Программы

Модифицированный счетчик гейгера. Собственный фон счетчика

Модифицированный счетчик гейгера. Собственный фон счетчика

UPD: Кто уже читал пост - пожалуйста зайдите и поучаствуйте в опросе. Спасибо большое!

Примерно полтора года назад на нескольких сетевых ресурсах, в том числе и на хабре, начали пиарить проект «До-ра» - приставку к iPhone, позволяющую измерять радиационный фон и делать много всего вкусного на основании получаемой со счётчика Гейгера информации. Статьи в новостях проекта упоминают несколько многомиллионных грантов, выделенных на разработку приборчика фондом «Сколково». Шли месяцы, «До-ра» всё никак не получалась, покупатели ждали, конкуренты не дремали. Так ли сложна «До-ра» как её малюют и как собрать за пару часов из подручных деталей в десять раз более чувствительный аналог я расскажу тем кто нажмёт на

Итак, приступим. Совсем недавно я узнал о прекрасной (и к тому же бесплатной!) программе GeigerBot, обрабатывающей поступающие на микрофонный вход iPhone или iPad импульсы с детекторов ионизирующего излучения и имеющей приятную особенность: при определённой комбинации настроек через выход наушников воспроизводится синусоидальный сигнал частотой 20 кГц. Комбинация настроек, необходимая для этого, такова: в ClickifyLab все регуляторы должны быть в максимуме, Echo Filter включен, а сама функция щелчков Clickify - выключена. Проделав соответствующие настройки я убедился с помощью 3.5-миллиметрового штекера и осциллографа в том что сигнал действительно появляется и его размах от пика до пика при максимальной громкости составляет примерно 1.3 вольта. В этот момент не осталось никаких сомнений в том через час этот сигнал будет использован после небольшой трансформации для питания счётчика Гейгера, импульсы с которого будут направлены на микрофонный вход.
Счётчик был взят популярный - СБМ-20. Для его питания нужно 400 вольт постоянного тока, получить их можно стандартым способом с помощью трансформатора имеющего высокий коэффициент трансформации и выпрямителя. Очень высокий коэффициент трансформации у трансформаторов, питающих люминесцентные лампы с холодным катодом в подсветках мониторов. Мне подвернулась плата подсветки от уже-не-помню-чего, содержащая трансформатор SGE2687-1 (подойдёт любой аналогичный, их сотни типов) с коэффициентом трансформации около 150. Немного маловато, но другого у меня не было и недостаток напряжения был восполнен диодными удвоителями. Берём макетку и начинаем собирать схему.

Схема получилась очень простой: трансформатор, два удвоителя напряжения, варистор на 390 вольт в качестве стабилитрона и транзистор для увеличения длительности приходящих со счётчика Гейгера импульсов до удобоваримых для звукового АЦП iPhone значений. При исправных деталях и правильном монтаже она начнёт работать сразу, номиналы большинства деталей можно изменять в очень широких пределах без ущерба работоспособности всей схемы. Вставляем разъём в iPhone и запускаем приложение GeigerBot. Аккуратно высокоомным (не менее 100 МОм) вольтметром или тестером с добавочным сопротивлением контролируем напряжение на варисторе, оно должно быть около 400 вольт. Убеждаемся что в настройках GeigerBot выбран тип счётчика СБМ-20 и наблюдаем за количеством регистрируемых импульсов. При естественном радиационном фоне (0.1-0.15 мкЗв\ч) импульсы будут следовать со средней скоростью 20-30 в минуту. При большой длине кабеля от разъёма до схемы возможно взаимное влияние относительно мощного выходного сигнала частотой 20 кГц на микрофонный вход, проявляться это может в виде огромной скорости регистрации импульсов - несколько тысяч в секунду. Для ослабления этого влияния используется два раздельных земляных провода - для питающей и сигнальных цепей. В случае таких проблем в настройках GeigerBot надо увеличить порог срабатывания по амплитуде импульсов (Settings - Geiger Counter - Custom GM tube - I/O Settings - Volume threshold поставить 10000 или около того).
Вот небольшое видео, показывающее работу устройства.

На двадцать пятой секунде показана реакция счётчика на солонку, изготовленную в США в сороковых годах прошлого столетия и покрытую урановой глазурью, на тридцать пятой - форма импульсов на микрофонном входе iPhone.
Вот и всё, то есть почти всё. Чтобы придать нашему детектору-приставке законченный вид возьмём небольшой отрезок подходящей трубки, засунем туда всё что мы напаяли, не забыв заизолировать части схемы друг от друга и загерметизируем по торцам термоклеем. Вот теперь всё, можно ехать в Припять: предупреждён - значит вооружён.

Спасибо за внимание. Всем удачи в техническом творчестве и хорошей экологической обстановки!

