Windows 7, XP

Обзор современных систем автоматизированного проектирования. Сравнительная характеристика систем автоматизированного проектирования

Обзор современных систем автоматизированного проектирования. Сравнительная характеристика систем автоматизированного проектирования

Российская Федерация

Обзор САПР

установить закладку

установить закладку

Материал актуален на 08.09.2014

Обзор САПР

Введение

В настоящее время в деятельность изыскательских и проектных организаций быстро проникает компьютеризация, поднимающая проектную работу на качественно новый уровень, при котором резко повышаются темпы и качество проектирования, более обоснованно решаются многие сложные инженерные задачи, которые раньше рассматривались лишь упрощенно. Во многом это происходит благодаря использованию эффективных специализированных программ, которые могут быть как самостоятельными, так и в виде приложений к общетехническим программам. Деятельность по созданию программных продуктов и технических средств для автоматизации проектных работ имеет общее название - САПР.

САПР (англ. CAD, Computer-Aided Design) - программный пакет, предназначенный для проектирования (разработки) объектов производства (или строительства), а также оформления конструкторской и/или технологической документации.

Компоненты многофункциональных систем САПР традиционно группируются в три основных блока CAD, САМ, САЕ. Модули блока CAD (Computer Aided Designed) предназначены в основном для выполнения графических работ, модули САМ (Computer Aided Manufacturing) - для решения задач технологической подготовки производства, модули САЕ (Computer Aided Engineering) - для инженерных расчетов, анализа и проверки проектных решений.

Как законченное изделие САПР состоит из:

· технических средств, обеспечивающих автоматизированное получение проектных решений;
· программ, управляющих работой технических средств и выполняющих проектные процедуры;
· данных, необходимых для выполнения программ;
· документации, содержащей все необходимые сведения для выполнения автоматизированного проектирования с помощью САПР.

Обзор САПР

Крупнейшим в мире поставщиком программного обеспечения для промышленного и гражданского строительства, машиностроения, рынка средств информации является компания Autodesk, Inc. Начиная с 1982 года компанией Autodesk был разработан широкий спектр решений для архитекторов, инженеров, конструкторов, позволяющих им создавать цифровые модели. Технологии Autodesk используются для визуализации, моделирования и анализа поведения разрабатываемых конструкций на ранних стадиях проектирования и позволяют не просто увидеть модель на экране, но и испытать ее.

AutoCAD (www.autodesk.ru) - самая популярная в мире среда автоматизированного проектирования, избранная многими разработчиками в качестве базовой графической платформы для создания машиностроительных, архитектурных, строительных, геодезических программ и систем инженерного анализа. Компания Autodesk объявила о выходе новых версий программ семейства AutoCAD, включающего популярную программу для 2D- и 3D-проектирования AutoCAD 2011, а также AutoCAD LT 2011, предназначенный для профессионального создания детализированных 2D-чертежей. AutoCAD 2011 включает множество новых возможностей, призванных помочь конструкторам всесторонне анализировать их идеи и увеличивать производительность, как, например, моделирование поверхностей и прозрачности объектов и слоев. Программа AutoCAD 2011 предоставляет пользователям расширенные инструменты концептуального дизайна, а также более совершенные механизмы работы в 3D.

Autodesk Architectural Desktop (www.autodesk.ru) - программа, ориентированная, на профессиональных архитекторов и специалистов в области промышленного и гражданского строительства. Мощные специализированные функции продукта сэкономят время и улучшат управление проектами. При этом поддерживаются традиционные приемы и способы построения объектов. Гибкость в работе, возможность проектирования различных сооружений вплоть до мельчайших деталей и привычная среда AutoCAD наилучшим образом подходят для решения различных архитектурных задач.

Дальнейшим развитием Autodesk Architectural Desktop является программа Autodesk Building Systems (www.autodesk.ru) , предназначенная для проектирования внутренних инженерных сетей. Обладая всеми средствами AutoCAD и Autodesk Architectural Desktop, она является мощным инструментом, включающим собственные модули для проектирования вентиляции и отопления, электрических сетей, водопровода и канализации.

Autodesk Architectural Studio (www.autodesk.ru) - инструмент концептуального проектирования и мультимедийной обработки проектных данных. Этот программный продукт предназначен для архитекторов и других профессионалов в сфере строительства, дизайна и архитектуры. Architectural Studio воссоздает инструменты и методы традиционной студии проектирования, повторяя в цифровом облике традиционную технику черчения от руки, принятую у художников и архитекторов, делая их работу более продуктивной. Прямое воздействие на объекты уникальными инструментами позволяет интуитивно почувствовать поведение объектов и управлять ими в реальном времени в любой точке мира благодаря веб-технологиям.

Autodesk Revit Structure (www.autodesk.ru) содержит специализированные функции для проектирования и расчета строительных конструкций. В основе продукта лежит технология информационного моделирования зданий (BIM). Благодаря преимуществам этой технологии Revit Structure повышает уровень координации специалистов, помогает выпускать более качественную документацию, сокращает количество ошибок и позволяет наладить более активное взаимодействие между проектировщиками конструкций и архитекторами.

Несмотря на все мощные средства проектирования и визуализации, ключевым моментом в САПР является именно получение выходной документации и ее оформление в соответствии с принятыми стандартами, что считается неотъемлемой частью процесса проектирования. Для того чтобы автоматизировать рутинную работу при нанесении различных элементов оформления, Русской Промышленной Компанией была разработана программа auto.СПДС (www.spds.ru) - это приложение для AutoCAD, Autodesk Architectural Desktop, Autodesk Building Systems и многих других вертикальных решений на основе AutoCAD. Программа позволяет наносить различные условные обозначения, выноски, отметки, линии обрыва, виды, координационные оси, штриховку и многое другое. При этом все объекты являются "интеллектуальными" и могут быть легко отредактированы как с помощью "ручек", так и специальных диалоговых окон.

ArchiCAD (www.archicad.ru) - программное обеспечение компании Graphisoft является на данный момент одной из лучших систем архитектурно-строительного проектирования и разработки документации по технологии BIM. ArchiCAD 14 - это производительность, довёденная до блеска. В ArchiCAD 14 включена новая программа GRAPHISOFT BIM Server - первое в своем роде серверное решение для организации совместной проектной деятельности по единой модели. Базирующаяся на технологии Delta Server™, эта функция сокращает до минимума сетевой трафик и загруженность сети, благодаря чему появляется возможность регулярного и четкого обмена данными между группами проектировщиков, работающих в рамках одного офиса и даже по сети Интернет.

Российская фирма Еврософт предлагает ArCon "Архитектура и дизайн" (www.eurosoft.ru) - программный продукт для архитекторов, дизайнеров, специалистов в области недвижимости, предназначенный для профессионального проектирования и оформления домов, квартир, помещений и внутренней обстановки. Особая популярность программы ArCon обеспечена преимуществами в скорости создания проекта и качественной архитектурной визуализации.

Архитектурно-дизайнерский пакет ArfaCAD (www.viks-cad.ru) , разработанный в России, позволяет оперировать цельными 2D- и 3D-объектами с архитектурно-строительной терминологией: стены, окна и двери, витражи, лестницы, кровли, перекрытия, ограждения, массивы грунта, воды и т.д.

Программа Allplan (www.nemetschek.com ) немецкой фирмы Nemetschek - это программное решение для всех фаз жизненного цикла строительного проекта: с самого раннего наброска от руки до проектной документации. Allplan, основанный на объектно-ориентированной базе простых 3D-объектов, создает и поддерживает взаимосвязь между 2D- и 3D- чертежами, разрезами, проекциями и т.д. Все эти виды - просто различные представления одних и тех же трехмерных объектно-ориентированных данных. Для проектирования возможно использовать тот вид или виды, которые наилучшим образом подходят к особенностям стиля или привычкам конкретного пользователя. Allplan разработан специально для профессионалов в области именно строительного проектирования.

APM Civil Engineering (www.apm.ru) - CAD/CAE система автоматизированного проектирования строительных объектов гражданского и промышленного назначения. Эта система в полном объеме учитывает требования государственных стандартов и строительных норм и правил, относящиеся как к оформлению конструкторской документации, так и к расчетным алгоритмам.

Современные фасады - это настоящие HighTech- конструкции. Тот, кто проектирует и возводит фасады, должен считаться со статикой, термическими условиями и архитектурными аспектами. ATHENA (www.cad-plan.com) не без основания является ведущей конструкторской программой для проектирования металлических и фасадных конструкций. Уже более 20 лет программа постоянно развивается и успешно применяется в металлоперерабатывающих фирмах, инженерных центрах и профессиональных учебных заведениях. ATHENA наиболее точно соответствует требованиям пользователя и является комплексным программным пакетом, содержащим все, что может облегчить задачи конструктора в его каждодневной работе.

Bentley STAAD.Pro (www.bentley.com) - это программный комплекс, легко интегрируемый в любые САПР, используемый для анализа и проектирования строительных конструкций методом конечных элементов. STAAD.PRO включает современный пользовательский интерфейс, средства анализа и визуализации, а также средства адаптации результатов к требованиям международных и российских норм проектирования объектов гражданского и промышленного назначения. В STAAD.PRO реализована возможность анализа любого сооружения. Он может применяться для проектирования высотных и невысотных зданий и сооружений, подземных водопроводов, нефтехимических и нефтеперерабатывающих заводов, туннелей, мостов, фундаментов из металлических конструкций, бетона и железобетона, дерева, стальных профилей и многого другого.

Bocad-3D (www.bocad.ru) - мощная пространственная CAD-система проектирования стальных и деревянных конструкций. Данная CAD-система представлена на рынке программных продуктов уже более чем 15 лет. При этом происходит постоянный процесс совершенствования системы в соответствии с пожеланиями конструкторов.

BricsCad Pro (www.brics-cad.ru) - отличный выбор для архитекторов, инженеров, конструкторов и для всех, кто создаёт или использует чертежи САПР. BricsCad обеспечивает непревзойдённую совместимость с AutoCAD, а также делает возможным применение сотен программ, разработанных третьими фирмами. Любой человек, хорошо знакомый с AutoCAD, может сразу начать работу с BricsCad, без какого-либо обучения. Удобные возможности визуальной настройки пользовательского интерфейса, а также поддержка файлов AutoCAD, пользовательских меню, панелей инструментов, сценариев, снимков.

Система автоматизированного проектирования BtoCAD (www.btocad.ru) разработана специально для инженеров, конструкторов и всех специалистов, работающих с CAD-приложениями. Технология, положенная в основу BtoCAD, позволяет осуществить полноценную поддержку формата DWG. Главной особенностью BtoCAD, по сравнению с остальным САПР приложениями является его не прихотливость к аппаратной составляющей компьютера. Системные требования программы подобраны таким образом, что BtoCAD можно запускать даже на проверенных временем компьютерах, а в купе с ценной BtoCAD представляет собой одним из самых выгодных предложений на текущем рынке САПР приложений.

