышев О.В., Козырев Н.Д., Кочержевский В.Г. Антенно-фидерные устройства и распространение радиоволн. – М. Радио и связь. 1996. - 486с.

2. Печаткин А.В. Системы мобильной связи. Часть 1. Принципы организации и частотного планирования систем мобильной связи: учебное пособие. РГТУ. - Рыбинск, 2008.- 122с.

3. Яманов Д.Н. Основы электродинамики и распространение р а диоволн. Часть 1. Основы электродинамики: Тексты лекций. - М: МГТУ ГА, 2002. – 80 с.

4. Яманов Д.Н. Основы электродинамики и распространение р а диоволн. Часть 2. Основы электродинамики. Тексты лекций.- М: МГТУ ГА, 2005. – 100 с.

1 Телесный угол измеряется в стерадианах. Полный телесный угол равен 4π стерадиан.

Другие похожие работы, которые могут вас заинтересовать.вшм>

13015. Распространение волн в диспергирующих средах 112.27 KB
Уравнение электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса – Кронига. Дисперсия при распространении электромагнитной волны в диэлектрике. Дисперсия в среде со свободными зарядами. Волны в средах с пространственной дисперсией
13072. Распространение волн в нелинейных диспергирующих средах 89.27 KB
Для среды без центра инверсии с квадратичной нелинейностью каждое из полей возбуждает квадратичные поляризации на удвоенной и нулевой частотах: то есть имеют место генерация второй гармоники и детектирование волны. Кроме того две электромагнитные волны с разными частотами...
13048. Распространение ограниченных волновых пучков, дифракция 74.99 KB
Метод Кирхгофа Метод Кирхгофа основан на интегральной теореме выражающей значения решения уравнения Гельмгольца в произвольной точке Мx y z через значения функции u и ее первой производной на поверхности S охватывающей точку М. Пусть uМ и GМ – комплекснозначные функции координат точки М имеющие непрерывные первые и вторые частные производные как внутри объема V содержащего точку М так и на ограничивающей этот объем поверхности S. На поверхности S2 производная по внешней нормали совпадает с производной по радиусу сферы r = r – r1 ...
2162. МЕТОДЫ РАЗДЕЛЕНИЯ В ПРОСТРАНСТВЕ ПРИЗНАКОВ 56.83 KB
Эти методы основаны на естественной гипотезе компактности в соответствии с которой точки отображающие одно и то же состояние диагноз группируются в одной области пространства признаков. Пространство признаков. Как уже указывалось каждая конкретная система объект может быть охарактеризована вектором х в многомерном пространстве признаков...
13026. Таксономическая группа слизевиков, их строение, химический состав, распространение в природе и значение 1.33 MB
Слизевики – одна из наиболее своеобразных и уникальных по своей природе групп организмов. Целый ряд присущих им свойств отражает ранние стадии эволюции эукариотов, что делает их изучение не просто увлекательным хобби, но и серьёзной научной задачей. Они широко распространены в природе и стали известны науке более двух веков назад.
3643. Принципы действия угол. закона в пространстве 2.96 KB
Это вопрос опредия территории на которой применяется УЗ. Лицо совершившее ПРе на территории РФ подлежит угол. Граждане РФ и постоянно проживающие в РФ лица без гражданства совершившие ПРе вне пределов РФ подлежат УО по УК если совершенное ими деяние признано ПРем в госве на территории которого оно было совершено и если эти лица не были осуждены в иностранном госве. При осуждении указанных лиц наказе не может превышать верхнего предела санкции предусмотренной законом иностранного госва на территории кго было совершено ПРе.
3571. Вестибулярные ощущения и их роль в ориентировке тела в пространстве 10.58 KB
Вестибулярные ощущения отражают изменение положения тела относительно плоскости Земли а также перемену ускорения. Статикодинамические ощущения вестибулярные ощущения равновесия – это ощущения которые правильно ориентирует человека при наличии земного притяжения возникают в результате деятельности вестибулярного анализатора. Рецептор: вестибулярный аппарат волосковые клетки Функции: отражает информацию о состоянии тела в пространстве его позы его пассивных и активных движений равно как и движений отдельных частей тела...
16255. Экономические стратегии России на постсоветском пространстве: дискуссионные вопросы теории и практики 15.27 KB
В системе международных связей РФ отношения со странами СНГ считаются приоритетным направлением что зафиксировано в важнейших государственных документах - в Концепции внешней политики Российской Федерации до 2020 года 2008 и в Стратегии национальной безопасности РФ 2009. Декларированные приоритеты однако слабо подтверждаются итогами сотрудничества России со странами СНГ на практике. В структуре внешней торговли РФ роль европейского ЕС и азиатского векторов АТР растет а значение вектора СНГ все более...
1171. Лингвокультурологическая энциклопедия слова «товарищ». Русское слово в пространстве российской культуры 5.72 MB
Мир слов, окружающий нас, яркий, разнообразный, постоянно меняющийся. Нам сложно сейчас представить нашу жизнь без слова. Лев Успенский считает, что «всё, что люди совершают в мире действительно человеческого, совершается при помощи языка. Нельзя без него работать согласованно, совместно с другими
3770. 7.26 KB
При решении вопроса о системе таможенного права таможенного союза следует исходить из того что в формировании его содержания и систематизации норм решающая роль принадлежит государствам-участникам таможенного союза.