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В

Бестрансформаторный дозиметр-радиометр

С Праздником, уважаемые коты!!!

Хочу представить прибор, нужный хозяйстве каждого любопытного кота - дозиметр-радиометр. Да, таких схем существует очень много, но мой - с изюминкой.

Основным ступором в создании самодельных дозиметров-радиометров является проблема найти сам детектор излучения - счетчик Гейгера-Мюллера. Но вот Вы где-то раздобыли этот счетчик и ищете подходящую схему для повторения, но натыкаетесь на второй ступор - необходимость намотки повышающего трансформатора, а к нему еще нужно найти подходящий сердечник и проволоку.
Приведенная схема не содержит никаких специфических, самодельных или дефицитных деталей (за исключением самого счетчика Гейгера).

Данный прибор состоит из следующих функциональных блоков: низковольтный источник питания, генератор высокого напряжения, детектор излучения, формирователь импульсов, устройства ввода/вывода и микроконтроллер, который всем этим управляет.
Источник питания, генерирующий стабилизированное напряжение +5В построен по типичной понижающей схеме на ИМС MC34063 и служит для питания всех остальных узлов. При желании, данный блок можно заменить стабилизатором 78L05, но это значительно снизит КПД и увеличит расход электроэнергии, что может быть критичным при работе от аккумулятора или батареек.
Основной частью высоковольтного преобразователя является генератор импульсов на интегральном таймере 555. На индуктивности L3 возникают пики напряжением свыше 150В, которые увеличиваются умножителем VD2-VD4, C10-C12 до 400В - напряжения питания счетчиков СБМ-20. Аналогичная схема была приведена в и .
В качестве детектора ионизирующего излучения служат два счетчика Гейгера СБМ-20. Снимаемые с них импульсы поступают на одновибратор DD1.1 - DD1.2, который формирует четкие прямоугольники для их фиксации микроконтроллером. Два оставшихся элемента И-НЕ выполняют роль повторителя.
Управление прибором осуществляется двумя клавишами и выключателем «Сеть». Информация выводится на знакосинтезирующий дисплей 8х2 символов, о каждом зафиксировнном гамма-кванте или бета-частице можно сигнализировать звуковым сигналом.
В данной статье приведена печатная плата для поверхностного монтажа, но все используемые компоненты имеют выводные аналоги.
Резистор R1 можно заменить перемычкой. Номиналы L1 и L2 можно увеличить. Все индуктивности заводского изготовления, ничего мотать не нужно, L3 номиналом 10 миллигенри на ферритовом сердечнике, я использовал RCH895NP-103K. Для экономии места конденсаторы С4, C5 и C6 - танталовые, напряжением 6В, но можно взять и электролитические. Для С19 отдельного места на плате нету, он припаивается на крайние выводы подстроечника R21, но если поставить С4 достаточно большой емкости, то С19 - не нужен. Резисторы R2 и R3 лучше взять 3к6 и 1к2 соответственно. VT1 должен выдерживать не менее 300В. Диоды умножителя - быстрые и с обратным напряжением не менее 600В, на такое же напряжение и конденсаторы С10-С12. Конденсаторы С13-С14 номиналом 15-30пФ. Подстроечный резистор R8 - многооборотный, R21, изменяющий контрастность дисплея, тоже желательно многооборотный, особенно, если R2 и R3 номиналами 3к и 1к. С16, С17 емкостью 12-22пФ. Номинал R15, который ограничивает ток через подсветку дисплея, можно уменьшить, некоторые дисплеи уже содержат резистор в своей конструкции. Полевые транзисторы VT3 и VT4 - любые n-канальные с изолированным затвором IRLML2502, IRLML2402, IRLML6244 или, даже, биполярные npn. В случае использования биполярных транзисторов номиналы R14 и R16 нужно увеличить до нескольких килоом. Дисплей можно использовать любой 8х2 символов, на контроллере HD44780 или аналогичных. Приведенная плата разведена под дисплей WH0802A, но будьте внимательны, не во всех дисплеях этой серии контакты подсветки выведены на общий разъем. B1 - любой динамик со встроенным генератором (пищалка) на 5В, например, HCM1205X или HCM1206X. Кнопки S1 и S2 - желательно тактовые. Маленькие тактовые кнопки, на приведенной плате, можно разместить, повернув их на 45 градусов.
Я собирал дозиметр на двухсторонней печатной плате (чертеж прилагается), на которой установлены все элементы, кроме выключателя SA1 и источника питания. Дисплей крепится с помощью разъемов типа PBD и PLD (штырьки). СБМ-20 можно закрепить в разъемах для предохранителей подходящего диаметра, но я таких не нашел и выгнул держатели из омедненной стальной проволоки:

Плата под счетчиками заклеена толстым двухсторонним скотчем и изолентой, чтобы металлический корпус счетчика ничего не коротил. Также на плате вынесен разъем UART (на перспективу, в приведенной прошивке - не используется) и разъем ISP для внутрисхемного программирования следующей конфигурации:


Плата размещается в стандартном корпусе Z-77, в глубокой половинке которого прорезано отверстие для дисплея, выключателя и двух кнопок.