CADdy (www.caddy.de) (немецкая фирма ZIEGLER-Informatics GmbH) по функциональным возможностям занимает промежуточное положение между системами низкого и высокого уровней. Предназначена для решения комплексных интегрированных технологий от стадии проектирования до стадии производства. В настоящее время в состав CADdy входит свыше 80 модулей, охватывающих такие направления, как архитектура, строительство, геодезия, машиностроение, картография и городское планирование.

CAD-PLAN Athena 2010 (www.cad-plan.com) - ведущий разработчик САПР в области фасадных технологий и металлических конструкций. Современные фасады - это настоящие HighTech-конструкции. Тот, кто проектирует и возводит фасады, должен считаться со статикой, термическими условиями и архитектурными аспектами. ATHENA 2010 не без основания является ведущей конструкторской программой для проектирования металлических и фасадных конструкций и наиболее точно соответствует требованиям пользователя и является комплексным программным пакетом, содержащим все, что может облегчить задачи конструктора в его каждодневной работе

Система CATIA (www.catia.ru) (Computer Aided Three-dimensional Interactive Application) - одна из самых распространенных САПР высокого уровня. Это комплексная система автоматизированного проектирования (CAD), технологической подготовки производства (CAM) и инженерного анализа (САЕ), включающая в себя передовой инструментарий 3D моделирования, подсистемы программной имитации сложных технологических процессов, развитые средства анализа и единую базу данных текстовой и графической информации. Система позволяет эффективно решать все задачи технической подготовки производства - от внешнего (концептуального) проектирования до выпуска чертежей и спецификаций.

DesignCAD 3D Max (www.designcad.com) - легкая в использовании программа для 2D/3D моделирования. В приложении заложена возможность создания презентаций, анимации и твердотельного моделирования. С помощью этого приложения можно проектировать механические детали, 3D модели объектов, двигатели, чертежи печатных плат и др., все зависит от Вашего воображения и креативности. DesignCAD 3D Max - это универсальный инструмент САПР для начинающих и продвинутых проектировщиков.

DraftSight (www.3ds.com) - открытое двухмерное решение САПР профессионального уровня для тех, кто хочет оптимизировать чтение, запись и обмен файлами DWG. DraftSight отличается простотой в использовании и занимает небольшой объем памяти.

Google SketchUp (www.sketchup.google.com) - простой и удобный инструмент для создания, обработки и презентации трёхмерных моделей. Позволяет быстро и качественно создавать практически любые построения различного уровня подачи - от драфт-эскиза, до готового проекта. Здания, мебель, интерьер, строительные сооружения и многое другое проектируется за считанные минуты. Кроме того, Google SketchUP предоставляет возможность создавать многостраничные документы и презентации; раскладывать и аннотировать множество масштабированных моделей на одной странице; создавать, документировать и делать презентацию проекта, используя один единственный чертёж.

GRAITEC Advance 2011 (www.graitec.com) - это система на основе BIM (Информационное Моделирование Зданий), предназначенная для автоматизации всего процесса проектирования строительных конструкций и получения рабочей документации, начиная от конструирования и инженерного анализа и заканчивая оптимизацией, деталировкой и подготовкой производства.

GstarCAD (www.gstarcad.ru) - это программа для создания чертежей в формате DWG/DXF, ставшем общепринятым стандартом. Она является не только достойной заменой AutoCAD, но и по соотношению цена/качество отличной альтернативой распространенным российским и зарубежным «аналогам автокад» и САПР, таким как Bricscad, Btocad, Nanocad, progeCAD, ZWCAD, Infrasoftcad. Благодаря применению в GstarCAD современных технологий производства систем проектирования, основанных на новейших разработках Open Design Alliance и ITC, САПР GstarCAD обеспечивает практически полную совместимость со всеми существующими САПР-системами и cad программами, использующими формат векторной графики DWG.

IronCAD (www.ironcad.com) - это профессиональная система самого последнего поколения. Представляет собой полнофункциональный инструмент для разработчиков, которые хотят эффективно использовать рабочее время. В программе используются как классические методы параметрического моделирования, так и инновационный метод прямого редактирования. Система IronCAD дает пользователю мощнейший инструмент для оформления чертежей, избавляет от необходимости экспортировать геометрию в какие-либо другие продукты с потерей ассоциативной связи. По своим возможностям программа является достойным конкурентом таким САПР, как AutoCAD, SolidWorks, T-Flex, КОМПАС 3D, набирая быстрый ход распространения и приобретая своих поклонников и в России.

MagiCAD (www.magicad.com ) - это программное средство для проектирования систем инженерного обеспечения: вентиляции, кондиционирования, отопления, водоснабжения и водоотведения, теплоснабжения, электрических и слаботочных систем. Уникальность MagiCAD - это совмещение удобного чертежного инструмента и мощного расчетного ядра. MagiCAD - универсальное средство и подходит всем: чертежникам, проектировщикам, строителям и консультантам.

MicroStation (www.bentleysoft.ru) - это профессиональная, высоко производительная система для 2D/3D - автоматизированного проектирования при выполнении работ, связанных с черчением, конструированием, визуализацией, анализом, управлением базами данных и моделированием. Обеспечивает практически неограниченными возможностями проектировщиков и конструкторов на платформах DOS, Windows и компьютерах различных типов.

nanoCAD (www.nanocad.ru) - платформа nanoCAD содержит инструменты базового проектирования. Позволяет создавать и редактировать различные 2D и 3D векторные примитивы, одно и многострочные тексты, размеры и другие объекты оформления чертежей.

OmniCAD (www.omnicad.com) - Система 2D проектирования, черчения и 3D поверхностного моделирования.

Система T-FLEX CAD 11 (www.tflex.ru) - новое эффективное средство для комфортной работы конструктора. Включает в себя средства 2D-черчения, 3D-проектирования, модули конечно-элементного и динамического анализа. В новой версии САПР T-FLEX CAD реализовано более 200 усовершенствований, предлагающих пользователю целый набор инструментов, недоступных в других программах сходного назначения.

Pro/ENGINEER (www.pro-technologies.ru) - является САПР верхнего уровня и охватывает все сферы проектирования, технологической подготовки производства и изготовления изделия. Широкий диапазон возможностей аппарата трехмерного моделирования, высокое качество получаемого результата и устойчивость его к последующим изменениям сделали Pro/ENGINEER одним из лидеров CAD/CAM/CAE систем, а наличие прямого доступа в систему поддержки жизненного цикла изделия Windchill PDMLink переводит Pro/ENGINEER в разряд PLM-систем.

ProgeCAD (www.progesoft.com) - мощная и надежная САПР система с базовыми форматами DWG и DXF. Кроме всех функциональных возможностей базового CAD, данная программа предлагает дополнительные возможности, такие как полное управление изображениями включая многоугольную подрезку и печать, улучшенная визуализация, 3D моделирование (ACIS), импорт растровых изображений, управление блоками с более 10.000 уже предложенных блоков, поддержка CTB и STB файлов печати и многие другие. Эта программа стала очередным шагом IntelliCAD и способна легко заменить AutoCad и AutoCAD LT! Продукт является идеальным средством практически для каждого, кто создает и использует CAD чертежи, включая студентов, педагогов, архитекторов, дизайнеров, составителей проектов и инженеров.

TurboCAD (www.turbocad.com) - новейшее универсальное приложение для профессионального проектирования в формате CAD. Совмещенное 2D и 3D редактирование способно удовлетворить самых взыскательных пользователей. Полная мощь промышленного стандарта ACIS совмещается с поверхностным моделированием. TurboCAD Professional поддерживает двадцать пять самых распространенных форматов файлов, таких как AutoCAD DWG/DXF, MicroStation DGN, IGEN, 3DS, STL и прочее. Имеется возможность экспортировать Ваши проекты в MTX, HTML, JPG. TurboCAD Professional включает реалистический рендеринг, 3D моделирование с оболочками и лофтингом, работу с файлами AutoCAD, обучающие программы, возможность работы с сетью Internet. TurboCAD полностью настраивается, совместим с Microsoft Office и содержит встроенный Microsoft"s VBA. Приложение также содержит Software Development Kit и Visual Basic Macro Recorder.

VariCAD (www.varicad.com) - Система автоматизированного проектирования, главным образом предназначенная для инженерного проектирования. В дополнение к мощным инструментам 3D моделирования и 2D черчения, VariCAD содержит библиотеки стандартных механических деталей (ANSI, DIN) и все необходимые для них расчеты. Это всеобъемлющее CAD-решение позволяет проектировщикам быстро создавать, модифицировать и подсчитывать стоимость их моделей. Отличные характеристики, хорошая функциональность и простой, интуитивно понятный интерфейс.

ZWCAD (www.zwsoft.ru) - 2D/3D система автоматизированного проектирования и черчения компании ZWSOFT. ZwCAD - выбор для архитекторов, инженеров, строителей и других специалистов, работающих в CAD/CAM технологиях, для которых важно соответствие индустриальным стандартам, простота и привычность интерфейса AutoCAD, стандартный набор необходимых инструментов в рамках разумного бюджета. Удобство работы обеспечивается привычным интерфейсом и возможностью импортировать в ZwCAD меню, созданных в AutoCAD. Команды и кнопки, соответствующие командам и кнопкам AutoCAD, позволяют быстро приступить к работе, потратив минимум времени на переобучение.

SCAD Office (www.scadgroup.com) - система нового поколения, разработанная инженерами для инженеров и реализованная коллективом опытных программистов. В состав системы входит высокопроизводительный вычислительный комплекс SCAD версия 11.3, а также ряд проектирующих и вспомогательных программ, которые позволяют комплексно решать вопросы расчета и проектирования стальных и железобетонных конструкций. Система постоянно развивается, совершенствуются интерфейс пользователя и вычислительные возможности, включаются новые проектирующие компоненты.

КОМПАС (www.ascon.ru) - система автоматизированного проектирования, разработанная российской компанией "АСКОН" с возможностями оформления проектной и конструкторской документации согласно стандартам серии ЕСКД и СПДС. Существует в двух версиях: КОМПАС-График и КОМПАС-3D, соответственно предназначенных для плоского черчения и трехмерного проектирования.

Компания АСКОН объявляет о выходе новой версии системы автоматизированного проектирования для строительства КОМПАС-СПДС V12 (www.ascon.ru) . В ее состав включены новые приложения и базы строительных элементов, скорость работы с насыщенными чертежами возросла в 10 раз. КОМПАС-СПДС - специализированный программный продукт для проектирования в сфере промышленного и гражданского строительства. Он предназначен для создания рабочей документации: чертежей, схем, расчетно-пояснительных записок. Инструменты системы четко ориентированы на нормативы, регламентирующие оформление строительных чертежей. КОМПАС-СПДС прост в освоении и помогает повысить качество выпускаемой документации, избежав при этом значительных затрат.

КОМПАС-3D (www.ascon.ru) как универсальная система трехмерного моделирования находит свое применение при решении различных задач, в том числе и архитектурно-строительного и технологического проектирования. Общее назначение системы КОМПАС-3D - создание трехмерных ассоциативных моделей отдельных элементов и сборных конструкций из них. Конструкции могут содержать как оригинальные (созданные пользователем), так и стандартизованные конструктивные элементы, взятые из каталогов. Параметрическая технология позволяет быстро получать модели типовых элементов на основе однажды спроектированного прототипа. Многочисленные сервисные функции облегчают решение вспомогательных задач проектирования и конструирования.

SolidWorks (www.solidworks.ru) - продукт компании SolidWorks Corporation, система автоматизированного проектирования, инженерного анализа и подготовки производства изделий любой сложности и назначения. Она представляет собой инструментальную среду, предназначенную для автоматизации проектирования сложных изделий в машиностроении и в других областях промышленности. В зависимости от класса решаемых задач пользователям предлагается три базовых конфигурации системы: SolidWorks, SolidWorks Professional и SolidWorks Premium. Программное обеспечение функционирует на платформе Windows, имеет поддержку русского языка, и, соответственно, поддерживает ГОСТ и ЕСКД. SolidWorks 2011 - является ядром интегрированного комплекса автоматизации предприятия, с помощью которого осуществляется поддержка жизненного цикла изделия в соответствии с концепцией CALS-технологий, включая двунаправленный обмен данными с другими Windows-приложениями и создание интерактивной документации.

ANSYS (www.ansys.com) - универсальная программная система конечно-элементного (МКЭ) анализа, существующая и развивающаяся на протяжении последних 30 лет, является довольно популярной у специалистов в области компьютерного инжиниринга и КЭ решения линейных и нелинейных, стационарных и нестационарных пространственных задач механики деформируемого твердого тела и механики конструкций. Моделирование и анализ в некоторых областях промышленности позволяет избежать дорогостоящих и длительных циклов разработки типа "проектирование - изготовление - испытания".

Отметим еще 2 продукта компании "ЛИРА софт" - Лира и Мономах.

Программный комплекс Лира (www.lira.com ) является современным инструментом для численного исследования прочности и устойчивости конструкций и их автоматизированного конструирования. Одно из наиболее важных свойств этого пакета заключается в возможности расчета арматуры для железобетонных элементов (как плоских пластин, так и стержней) с учетом всевозможных загружений и комбинаций усилий и различных воздействий.

Программный комплекс Мономах (www.lira.com ) разработан для автоматизированного проектирования железобетонных конструкций многоэтажных каркасных зданий. Широкое использование в современном строительстве монолитно-каркасной технологии определило класс задач решаемых с помощью программ комплекса Мономах. За последние годы программный комплекс Мономах был оценен проектировщиками как незаменимый инструмент расчета конструкций жилых и общественных многоэтажных зданий из монолитного железобетона.

Заключение

По перечню указанных выше программ можно видеть, что направление в строительной отрасли, а именно той части, которая относится к архитектуре и собственно проектированию зданий и сооружений, развивается очень динамично. В этом обзоре не рассмотрены многочисленные программы по организации строительного производства, планированию работ, электрических расчетов, программ оптимизации транспортных задач, расчетов сетевых графиков и календарных планов, проектирование дорог, геодезических расчетов, технологического проектирования трубопроводов и многое другое. Они представлены на российском рынке как иностранными, так и отечественными производителями и решают широкий круг задач в своих областях.

Строительство всегда развивалось в ногу с научно-техническим прогрессом, но совершенствование программных средств далеко опережает квалификацию специалистов, призванных использовать их в своей работе. Сегодня часто наблюдается картина, когда современные и многофункциональные комплексы простаивают или используются незначительно из-за низкого уровня подготовки пользователей.

Другая проблема заключается в использовании пиратских копий программных продуктов. В этом случае пользователи лишают себя любой технической поддержки со стороны разработчиков: нет регулярного обновления программ, технической документации и квалифицированного обучения. Покупая нелицензионное программное обеспечение, пользователи лишают финансовой поддержки разработчиков, что, в свою очередь, тормозит развитие программ.

Указанные выше проблемы развития САПР могут быть причиной неправильного подбора программных средств автоматизации. Без предварительного исследования предприятия и квалифицированной помощи специалистов невозможно правильно выбрать программные средства, которые не только бы решали поставленные задачи, но и обеспечивали полную комплексную автоматизацию. В противном случае, вложение средств в автоматизацию может обернуться простоем программ или только решением очень узких задач на предприятии.

Перспективой развития САПР, кроме решения указанных проблем, является тесная интеграция с программами смежных направлений. Суть этого процесса заключается, например, во взаимосвязи между чертежными и расчетными программами. Если после проектирования здания необходимо рассчитать смету, передать данные в бухгалтерскую программу или произвести расчет каких-либо конструкций, программы должны быть взаимосвязаны. Такая интеграция позволит автоматизировать в едином информационном пространстве все стадии строительства и проектирования.

В век современных технологий проектирование зданий и сооружений, как и многое другое, взвалили на плечи автоматизированных систем. Появилась возможность в короткие сроки создать полноценный проект, показать заказчику, оперативно что-то изменить или добавить в нем. О таких инструментах, как программы CAD, пойдёт речь в этой статье.

Что такое САПР?

Система автоматизированного проектирования — есть не что иное, как отечественное название CAD (computer-aided design). Его суть заключается в увеличении производительности проектировщиков и инженеров, а также улучшение качества их работ. Это достигается за счёт нескольких полезных свойств CAD программ:

  • процесс создания всей документации происходит в автоматическом режиме;
  • возможность использовать параллельное проектирование несколькими людьми;
  • созданные ранее проекты легко использовать в новых, подключив их в короткие сроки;
  • отпадает необходимость использовать макеты и испытания;
  • снижает процент ошибок и недочётов.

Таким образом, вывели проектирование на совершенно новый уровень, снизив трудозатраты и увеличив производительность.

Обзор CAD программ

На рынке присутствует множество различных программных решений для самых разных отраслей проектирования. Стоит их рассмотреть более подробно.

AutoCAD

Этот обзор был бы неполным без включения в него этого "мастодонта" САПР. AutoCAD существует на рынке уже более 20 лет и давно занял позицию лучшей CAD программы. Все, что нужно проектировщику, реализовано в этом ПО.

Однако технологии и требования не стоят на месте, и очень скоро возможностей AutoCAD стало не хватать. Он годится для средних и мелких проектов. Но если понадобится создать полноценный огромный проект, работать с ним будет уже неудобно.

Поэтому компания-разработчик Autodesk пошла дальше и создала Architectural Desktop. Ее пользователи — профессиональные архитекторы и специалисты в области При всех своих возможностях эта CAD программа сумела сохранить простоту использования AutoCAD.

Так как проектирование охватывает большое количество отраслей, для которых нужны чертежи и планы, то компания Autodesk создала и несколько узкоспециализированных решений. Все продукты разработчика являются платными и ощутимо дорогими.

ArchiCAD

Это одна из CAD программ, набирающих популярность среди проектировщиков. Обладает большими возможностями. В частности, предоставляет виртуальную модель, с помощью которой можно до малейших деталей проработать не только внутреннее строение, но и внешний облик.

Также программа может генерировать весь необходимый комплект документов для оформления.

Крупным архитектурным студиям и бюро понравится функция совместной работы над проектом. Распараллеливание задач значительно ускоряет творческий процесс.

ATHENA

CAD программа для создания чертежей и проектов. Специализируется в основном на решениях для фасадных и металлических конструкций. Но последние версии могут также проектировать и полноценные здания и комплексы.

Работа происходит как в 2D режиме, так и в трёхмерном пространстве.

Программы CAD для Linux

Как известно, в среде Linux наиболее распространены программы, обладающие бесплатными лицензиями или вовсе с открытым исходным кодом. В большинстве случаев они сильно отстают в возможностях от платных продуктов среды Windows. Однако рассмотрим несколько достойных CAD решений, способных решать задачи проектировщиков.

Qcad

Распространяется под свободной лицензией GNU GPL. Однако есть версия и для профессионалов, цена которой около 33 $.

Область применения программного продукта — 2D-чертежи, наброски. В общем, система подойдёт для создания небольших и не сложных проектов.

Open CASCADE

Данный продукт уже ориентирован на создание полноценных 3D-проектов. Помимо этого, есть средства быстрого обмена документацией, визуализации и совместной разработки.

Распространяется CASCADE в свободном виде, имеется открытый код. Однако по условиям лицензии, если пользователь внёс изменения в код, он должен поставить в известность разработчиков.

ARCAD

А это уже платное решение для среды Linux. Полноценная система, рассчитанная на профессионалов. Обладает большими возможностями. В частности, создание 3D-модели, визуализации, расчёты необходимых объёмов и масс, а также многое другое.

CAD и "Андроид"

С такой тенденцией развития мобильных устройств неудивительно, что смартфоны и планшеты скоро полностью заменят своих «больших братьев». Вот и теперь такие сложные и тяжёлые инструменты, как средства САПР имеются и на мобильных платформах. Дальше будет небольшой обзор CAD программ для "Андроид".

AutoCAD 360

Данный продукт уже упоминался в начале статьи. Разработчик программы тот же — компания Autodesk. Приложение бесплатно, но имеются и коммерческие версии Pro и Pro Plus. Данный же представитель умеет работать с файлами полноценной ПК-версии, то есть создавать и редактировать их. Интерфейс прост и понятен. Правда, существует одно небольшое ограничение — работать можно с файлами меньше 10 МБ.

CadTouch

Неплохой редактор и просмотрщик САПР. Бесплатен, просто и интуитивно понятен. Обладает обширным списком инструментов, работой с DWG файлами, а также имеется растровый режим.

К сожалению, разработка в среде 3D пока не доработана, но приложению есть куда расти. Как и большинство программ, имеет Pro-версию, за которую нужно заплатить около 20$.

TurboViewer

Данное приложение представляет собой не редактор, а простой просмотрщик файлов типа DWG/DXF. Работает довольно быстро. Будет неплохим решением для проектировщиков, когда нужно оперативно показать рабочие элементы проекта заказчику вдали от компьютера.

Заключение

Программы для автоматизации проектирования имеются на всех известных платформах. Какие-то являются платными решениями, у других открытый код. Но всех их объединяет одно — умение в короткие сроки создать полноценный проект объекта.