Вторая половинка корпуса - фильтр бета-частиц, её можно сделать быстросъемной, закрепив магнитами.

Для питания я использовал двухбаночный LiPo акумулятор 7,4В 500мАч.
После сборки проверяем правильность монтажа, плату желательно промыть в спирте и проверить отсутствие грязи и спаек между дорожками, особенно, высоковольтными. Затем прошиваем микроконтроллер через разъем ISP. Фьюзы настраиваем на внешний кварц:

Далее необходимо настроить генератор высокого напряжения. Для этого счетчики Гейгера извлекаются, а вместо одного из них подключается вольтметр, но так как ток генератора крайне низкий, последовательно вольтметру необходимо подключить сопротивление около 100 мегаом - несколько соединенных последовательно резисторов. Например, 6 резисторов по 15М вместе с резистором R9 или R10 (да, его тоже нужно учитывать) дадут 105МОм. Включаем питание, напряжение на генераторе вычисляется по формуле:

где Uизм - то, что показывает вольтметр, Rд - дополнительное сопротивление (то, которое около 100Мом), Rвн - внутреннее сопротивление вольтметра. Изменить напряжение можно подстроечным резистором R8, для СБМ-20 оно должно составлять 400В.
Также необходимо настроить контрастность дисплея резистором R21. Если вместо символов на дисплее отображаются черные прямоугольники в верхней строке - проверьте правильность монтажа и прошивку микроконтроллера.
Выключаем прибор и устанавливаем счетчики Гейгера на место - настройка окончена, прибор готов к эксплуатации.
После включения, на экране отображается версия прошивки, примерно через секунду появляется основной экран. Верхняя строка отображает эквивалентную (поглощенную) дозу облучения с момента включения в мкР или мР (дозиметр), нижняя - мощность эквивалентной дозы в мкР/ч или мР/ч (радиометр). Переключение дольных единиц измерения происходит автоматически, в зависимости от текущего значения измеряемой величины. На данном фото эквивалентная доза - 0,5мкР, мощность дозы - 15мкР/час:


Управлять прибором можно двумя клавишами, назначение которых изменяется в зависимости от текущего режима. В основном экране удержание правой кнопки включает подсветку, которая отключается спустя 1-2 секунды после отпускания. Левая клавиша выводит на экран время до конца измерения в секундах и примерное напряжение источника питания в вольтах (зависит от падения на VD5 и может отображаться неправильно, если напряжение будет слишком низким):


Удержание двух клавиш одновременно, активирует меню настроек, счетчики отключаются, включается подсветка. В данном режиме можно включить/выключить звук Sounds и сменить время измерения Time (20с, 40с, 2мин, 10мин, 30мин, 60мин). Все настройки хранятся в энергонезависимой памяти. Нажатие левой кнопки вызывает переход на подменю или сохранение выбранного значения, нажатия правой кнопки изменяют пункты меню или значения параметров.
Недостатком данной схемы по сравнению с «трансформаторными» дозиметрами можно считать более высокое энергопотребление, у меня оно составило около 30мА.
В архиве содержится схема, прошивка, чертежи платы в PDF и LYT.

Успехов!

Источники информации:

1. Tom Napier "Biasing Geiger Tube", Nuts and Volts Jan 2004;



Как вам эта статья?

Счетчик Гейгера-Мюллера - это относительно простой инструмент для измерения . В магазинах эти дозиметры стоят недёшево (от 5000 руб), но если есть сам датчик, то сделать этот измеритель можно с минимальными расходами. Чтобы увеличить чувствительность, представленная здесь конструкция содержит сразу три датчика СТС-5. Это полезно для измерения природных источников с низким уровнем излучения - почва, камни, вода.

Принцип работы счетчика Гейгера-Мюллера заключается в том, что высокое напряжение (обычно 400 В) подаётся на колбу-детектор. Она не проводит электричество, но в течение короткого периода, когда приходит излучение частиц, через неё проскакивает импульс тока. Уровень ионизирующего излучения пропорционален количеству импульсов, обнаруженных за постоянный интервал времени.

Сам счетчик Гейгера-Мюллера (детектор) состоит из двух электродов, а ионизирующая частица создает искровой промежуток между ними. Чтобы уменьшить величину тока, который при этом протекает, высокоомный резистор ставят последовательно с трубкой. Обозначены как R1 на схеме. Обычно он выбирается в диапазоне 1-10 мегаом, допустимые значения указаны в документации к счётчику Гейгера.