Данный сравнительный анализ CAD/CAM-систем был выполнен для машиностроительного предприятия с целью решения следующих основных задач:

  • повышение производительности работы конструкторского бюро по выпуску конструкторской и технологической документации (КД и ТД);
  • снижение сроков подготовки металлообрабатывающего производства;
  • организация нового производства штампов и пресс-форм.

Рассматривались CAD/CAM-системы, распространенные на российском рынке. При составлении перечня учитывалась информация российской прессы, печатные материалы фирм-разработчиков и отзывы пользователей СНГ.

Перечень в алфавитном порядке имеет следующий вид:

  • ADEM v 6.1 Trial
  • Autocad v 2000
  • CADDS v 5
  • Компас v 5.0
  • MicroStation Modeler 95
  • Pro/Engineer v 2000i
  • SolidEdge v 6.0
  • SolidWorks v 99
  • T-Flex v 6.2
  • Unigraphics v.15

Некоторые продукты не вошли в данный перечень по следующим причинам:

  • отсутствие возможности провести опытную эксплуатацию;
  • отсутствие возможности автономной работы без совместного применения с другими CAD/CAM-продуктами.

Методика испытаний

Три указанные выше основные задачи были разложены на 20 подзадач (см. табл. 1).

Для исследования возможностей продуктов предпринимались попытки решения ряда примеров, характерных для данных подзадач.

Например, для разделов «Черчение» и «Поддержка отечественных стандартов» предлагалось выполнить чертежи в соответствии с правилами ЕСКД (рис. 1).

Для «Объемного моделирования» предлагалось несколько характерных моделей (рис. 2 , ).

Для «2,5x-фрезерования» были подготовлены примеры карманов с вертикальной и криволинейной стенками (рис. 4).

Для «Объемного фрезерования» были подготовлены модели элементов пресс-форм (рис. 5).

В разделе «Адаптация к станочному парку» рассматривались библиотеки постпроцессоров в первую очередь применительно к отечественным системам управления станками. Также производились попытки написания своих постпроцессоров.

«Создание прикладных САПР» исследовалось теоретически по документации.

Для оценки «Редактирования сканированного изображения» предлагалось внести изменения в текст и графику сканированного чертежа формата A1 с последующим выводом на плоттер.

«Поддержка пользователей» проверялась по качеству русскоязычной документации и HELP. Важным показателем являлось также наличие представительства в России и доступность телефонной и e-mail-связи.

Методика оценки

Качество систем оценивалось по трехбалльной системе. Наивысший балл присваивался в том случае, если все поставленные тесты выполнялись. Частичное выполнение засчитывалось как удовлетворительное. Невыполнение всех тестов выносило оценку «плохо». При окончательном формировании оценки учитывались также личные впечатления специалистов, испытывавших систему, и время на освоение и решение задач.

Результаты сравнительного анализа систем по всем 20 показателям представлены в табл. 2 .

Для косвенной проверки полученных результатов было изучено позиционирование систем в структуре российских предприятий. При этом рассматривалась обобщенная структура, традиционно состоящая из следующих подразделений:

  • проектное бюро (ПБ) - создание общих видов, общей компоновки;
  • конструкторское бюро (КБ) - конструирование, выпуск КД;
  • технологическое бюро (ТБ) - создание техпроцессов, выпуск ТД;
  • отдел ЧПУ - программирование станков с числовым программным управлением.

Для каждого продукта рассматривался доступный список официальных пользователей любых версий системы. Оценка отражает лишь распределение внутри списка для каждого продукта и ни в коей мере не показывает соотношение частоты применения различных продуктов (табл. 3).

ADEM применяется в основном для выпуска КД и ТД. Очень часто - для подготовки УП для ЧПУ и для плоского и объемного моделирования изделий, оснастки и пресс-форм. Реже используется для объемной компоновки.

Autocad применяется для выпуска КД и ТД, не отягощенных требованиями отечественных стандартов; реже - для плоских компоновок.

CADDS чаще всего применяется для объемного моделирования и компоновки изделий, оснастки, пресс-форм, а также для подготовки УП для ЧПУ. В конструкторских подразделениях не встречается.

Компас применяется в основном для выпуска чертежной КД, реже для ТД.

Pro/Engineer чаще всего используется для объемных компоновок агрегатов типа двигатель или реактор, для разводки трубопроводов. Для выпуска КД и ТД применяется редко.

SolidEdge, SolidWorks, MicroStation Modeler 95 применяются для объемного моделирования несложных машиностроительных изделий и узлов (электродвигатель, электрофен, насос), для иллюстраций инструкций по эксплуатации, отчетов и рекламных брошюр.

Для выпуска КД и ТД практически не применяются.

T-Flex применяется для выпуска чертежей типовых деталей машиностроения. В объемном моделировании не используется.

Unigraphics чаще всего применяется для объемного моделирования изделий, оснастки и пресс-форм. Применяется и для объемной компоновки изделий типа корпус, двигатель. Относительно часто применяется для ЧПУ. В конструкторских подразделениях практически не встречается.

По результатам тестирования и опыту применения систем на предприятиях исходный перечень был разделен на три группы. К первой группе были отнесены претенденты на сопровождение проектирования; ко второй - системы автоматизации выпуска КД; к третьей - интегрированные CAD/CAM-системы, поддерживающие ЧПУ (см. табл. 4).

Заключение

Результаты сравнительного анализа могут быть распространены и на другие машиностроительные предприятия. При этом следует учитывать следующие моменты:

  • система тестов должна быть разработана исходя из реальных задач конкретного производства;
  • тестирование желательно производить с привлечением широкого круга сотрудников, в том числе и не имевших опыта работы с CAD/CAM-системами;
  • необходимо дать системе возможность показать себя в различных подразделениях на разных задачах.

Не удивляйтесь, если в результате тестирования ваше личное представление о продукте коренным образом изменится, - действительность иногда имеет мало общего с красивыми картинками в журналах и рекламных проспектах. Чужой опыт также имеет большую ценность, даже если это и не совсем «бескорыстный свидетель». Любая информация имеет свойство устаревать, тем более в столь бурно развивающейся области, как программное обеспечение для промышленности.

«САПР и графика» 8"2000

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В промышленном производстве давно царит жесткая конкуренция. Чтобы выжить в этих нелегких условиях предприятиям приходится как можно быстрее выпускать новые изделия, снижать их себестоимость и повышать качество. В этом им помогают современные системы автоматизированного проектирования (САПР), позволяющие облегчить весь цикл разработки изделий -- от выработки концепции до создания опытного образца и запуска его в производство. Тем самым значительно ускоряется процесс создания новой продукции без ущерба качеству. Поэтому сейчас без САПР не обходится ни одно конструкторское или промышленное предприятие. И хотя на долю указанных систем приходится лишь около 3% рынка ПО, они играют очень важную роль, поскольку помогают создавать товары, без которых невозможно представить нашу повседневную жизнь: автомобили, самолеты, бытовые приборы, промышленное оборудование и, следовательно, являются одной из движущих сил современной промышленности и мировой экономики.

Прогресс науки и техники, потребности в новых промышленных изделиях обусловливают необходимость выполнения проектных работ большого объема.

Проектирование машин и систем машин является многоэтапным динамическим процессом. Это процесс творческий, многоплановый и достаточно трудоемкий. Как правило, проектирование машин, в том числе подъемно - транспортных, строительных и дорожных машин и оборудования, осуществляется большим коллективом различных специалистов с использованием многочисленных расчетных, экспериментальных, эвристических методов и приемов.

Требования, предъявляемые к качеству проектов, срокам их выполнения, оказываются все более жесткими по мере увеличения сложности проектируемых объектов и повышения важности выполняемых ими функций. Удовлетворить эти требования с помощью простого возрастания численности проектировщиков нельзя, так как возможность параллельного проведения проектных работ ограничена, и численность инженерно-технических работников в проектных организациях страны не может быть заметно увеличена. Решить проблему можно на основе автоматизации проектирования - широкого применения вычислительной техники.

Цель автоматизации проектирования - повышение качества, снижение материальных затрат, сокращение сроков проектирования и ликвидация тенденции к росту числа инженерно-технических работников, занятых проектированием, повышение производительности их труда.

САПР представляет собой организационно-техническую систему, состоящую из комплекса средств автоматизации проектирования, взаимосвязанного с подразделениями проектной организации и выполняющую автоматизированное проектирование.

1 . Общее описание систем автоматизированного проектирования, их назначения и областей применения

1.1 Общее описание систем автоматизированного проектирования

САПР -- организационно-техническая система, входящая в структуру проектной организации и осуществляющая проектирование при помощи комплекса средств автоматизированного проектирования (КСАП).

Взаимодействие подразделений проектной организации с комплексом средств автоматизации проектирования регламентируется организационным обеспечением.

Основная функция САПР состоит в выполнении автоматизированного проектирования на всех или отдельных стадиях проектирования объектов и их составных частей.

При создании САПР и их составных частей следует руководствоваться следующими основными принципами:

Системного единства;

Совместимости;

Типизации;

Развития.

Принцип системного единства должен обеспечивать целостность системы и системную связность проектирования отдельных элементов и всего объекта проектирования в целом (иерархичность проектирования).

Принцип совместимости должен обеспечивать совместное функционирование составных частей САПР и сохранять открытую систему в целом.

Принцип типизации заключается в ориентации на преимущественное создание и использование типовых и унифицированных элементов САПР. Типизации подлежат элементы, имеющие перспективу многократного применения. Типовые и унифицированные элементы, периодически проходят экспертизу на соответствие современным требованиям САПР и модифицируются по мере необходимости.

Создание САПР с учетом принципа типизации должно предусматривать:

Разработку базового варианта КСАП и (или) его компонентов;

Создание модификации КСАП и (или) его компонентов на основе базового варианта.

Принцип развития должен обеспечивать пополнение, совершенствование и обновление составных частей САПР, а также взаимодействие и расширение взаимосвязи с автоматизированными системами различного уровня и функционального назначения.

Работы по развитию САПР, модернизации составных частей САПР выполняют по техническому заданию.

Как законченное изделие САПР является совокупностью следующих компонентов:

· технических средств, обеспечивающих автоматизированное получение проектных решений;

· программ, управляющих работой технических средств и выполняющих проектные процедуры;

· данных, необходимых для выполнения программ;

· документации, содержащей все необходимые сведения для выполнения автоматизированного проектирования с помощью данной САПР.

Для реализации задач пользователей необходим программный инструментарий - точные и подробные инструкции, содержащие последовательность действий по обработке информации. Сам по себе компьютер не обладает знаниями ни в одной области своего применения, все эти знания сосредоточены в выполняемых на компьютере программах. Программное обеспечение САПР включает комплекс программ различного назначения, обеспечивающих функционирование компьютерной системы и решение задач автоматизированного проектирования.

При структурировании ПО используют понятия ППП, программных систем, комплексов и компонентов. Пакет прикладных программ-совокупность программ, объединенных общностью применения, т.е. возможностью совместного исполнения или ориентацией на определенный класс задач. Комплекс по определению в Единой системе программной документации (ЕСПД) - сложная программа, которую можно разделить на составные части. Компоненты - составные части программ, имеющие свое функциональное назначение. Понятие «комплекс - компонент» аналогичны понятиям «система - элемент» в блочно-иерархическом проектировании сложных систем, следовательно, на каждом иерархическом уровне проектирования ПО эти понятия наполняются своим конкретным содержанием. Так, операционная система ОС ЕС - комплекс, а компилятор с ФОРТРАНА - его компонент. На уровне проектирования компилятора он рассматривается как комплекс, а синтаксический анализатор и генератор кода - его компоненты.

Составными структурными частями САПР, жестко связанными с организационной структурой проектной организации, являются подсистемы, в которых при помощи специализированных комплексов средств решается функционально законченная последовательность задач САПР.

По назначению подсистемы разделяют на проектирующие и обслуживающие.

Проектирующие подсистемы. Они имеют объектную ориентацию и реализуют определенный этап (стадию) проектирования или группу непосредственно связанных проектных задач.

Примеры проектирующих подсистем: эскизное проектирование изделий, проектирование корпусных деталей, проектирование технологических процессов механической обработки.

Обслуживающие подсистемы. Такие подсистемы имеют общесистемное применение и обеспечивают поддержку функционирования проектирующих подсистем, а также оформление, передачу и вывод полученных в них результатов.

Примеры обслуживающих подсистем: автоматизированный банк данных, подсистемы документирования, подсистема графического ввода-вывода.

Формирование и использование моделей объекта проектирования в прикладных задачах осуществляется комплексом средств автоматизированного проектирования (КСАП) системы (или подсистемы).

Структурными частями КСАП системы являются различные комплексы средств, а также компоненты организационного обеспечения.

Комплексы средств относят к промышленным изделиям, подлежащим изготовлению, тиражированию и применению в составе САПР, и документируют как специфицируемые изделия.

Комплексы средств подразделяют на комплексы средств одного вида обеспечения (технического, программного, информационного) и комбинированные.

Комплексы средств одного вида обеспечения содержат компоненты одного вида обеспечения; комплексы средств комбинированные -- совокупность компонентов разных видов обеспечения.

Комбинированные КСАП, относящиеся к продукции производственно-технического назначения, подразделяются на:

· программно-методические (ПМК);

· программно технические (ПТК).

Программно-методический комплекс представляет собой взаимосвязанную совокупность компонентов программного, информационного и методического обеспечения (включая компоненты математического и лингвистического обеспечении), необходимую для получения законченного проектного решения по объекту проектирования (одной или нескольким его частям или объекту в целом) или выполнения унифицированных процедур.

В зависимости от назначения ПМК подразделяют на общесистемные и базовые.

Общесистемные ПМК направлены на объекты проектирования и вместе с операционными системами ЭВМ являются операционной средой, в которой функционируют базовые комплексы.

Базовые ПМК могут быть проблемно-ориентированными и объектно-ориентированными, в зависимости от того, реализуют ли они проектные процедуры унифицированные или специфические для определенного класса объектов.

Проблемно-ориентированные ПМК могут включать программные средства, предназначенные для автоматизированного упорядочения исходных данных, требований и ограничений к объекту проектирования в целом или к сборочным единицам; выбор физического принципа действия объекта проектирования; выбор технических решений и структуры объекта проектирования; оценку показателей качества (технологичности) конструкций, проектирование маршрута обработки деталей.

Объектно-ориентированные ПМК отражают особенности объектов проектирования как совокупной предметной области. К таким ПМК, например, относят ПМК, поддерживающие автоматизированное проектирование сборочных единиц; проектирование деталей на основе стандартных или заимствованных решении; деталей на основе синтеза их из элементов формы; технологических процессов по видам обработки деталей и т. п.

Программно-технический комплекс представляет собой взаимосвязанную совокупность компонентов технического обеспечения.

В зависимости от назначения ПТК различают: автоматизированные рабочие места (АРМ); центральные вычислительные комплексы (ЦВК).

Комплексы средств могут объединять свои вычислительные и информационные ресурсы, образуя локальные вычислительные сети подсистем или систем в целом.

Структурными частями комплексов средств являются компоненты следующих видов обеспечения: программного, информационного, методического, математического, лингвистического и технического.

Компоненты видов обеспечения выполняют заданную функцию и представляют наименьший (неделимый) самостоятельно разрабатываемый (или покупной) элемент САПР (например, программа, инструкция, дисплей и т. п.). Эффективное функционирование КСАП и взаимодействие структурных частей САПР всех уровней должно достигаться за счет ориентации на стандартные интерфейсы и протоколы связи, обеспечивающие взаимодействие комплексов средств.

Эффективное функционирование КСАП должно достигаться за счет взаимосогласованной разработки (согласование с покупными) компонентов, входящих в состав комплексов средств.

КСАП обслуживающих подсистем, а также отдельные ПТК этих подсистем могут использоваться при функционировании всех подсистем.

Общесистемные ПМК включают в себя программное, информационное, методическое и другие виды обеспечении. Они предназначены для выполнения унифицированных процедур по управлению, контролю, планированию вычислительного процесса, распределению ресурсов САПР и реализации других функций, являющихся общими для подсистем или САПР в целом.

Примеры общесистемных ПМК: мониторные системы, системы управления БД, информационно-поисковые системы, средства машинной графики, подсистема обеспечения диалогового режима и др.

Мониторные системы управления функционированием технических средств в САПР. (Монитор - управляющая программа).

Основными функциями мониторных систем являются: формирование заданий с контролем пакета задач, требуемых и наличных ресурсов, права доступа к базе данных с установлением приоритета и номера очереди; обработка директив языков управления заданиями и задачами, а также реакция на прерывания с перехватом управления, анализом причин и их интерпретацией в терминах, понятных проектировщику; обслуживание потоков задач с организацией диалогового и интерактивно-графического сопровождения в условиях параллельной работы подсистем; управление проектированием в автоматических режимах с анализом качества исполнения проектных операций, проверкой критериев повторения этапа или продолжения маршрута, выбором альтернативных вариантов маршрута; ведение и оптимизация статистики эксплуатации системы; распределение ресурсов САПР с учетом приоритетов заданий, задач и подсистем, плановых заданий и текущих указаний и запросов; защита ресурсов и данных от несанкционированного доступа и непредусмотренных воздействий.

Информационно-поисковые системы (ИПС) в САПР выполняют такие функции, как заполнение информационного фонда (инфотеки) сведениями; арифметическую обработку цифровых данных и лексическую обработку текстов; обработку информационных запросов с целью поиска требуемых сведений; обработку выходных данных и формирование выходных документов. Особенности ИПС заключаются в том, что запросы к ним формируются не программным путем, а непосредственно пользователями, и не на формальном языке, понятном монитору, а на естественном языке в виде последовательности ключевых слов -- дескрипторов. Перечень дескрипторов, содержащихся во всех принятых на хранение описаниях, составляет словарь дескрипторов, или тезаурус, и предназначен для формирования поисковых предписаний.

Существуют и более сложные ИПС по сравнению с дескрипторными. Важную роль в них играет информационно-поисковый язык, в котором учитываются семантические взаимоотношения между информационными объектами. Это позволяет уменьшить число неправильно распознаваемых языковых конструкций, а обработку запросов производить на основе различных критериев смыслового соответствия.

Система управления базами данных (СУБД) -- программно-методический комплекс для обеспечения работы с информационной базой, организованной в виде структуры данных.

Банки данных являются наиболее высокой формой организации информации в больших САПР. Они представляют собой проблемно-ориентированные информационно-справочные системы, обеспечивающие ввод необходимой информации, не зависимые от конкретных задач ведения и сохранения информационных массивов и выдачи необходимой информации по запросам пользователей или программ. В банках данных используется информация фактографического вида.

СУБД выполняет следующие основные функции: определение баз данных, т. е. описание концептуального, внешнего и внутреннего уровней схем; запись данных в базу; организацию хранения, выполняя изменение, дополнение, реорганизацию данных; предоставление доступа к данным (поиск и их выдача).

Для определения данных и доступа к ним в СУБД имеются языковые средства. Так, определение данных, состоящее в описании их структур, обеспечивается с помощью языка определения данных. Функции доступа к данным реализуются с помощью языка манипулирования данными и языка запросов. По типу поддерживаемых структур различают следующие виды СУБД:

· иерархический

· сетевой

· реляционный

Программно-методические комплексы машинной графики обеспечивают взаимодействие пользователя с компьютером при обмене графической информацией, решение геометрических задач, формирование изображений и автоматическое изготовление графической информации. Графическое взаимодействие пользователя с компьютером (так называемый графический метод доступа) базируется на подпрограммах ввода-вывода, которые обеспечивают прием и обработку команд от устройства ввода-вывода и выдачу управляющих воздействий на эти устройства. Решение геометрических задач (геометрическое моделирование) сводится к преобразованию графической информации, которое представляет собой выполнение в той или иной последовательности элементарных графических операций типа сдвиг, поворот, масштабирование и т. п. Для геометрического моделирования используется ПМК, в котором кроме отдельных элементарных графических операций могут быть реализованы графические преобразования трехмерных изображений, процедуры построения проекций, сечений и т. п. В ПМК графических преобразований обычно предусматриваются средства для формирования некоторых часто используемых изображений, управления графической базой данных, отладки графических подпрограмм.

Диалоговый режим обеспечивается программно-методическими комплексами, осуществляющими ввод, контроль, редактирование, преобразование и вывод графической и/или символьной информации. Диалоговый удаленный ввод заданий обеспечивает ввод и редактирование заданий через каналы связи, выполнение заданий в пакетном режиме и вывод результатов через линии связи на удаленные терминалы. В САПР могут использоваться как диалоговые ПМК общего назначения, так и специализированные. ПМК общего назначения целесообразно применять на начальных стадиях создания и эксплуатации САПР для отработки и проверки методологии проектирования, технологии обработки данных и прикладных программ. В дальнейшее возможна модификация ПМК с учетом специфических требований по организации диалога в САПР. При этом необходимо учитывать наличие диалогового или пакетного режима обработки запросов; ориентацию системы на пользователя непрограммиста; возможность расширения системы путем включения диалоговых прикладных программ на языках высокого уровня; возможность управления диалогом с помощью «меню» и директив, желательность общения на родном языке и т. п.

Примеры ПМК обеспечения диалоговых режимов: система диалогового управления вводом заданий, система режима разделения времени и др.

Функционирование САПР возможно только при наличии и взаимодействии перечисленных ниже средств:

- программного обеспечения;

- информационного обеспечения;

- методического обеспечения;

- лингвистического обеспечения;

- технического обеспечения;

- организационного обеспечения.