Есть разные способы получения данных из детектора, в представленной здесь схеме, резистор последовательно соединен между трубкой и землей, а изменения напряжения на резисторе измеряется с помощью детектора. Этот резистор обозначен как R2 на схеме. Обычно он в диапазоне 10-220 килоом. Аналогично диодам, счетчик Гейгера-Мюллера имеет свою полярность и при подключении в обратном направлении он будет работать неправильно.

Электрическая схема счетчика Гейгера-Мюллера

Здесь микросхема MC34063 - это DC/DC преобразователь, который используется для получения необходимого высокого напряжения из низкого батареечного. Главное его преимущество по сравнению с простой м/с NE555 или аналогичными генераторами заключается в том, что он может контролировать выходное напряжение и подстраивает параметры, чтобы сделать его стабильным (R3, R4, R5, С3). Элементы ОУ IC1A, R8, R9 используются как компаратор, чтобы отфильтровать шумы и сформировать двоичный сигнал (низкий = нет импульса, высокий = импульс проходит).

Внимание! Устройство использует высокое напряжение и может привести к неприятным последствиям при касании к некоторым токонесущим элементам конструкции. Не прикасайтесь к печатной плате или трубке датчика при включении питания.

Запуск и настройка измерителя

Напряжение на С4 должны быть в приемлемом диапазоне для работы Гейгера. Обычно около 400 В - будьте осторожны во время измерений! Если напряжение выходит за диапазон, то элементы С1 (частота преобразователя постоянного тока), и С3, R3, R4, R5 (обратная связь по напряжению преобразователя) могут быть скорректированы.

В данном обзоре приводится описание несложного и достаточно чувствительного дозиметра, регистрирующего даже незначительное бета- и гамма- излучение. В качестве датчика радиационного излучения выступает отечественный типа СБМ-20.

Внешне он выглядит как металлический цилиндр диаметром 12 мм и длинной около 113 мм. Его рабочее напряжение составляет 400 вольт. Аналогом ему может послужить зарубежный датчик ZP1400, ZP1320 или ZP1310.

Описание работы дозиметра на счетчике Гейгера СБМ-20

Питание схемы дозиметра осуществляется всего от одной лишь батарейки на 1,5 вольта, так как ток потребления не превышает 10 мА. Но поскольку рабочее напряжение датчика радиации СБМ-20 составляет 400 вольт, то в схеме применен преобразователь напряжения позволяющий увеличить напряжение с 1,5 вольт до 400 вольт. В связи с этим следует соблюдать крайнюю осторожность при налаживании и использовании дозиметра!

Повышающий преобразователь дозиметра – не что иное как простой блокинг-генератор. Появляющиеся импульсы высокого напряжения на вторичной обмотке (выводы 5 – 6) трансформатора Тр1, выпрямляются диодом VD2. Данный диод должен быть высокочастотным, поскольку импульсы достаточно короткие и имеют высокую частоту следования.

Если счетчик Гейгера СБМ-20 находится вне зоны радиационного излучения звуковая и световая индикация отсутствует, поскольку оба транзистора VT2 и VT3 заперты.

При попадании на датчик СБМ-20 бета- или гамма- частиц происходит ионизация газа, который находится внутри датчика, в результате чего на выходе образуется импульс, который поступает на транзисторный усилитель и в телефонном капсюле BF1 раздается щелчок и вспыхивает светодиод HL1.

Вне зоны интенсивного излучения, вспышки светодиода и щелчки из телефонного капсюля следуют через каждые 1…2 сек. Это указывает на нормальный, естественный радиационный фон.

При приближении дозиметра к какому-либо объекту, имеющему сильное излучение (шкале авиационного прибора времен войны или к светящемуся циферблату старых часов), щелчки станут чаще и даже могут слиться в один непрерывный треск, светодиод HL1 будет постоянно гореть.

Так же дозиметр снабжен и стрелочным индикатором — микроамперметром. Подстроечным резистором производят подстройку чувствительности показания.

Детали дозиметра

Трансформатор преобразователя Тр1 выполнен на броневом сердечнике имеющий диаметром приблизительно 25 мм. Обмотки 1-2 и 3-4 намотаны медным эмалированным проводом диаметром 0,25 мм и содержат соответственно 45 и 15 витков. Вторичная обмотка 5-6 намотана медным проводом диаметром 0,1 мм, содержит 550 витков.

Светодиод возможно поставить АЛ341, АЛ307. В роли VD2 возможно применить два диода КД104А, подключив их последовательно. Диод КД226 возможно поменять на КД105В. Транзистор VT1 возможно поменять на КТ630 с любой буквой, на КТ342А. Телефонный капсюль необходимо выбрать с сопротивлением акустический катушки более 50 Ом. Микроамперметр с током полного отклонения 50 мкА.