Теперь кратко разберёмся с назначением каждого компонента средств САПР

Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР . Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Методическое обеспечение САПР . Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Математическое обеспечение САПР . Основа - это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Лингвистическое обеспечение САПР . Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения - языки общения человека с ЭВМ.

Техническое обеспечение САПР . Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

1.2 Назначения и области применения САПР

В российском производстве в понятие системы автоматизированного проектирования (САПР) принято включать CAD, CAE и CAM, хотя зарубежные проектировщики ассоциируют САПР только с CAD.

В зависимости от объекта проектирования САПР принято де-

лить, по крайней мере, на два основных вида:

CAD (Computer-Aided Design). Здесь Computer - компьютер, Aided - с помощью, Design - проект, проектировать. Таким образом, термин CAD можно перевести как «проектирование с помощью компьютера». Эти системы выполняют объемное и плоское геометрическое моделирование, инженерные расчеты и анализ, оценку проектных решений, изготовление чертежей. В более строгой формулировке CAD - программный пакет, предназначенный для проектирования (разработки) объектов производства (или строительства), а также оформления конструкторской и/или технологической документации. Современные САПР используются совместно с системами автоматизации инженерных расчетов и анализа CAE, либо внутри себя содержат интегрированные средства автоматизации инженерных расчетов и анализа. Данные из CAD-системы передаются в CAM-систему автоматизированной разработки управляющих программ для оборудования с ЧПУ или ГАПС (Гибких автоматизированных производственных систем). Работа с САПР обычно подразумевает создание геометрической модели изделия (двумерной или трехмерной, твердотельной), генерацию на основе этой модели конструкторской документации (чертежей изделия, спецификаций и проч.) и последующее его сопровождение.

Следует отметить, что русский термин «САПР» по отношению к промышленным системам имеет более широкое толкование, чем CAD - он включает в себя CAD, CAM и CAE.

САПР технологии изготовления. В странах бывшего Советского Союза эти системы принято называть САПР ТП или АС ТПП. В зарубежной литературе их называют CAPP (Computer Automated Process Planning). Здесь Automated - автоматический, Process - процесс, Planning - планировать, планирование, составление плана. С помощью этих систем разрабатывают технологические процессы и оформляют их в виде маршрутных, операционных, маршрутнооперационных карт, проектируют технологическую оснастку, разрабатывают управляющие программы (УП) для станков с ЧПУ.

Более конкретное описание технологии обработки на оборудовании с ЧПУ (в виде кадров управляющей программы) генерируется автоматизированной системой управления производственным оборудованием (АСУПР), которую в зарубежной литературе принято называть CAM (Computer - Aided Manufacturing ) . Здесь Manufactur- ing - производство, изготовление. Техническими средствами, реализующими данную систему, могут быть системы ЧПУ станков, компьютеры, управляющие автоматизированными станочными системами. В некоторых источниках под термином САМ понимают подготовку технологического процесса производства изделий, ориентированную на использование средств вычислительной техники, и включающую не только сам процесс компьютеризированной подготовки производства, но и программно-вычислительные комплексы, используемые технологами проектировщиками. Фактически же технологическая подготовка сводится к автоматизации разработки управляющих программ для оборудования с ЧПУ (2- осевые лазерные станки), (3- и 5-осевые фрезерные станки с ЧПУ; токарные станки; обрабатывающие центры; автоматы продольного точения и токарно-фрезерной обработки). Как правило, большинство программно-вычислительных комплексов совмещают в себе решение задач CAD/CAM, CAE/САМ, CAD/CAE/CAM.

Научно-исследовательский этап проектирования иногда выделяют в самостоятельную автоматизированную систему научных исследований (АСНИ) или, используя зарубежную терминологию, автоматизированную систему инжиниринга - CAE (Computer Aided Engineering). Одним из примеров такой системы является так называемая «изобретающая машина», которая поддерживает процесс принятия проектировщиком новых нестандартных решений, иногда и на уровне изобретений. В более узком понимании САЕ - общее название для программ или программных пакетов, предназначенных для инженерных расчетов, анализа и симуляции физических процессов. Расчетная часть пакетов чаще всего основана на численных методах решения дифференциальных уравнений (метод конечных элементов, метод конечных объемов, метод конечных разностей и др.). Современные системы автоматизации инженерных расчетов (CAE) применяются совместно с CAD-системами (зачастую интегрируются в них, в этом случае получаются гибридные CAD/CAE-системы). CAE-системы это разнообразные программные продукты, позволяющие оценить, как поведёт себя компьютерная модель изделия в реальных условиях эксплуатации. Они позволяют проверить работоспособность изделия, без привлечения больших затрат времени и средств.

Помимо этого различают: систему производственного планирования и управления PPS (Productions plans system), что соответствует отечественному термину АСУП (автоматизированная система управления производством). CAQ (Computer Aided Quality Control) - автоматизированная система управления качеством. PDM (Product Data Management) - автоматизированная система управления производственной информацией. Аналог системы электронного документооборота. CAD/САМ/САЕ/PDM - комплексная система автоматизированного проектирования и производства. CIM (Computer Integrated Manufacturing) - система интегрированного производства.

2 . Применение систем автоматизированного проектирования в машиностроительном производстве

Непосредственно в машиностроении применяются специализированные пакеты и различные надстройки более общих и распространенных систем проектирования, таких как Autodesk AutoCAD, ZwCAD, BricsCAD, Космос, SolidWorks и другие. Рассмотрим подробнее некоторые из систем.

Традиционно, продукты САПР для машиностроения разделены на три класса: тяжелый, средний и легкий. Такая классификация сложилась исторически, и хотя уже давно идут разговоры о том, что грани между классами вот-вот сотрутся, они остаются, так как системы по-прежнему различаются и по цене, и по функциональным возможностям.

В результате сейчас в этой области имеется несколько мощных систем, своего рода “олигархов” мира САПР, стабильно развивающиеся продукты среднего класса и получившие массовое распространение недорогие “легкие” программы. Имеется и так называемая “внеклассовая прослойка общества”, роль которой выполняют различные специализированные решения.

2.1 Тяжелые САПР

Компьютерная технология призвана не автоматизировать трад и ционно существующие технологические звенья (так как это обычно не дает какого-либо эффекта, за исключением некоторого изменения условий труда), а принципиально и з менить саму технологию проектирования и производства изделий . Только в этом случае можно ожидать существенного сокращения сроков создания изделий, снижения затрат на весь жизненный цикл изделия, повышения качества изделий.

Прежде всего, применительно к созданию сложных изделий машиностроения, в основе организации компьютерной технологии лежит создание полного электронного макета изделия, так как именно создание трехмерных электронных моделей, адекватных реально проектируемому изделию, открывает колоссальные возможности для создания более качественной продукции (особенно сложной, наукоемкой продукции) и в более сжатые сроки.

В идеале в процессе проектирования и производства сложных и многокомпонентных изделий все участвующие в проектировании должны, работая одновременно и наблюдая работу друг друга, создавать сразу на компьютерах электронные модели деталей, узлов, агрегатов, систем и всего изделия в целом.

При этом одновременно решать задачи концептуального необходимо проектирования, всевозможных видов инженерного анализа, моделирования ситуаций, а также компоновки изделия и формирования внешних обводов. Не дожидаясь полного окончания разработки нового изделия, эту информацию следует использовать для технологической подготовки производства и производства как такового. Кроме того, необходимо автоматизировано управлять и всеми создаваемыми данными электронной модели (то есть структурой изделия), и самим процессом создания изделия, и к тому же иметь возможность управлять структурой процесса создания изделия.

Для реализации именно компьютерной технологии проектирования и производства должны применяться системы автоматизированного проектирования инженерного анализа и технологической подготовки производства (CAD/CAE/CAM) высшего уровня, а также системы управления проектом (PDM -- Product Data Management).

Что такое система CAD/CAE/CAM высшего уровня? Это такая система, которая, во-первых, обеспечивает весь цикл создания изделия от концептуальной идеи до реализации, а во-вторых (и это самое главное), создает проектно-технологическую среду для одновременной работы всех участников создания изделия с единой виртуальной электронной моделью этого изделия.

На Западе эта организационная философия обозначается аббревиатурой CAPE (Concurrent Art-to-Product Environment), что можно перевести как «Единая среда создания изделия от идеи до реализации». По существу, именно то, в какой степени система реализует указанную философию, и определяет уровень системы. Руководствуясь такой концепцией, можно резко сократить цикл создания изделия, повысить технический уровень проектов, избежать нестыковок и ошибок в изготовлении оснастки и самого изделия благодаря тому, что в подобном случае все данные взаимосвязаны и контролируемы.

В настоящее время на рынке осталось лишь три САПР верхнего ценового класса -- Unigraphics NX компании EDS, CATIA французской фирмы Dassault Systemes (которая продвигает ее вместе с IBM) и Pro/Engineer от РТС (Parametric Technology Corp.). Раньше мощных системы было больше, но после череды слияний и поглощений компаний, число пакетов сократилось.

Упомянутые компании -- лидеры в области САПР, а их продукты занимают львиную долю рынка в денежном выражении. Главная особенность «тяжелых» САПР -- обширные функциональные возможности, высокая производительность и стабильность работы -- все это результат длительного развития. Однако, эти системы немолоды -- CATIA появилась в 1981 г., Pro/Engineer -- в 1988 г., а Unigraphics NX, хотя и вышла в 2002 г., является результатом слияния двух весьма почтенных по возрасту систем -- Unigraphics и I-Deas, полученных фирмой EDS в результате приобретения компаний Unigraphics и SDRC. Все названные программы включают средства трехмерного твердотельного и поверхностного моделирования, а также модули структурного анализа и подготовки к производству, т. е. являются интегрированными пакетами CAD/CAM/CAE. Кроме того, все три поставщика предлагают для своих САПР системы управления инженерными данными (PDM), позволяющие управлять всей конструкторско-технологической документацией и предоставлять дополнительные данные, экспортированные из других корпоративных систем, из справочников и нормативных источников.

Несмотря на то, что тяжелые системы стоят значительно дороже своих более «легких» собратьев (десятки тысяч долларов за одно рабочее место), затраты на их приобретение окупаются, особенно когда речь идет о сложном производстве, например машиностроении, двигателестроении, авиационной и аэрокосмической промышленности. Однако крупных клиентов, способных платить за САПР миллионы долларов не так много. По мнению аналитиков, этот сегмент рынка уже практически насыщен и поделен между «китами» индустрии. Сейчас производители средств автоматизации проектирования возлагают надежды на предприятия среднего и малого бизнеса, которых гораздо больше, чем промышленных гигантов. Для них предназначены системы среднего и легкого классов.

2.2 Средний класс САПР

В мире САПР средний класс возник позднее двух остальных -- в начале 90-х. До этого средствами трехмерного твердотельного моделирования обладали лишь дорогие тяжелые системы, а легкие программы служили для двумерного черчения. Средние САПР заняли промежуточное положение между тяжелым и легким классами, унаследовав от первых трехмерные параметрические возможности, а от вторых -- невысокую цену и ориентацию на платформу Windows. Они произвели революционный переворот в мире САПР, открыв небольшим конструкторским организациям путь для перехода от двумерного к трехмерному проектированию.

Важную роль в становлении среднего класса сыграли два ядра твердотельного параметрического моделирования ACIS и Parasolid, которые появились в начале 90-х годов и сейчас используются во многих ведущих САПР. Геометрическое ядро служит для точного математического представления трехмерной формы изделия и управления этой моделью. Полученные с его помощью геометрические данные используются системами CAD, CAM и САЕ для разработки конструктивных элементов, сборок и изделий. В настоящее время Parasolid принадлежит фирме EDS, а ACIS -- компании Dassault, которые продают лицензии на их использование всем желающим. Таких желающих немало -- эти ядра составляют основу более сотни САПР, а число проданных лицензий перевалило за миллион. Успех понятен -- ведь использование готового ядра избавляет разработчиков системы от решения трудоемких задач твердотельного моделирования и позволяет сосредоточиться на пользовательском интерфейсе и других функциях. Впрочем, это не значит, что все САПР среднего класса построены на базе этих механизмов. Многие компании ценят независимость и предпочитают разрабатывать собственные «движки».

К среднему классу аналитики относят системы стоимостью порядка 5--6 тыс. долл. за рабочее место (цены в США). Для сравнения: у тяжелых САПР рабочее место обходится примерно в 20 тыс. долл., но в последнее время поставщики выпустили облегченные версии продуктов, которые стоят дешевле.

По прогнозу аналитической компании Daratech рост среднего класса будет продолжаться, и предполагается, что до 2008-го рынок будет увеличиваться на 11% в год. Причина такой положительной динамики состоит в активном притоке новых пользователей из обоих смежных лагерей -- тяжелых и легких систем. Так, по мнению аналитиков, сейчас становится все больше производителей, недовольных слабой окупаемостью своих инвестиций в дорогие продукты и ищущих более дешевые варианты. С другой стороны, глобализация, нарастание конкуренции и спад мировой экономики заставляют малые и средние предприятия переходить c двумерных САПР на трехмерные, чтобы ускорить выпуск новых изделий в продажу и повысить их качество. Процесс перехода подстегивает улучшение совместимости между 2D- и 3D-системами и увеличение преимуществ САПР среднего класса для повышения производительности труда.

У средних САПР сейчас существует обширный круг потенциальных потребителей, и они вольно или под давлением рынка будут вынуждены рано или поздно их внедрить. На руку “середнякам” играет и расширение функциональных возможностей этих продуктов. В результате у предприятий, которые хотят получить надежный инструмент для трехмерного моделирования, но могут обойтись без высокоразвитых средств тяжелых САПР, появились дополнительные варианты для выбора ПО. Ведь раньше поставщики утверждали, что средние САПР обладают 80% функций тяжелых продуктов, а их цена составляет всего 20% от стоимости дорогих систем. Теперь, считают аналитики из Daratech, по возможностям “середняки” приближаются к 90%, а по стоимости -- к 50%. Безусловно, даже этот 10%-ный разрыв нельзя сбрасывать со счетов. Например, предприятиям автомобильной и авиакосмической промышленности крайне необходим передовой функционал, присущий только “тяжеловесам”. Поэтому различие между этими двумя классами существует и сохранится в течение обозримого будущего, так как разработчики и тех и других систем не сидят сложа руки, а будут и впредь совершенствовать свои продукты.

Пионером в области средних САПР стала компания SolidWorks. В 1993 г. она представила одноименный продукт, обладающий трехмерным геометрическим ядром, который, по утверждению создателей, по возможностям приближался к механизмам твердотельного моделирования тяжелых систем, но стоил гораздо дешевле. Вскоре примеру первопроходца последовала фирма Solid Edge, выпустившая одноименную САПР, а затем и Autodesk. Она сначала разработала трехмерную программу Mechanical Desktop на базе двумерной AutoCAD, а затем создала новое ПО Inventor. Помимо этих систем на рынке есть немало других САПР среднего класса, например think3, Cadkey, Alibre. Есть среди них и российские разработки. Так, компания АСКОН продвигает систему КОМПАС на базе собственного геометрического ядра, а фирма “Топ Системы” -- программу T-Flex на основе ядра Parasolid, принадлежащего UGS. Они также прошли длительный путь развития и обзавелись встроенными средствами поверхностного моделирования, управления документами (PDM), технологической подготовки производства (CAM) и т. д., но при этом стоят существенно дешевле зарубежных аналогов и изначально ориентированы на отечественные стандарты и приемы проектирования.

2.3 Легкие системы САПР

Программы данной категории служат для двумерного черчения, поэтому их обычно называют электронной чертежной доской. К настоящему времени они пополнились некоторыми трехмерными возможностями, но не имеют средств параметрического моделирования, которыми обладают тяжелые и средние САПР.

Первая чертежная система Sketchpad была создана еще в начале 60-х годов, а затем появилось немало других продуктов такого рода, использующих достижения компьютерной графики. Однако подлинный расцвет в этой области наступил лишь в 80-е годы с появлением персональных компьютеров. Вслед за снижением стоимости оборудования последовал обвал цен и на САПР.

Пионером в этой области стала компания Autodesk, которая в 1983 году, выпустила САПР для ПК под названием AutoCAD. Успех был феноменальным -- уже в 1987 г. было продано 100 тыс. копий AutoCAD, а сегодня это число превышает четыре миллиона. В результате Autodesk удалось отхватить изрядную долю рынка САПР, вытеснив тяжеловесов из сегмента программ для двумерного черчения. Примеру первопроходца последовали и остальные игроки. Так, в 1984 г. фирма Bently представила программу Microstation, которая стала основным конкурентом AutoCAD"а. Кроме них сейчас существует множество других «легких» САПР, включая DataCAD одноименной компании, TurboCAD фирмы IMSI, SurfCAM от Surfware и другие. Эти продукты проще и дешевле (100 -- 4000 долл.) тяжелых и средних САПР, поэтому пользуются спросом, несмотря на нынешний экономический спад. В результате «легкие» системы стали самым распространенным продуктом автоматизации проектирования, своего рода «рабочей лошадкой» мира САПР.

3 . Функциональные возможности программного продукта « nanoCAD »

3.1 Основные особенности продукта «nanoCAD»

nanoCAD -- базовая система автоматизированного проектирования и черчения (САПР-платформа). Разработана компанией «Нанософт», Россия. В России и странах СНГ распространяется по схеме "freeware". Обладает AutoCAD-подобным интерфейсом и напрямую поддерживает формат DWG (с помощью библиотек Teigha™, разработчик Open Design Alliance). На базе бесплатной платформы nanoCAD создается ряд платных приложений для выполнения различных узкоспециализированных проектных задач.

К достоинствам продукта nanoCAD можно отнести:

· Нулевая цена : программное обеспечение распространяется бесплатно и доступно для коммерческого использования, как частными лицами, так и проектными организациями.

· Привычный интерфейс : принципы работы с nanoCAD аналогичны принципам работы в AutoCAD, что позволяет пользователю сменить платформу без серьёзного переобучения.

· Прямая поддержка DWG : чертежи, разработанные в nanoCAD можно открыть в среде AutoCAD без дополнительных преобразований и наоборот, чертежи, разработанные в среде AutoCAD, открываются в среде nanoCAD .

· Открытый API : под nanoCAD можно разрабатывать собственные приложения на языках C++ или.NET.

К недостаткам nanoCAD можно отнести:

· Отсутствие поддержки AutoLISP и VBA : любые приложения и средства адаптации, написанные на языках AutoLISP и VBA, на данный момент не работают в среде nanoCAD.

· Потенциальные проблемы с поддержкой DWG : т.к. nanoCAD поддерживает формат DWG с помощью библиотек Teigha™, разработанных некоммерческой организацией Open Design Alliance, то существует потенциальная возможность потерять совместимость с оригинальным форматом DWG от компании Autodesk. В сложившихся условиях это маловероятно: библиотеками ODA пользуются порядка 750 организаций (ODA Members, среди которых - Adobe, Oracle, Bentley, Dassault Systиmes, Siemens, Graphisoft, российские компании - Аскон, Нанософт, СиСофт, Инфрасофт и др.). На данный момент основная масса чертежей в формате DWG обрабатывается достаточно достоверно, включая визуализацию, редактирование и сохранение.

Продукт «nanoCAD » функционально занимает нишу между AutoCAD LT и полной версией AutoCAD . Разработчики nanoCAD считают, что ни одна платформа, являясь по своей сути электронным кульманом, не может называться САПР. Поэтому, распространяя платформу nanoCAD бесплатно, «Нанософт» предлагает пользователям использовать платные приложения, работающие как на платформе AutoCAD, так и на платформе nanoCAD .

3.2 Функциональные возможности

Интерфейс nanoCAD последних версий максимально приближен к интерфейсу классических САПР: основную часть окна занимает рабочее пространство, в котором непосредственно разрабатывается чертеж, в верхней части расположены меню и панели с навигационными инструментами, в нижней части расположена командная строка. Команды и меню соответствует организации интерфейса AutoCAD версий 2000-2008.

Несмотря на визуальное сходство с AutoCAD (а также программами на базе ядра IntelliCAD, являющихся копиями AutoCAD), ядро nanoCAD разрабатывается российскими разработчиками самостоятельно. Это приводит к некоторым различиям в работе nanoCAD от работы в среде AutoCAD: так в nanoCAD отсутствуют многие функции и технологии, заложенные в AutoCAD (технология подшивок, работа с динамическими блоками динамический ввод информации и т.д.).

На данный момент nanoCAD позиционируется как система рабочего 2D-проектирования (черчения) и содержит все необходимые инструменты базового проектирования и позволяет:

· Создавать и редактировать различные 2D и 3D векторные примитивы, одно и многострочные тексты, размеры и другие, более сложные объекты оформления чертежей, в соответствии со стандартами ЕСКД и СПДС.

· Выполнять простые и сложные операции векторного редактирования, такие как перемещение, поворот, разбиение, продление и т.д.;

· Использовать инструменты повышающие точность редактирования: шаг, сетку, привязки, объектное и полярное отслеживание;

· Создавать и использовать любые виды таблиц, выполнять специфицирование элементов чертежа по атрибутивным данным блоков и объектов оформления;

· Производить настройки рабочей среды для оформления рабочей документации по различным стандартам;

· Выполнять печать готовых технических документов по заранее сформированным настройкам;

· Вести полноценную работу в 3D-пространстве модели и 2D-пространстве листа, используя видовые экраны;

· Просматривать, создавать и редактировать поверхностные 3D-модели, задавать пользовательскую координатную систему для редактирования и геометрической привязки к 3D-объектам;

· Использовать при проектировании любую ранее выполненную техническую документацию, хранящуюся в электронном виде в различных растровых форматах (сканированные чертежи, фотографии) или как OLE объекты (тексты, таблицы);

· Обмениваться готовыми чертежами со сторонними организациями и смежниками, используя распространённый формат DWG.

4 . Функциональные возможности программного продукта « Pro \ ENGINEER »

система автоматизированное проектирование

4.1 Основные особенности продукта « Pro \ ENGINEER »

Pro/ E NGINEER - это, прежде всего, система трехмерного проектирования, как твердотельного, так и поверхностного, предоставляющая очевидные преимущества перед традиционным в прошлом двумерным проектированием:

наглядность представления проектируемой модели - позволяет избежать ошибок, связанных с тем, что при двумерном проектировании конструктору трудно представить твердотельную модель, особенно имеющую сложную геометрию;

оперирование геометрией на уровне объектов - инженерных элементов, что значительно упрощает и ускоряет процесс проектирования. Ядро Pro/ E NGINEER использует уникальную по своим возможностям технологию - Proven Technology, основанную на граничных представлениях. Основное отличие Proven Technology от известных технологий трехмерного проектирования ACIS, Parasolid, используемых в конкурирующих продуктах (UNIGRAPHICS, I-DEAS, CADDS, EUCLID) - жесткие требования на проектируемую геометрию (геометрия должна быть определена однозначно). Такие ограничения не требуют от конструкторов лишних усилий при проектировании, а позволяют достичь полного соответствия геометрии полученной детали заданным размерам, что наиболее критично при дальнейшей работе над моделью (изготовление технологической оснастки, подготовка программ для обработки на станках с ЧПУ и т.д.).

Этап проектирования изделия включает трехмерное моделирование, оптимизацию конструкции, подготовку рабочих чертежей и определение процессов изготовления (проектирование программ для станков с ЧПУ). Эффективное сочетание всех этих функций значительно уменьшает время выхода изделий на рынок. Основное преимущество Pro/ E NGINEER перед традиционными методами проектирования - поддержка параллельной разработки изделия. Этим обеспечивается более быстрый, чем у конкурентов, выпуск изделия на рынок, по более низкой цене и более высокого качества.

4.2 Функциональные возможности

Программные модули Pro/ E NGINEER для решения задач конструкторского проектирования предназначены для инженеров-конструкторов и предоставляют им инструмент для создания моделей, как отдельных деталей, так и сложных сборочных конструкций. Это строгая, логичная, простая в обращении система, позволяющая действовать интуитивно и творчески. Она позволяет проектировать и управлять крупными, сложными сборочными единицами, состоящими практически из неограниченного числа компонентов. Контроль над пересечением отдельных деталей и расчет массовых характеристик гарантирует правильность сборки с первого раза. Это значительно сокращает время, затрачиваемое на проектирование, и облегчает повторное использование стандартных, опробованных конструкций в качестве основы новых продуктов.

Использование в Pro/ E NGINEER единой информационной модели изделия дает возможность инженерам-технологам начинать разработку оснастки и управляющих программ для оборудования с ЧПУ, не дожидаясь окончательного завершения этапа конструкторского проектирования. Конструкторы еще не закончили работу со сборкой, а технологи уже работают над разработкой техпроцессов изготовления составляющих ее деталей, при необходимости поправляя возможные ошибки конструкторов. Это значительно сокращает время и средства, затрачиваемые на проектные и работы, и позволяет оптимально использовать коллективный опыт разработчиков.

Пакет программных модулей для технологической подготовки производства предназначен для инженеров-технологов и позволяет решать задачи проектирования технологической оснастки (штампов, пресс-форм), разработки управляющих программ для металлорежущего, штампового оборудования с ЧПУ, а также оборудования проволочной электроэрозионной обработки.

Заключение

nanoCAD предназначена для оформления чертежей в соответствии с требованиями Единой системы конструкторской документации (ЕСКД). В программе удобно проектировать системы гидропневмоэлементов, зубчатые зацепления, валы, а также проводить инженерный анализ, выполнять расчет размерных цепей и многие другие операции, необходимые при машиностроительном проектировании.

Pro / ENGINEER - полнофункциональная САПР для разработки изделий любой сложности. Благодаря мощным возможностям автоматизации всех машиностроительных дисциплин, Pro/ENGINEER является общепризнанным 3D решением для моделирования и разработки конкурентоспособных коммерческих изделий. Интегрированные CAD/CAM/CAE решения Pro/ENGINEER позволяют проектировать быстрее, чем когда-либо, максимально способствуя появлению новых идей и повышению качества, что в конечном итоге приводит к созданию выдающихся изделий.

Список информационных ресурсов :

Подобные документы

    AutoCAD как одна из самых популярных графических систем автоматизированного проектирования, круг выполняемых ею задач и функций. Технология автоматизированного проектирования и методика создания чертежей в системе AutoCAD. Создание и работа с шаблонами.

    лекция , добавлен 21.07.2009

    Создание программных комплексов для систем автоматизированного проектирования с системами объемного моделирования и экспресс-тестами. SolidWorks - мировой стандарт автоматизированного проектирования. Пользовательский интерфейс, визуализация модели.

    курсовая работа , добавлен 13.10.2012

    курсовая работа , добавлен 22.11.2009

    Основные цели и принципы построения автоматизированного проектирования. Повышение эффективности труда инженеров. Структура специального программного обеспечения САПР в виде иерархии подсистем. Применение методов вариантного проектирования и оптимизации.

    презентация , добавлен 26.11.2014

    Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза.

    реферат , добавлен 01.08.2009

    Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа , добавлен 26.09.2010

    Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа , добавлен 11.09.2010

    Структура и классификация систем автоматизированного проектирования. Виды обеспечения САПР. Описание систем тяжелого, среднего и легкого классов. Состав и функциональное назначение программного обеспечения, основные принципы его проектирования в САПР.

    курсовая работа , добавлен 18.07.2012

    История развития рынка CAD/CAM/CAE-систем. Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем. Проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45, преимущества от применения программ.

    контрольная работа , добавлен 14.04.2014

    Разработка трехмерной модели судна на уровне эскизного проекта в системе автоматизированного проектирования CATIA v5 R19. Технология и этапы автоматизированного проектирования. Параметризация и декомпозиция судна как сборки. Принципы работы в CATIA.

За последние годы в проектировании замечен настоящий прорыв. Чертежи и модели перекочевали в виртуальное пространство, процесс обработки данных заметно ускорился, появилось большое количество новых разработок на рынке CAD-систем. Их все можно разделить на две большие группы – зарубежные и отечественные.

Зарубежные разработки

За рубежом системами автоматического проектирования начали пользоваться гораздо раньше. Здесь же разработана классификация CAD-систем – для машиностроения, электроэнергетики, строительства и т.д. Законодателями мод считаются следующие компании:

  • Autodesk. Признанный мировой лидер, поставляющий лучшие продукты. Фирму ждал успех после выпуска решения AutoCAD. Для российских потребителей он стал находкой. Популярные продукты для 2D-проектирования предлагает компания «ПОИНТ» – https://www.pointcad.ru/product#prod_2d .
  • Unigraphics Solutions. Компания получила огласку после заключения контракта с General Motors. Практически все обзоры CAD-систем разработчики писали с уклоном на автомобилестроительный гигант, поэтому направление обеспечения весьма специфическое.
  • IMB ETS. Успехом обязана подконтрольной французской фирме Dassault, выпускающей SolidWorks, CATIA, Deneb, MicroCADAM. Существуют решения практически для всех сфер промышленности.
  • PTC. Основная система – Pro/Engineer. В последнее время она претерпела множество обновлений, потому и заслуживает внимания. Есть специальный пакет для судостроительных корпораций.

Обзор CAD-систем отечественного производства

На российском рынке тоже есть достойные игроки. Среди них:

  • АСКОН. Популярность КОМПАСА растет заметными темпами. А все потому, что система ориентирована в первую очередь на отечественных разработчиков.
  • Интермех. Со своим продуктом Cadmech базирующаяся в Минске фирма постепенно набирает обороты. Из плюсов – хорошо проработанная система заполнения документации.
  • Топ Системы. Московский разработчик, подаривший нам T-FLEX CAD, уже давно пересек границы России и начал распространяться в Европе.

Большая часть производителей России работает с системами AutoCAD, КОМПАС и SolidWorks. Остановимся на них подробнее.

AutoCAD

Бесспорный лидер. Для многих AutoCAD является эталоном. Действительно, у программного обеспечения от Autodesk есть ряд преимуществ:

  • Богатый набор функций. Большинство новейших разработок сначала появляются здесь.
  • Техническая поддержка. Актуальные обзоры CAD-системы и ее возможностей всегда в открытом доступе.
  • Обновления и расширения. Продукт постоянно развивается и совершенствуется.
  • Низкие требования. Один из ключевых факторов. Для работы в AutoCAD не требуются чересчур мощные компьютеры.

КОМПАС

Ни один обзор CAD/CAM-систем в России не обходится без упоминания КОМПАС. И тому есть несколько причин:

  • Ориентация на отечественный рынок. Программа разрабатывалась изначально на русском языке, все инструкции доступны для чтения.
  • Библиотека ГОСТ. Неоспоримый плюс. Проектировать с готовой библиотекой ГОСТ гораздо удобнее и выгоднее.
  • Совместимость версий. Одна из проблем зарубежных систем – чертежи, созданные в старых версиях, скорее всего не откроются в новых. Здесь все гораздо проще и дружелюбнее.

SolidWorks

Система, пользующаяся меньшей популярностью, нежели предыдущие. В основном это связано с высокими требованиями к производительности компьютера. Тем не менее, SolidWorks обладает интуитивно понятным интерфейсом и некоторыми функциями, недоступными среди продуктов других разработчиков.

Выбор в пользу того или иного программного комплекса делается на основе вдумчивого анализа. Большинство задач способен решить AutoCAD, но иногда требуются специфические функции и ориентация на конкретный рынок. В ряде случаев на первый план выходят стоимость и требовательность продукта, его сложность и наличие квалифицированных специалистов.


Комментарии:

Компания Panasonic выпустила гибридную беззеркальную камеру Lumix G95. ...

Гладкая и ухоженная кожа, это один из современных канонов красоты, поэтому каждая девушка и женщина ст...

Компания Samsung объявила о начале массового производства многорежимных чипсетов 5G. Они включают в се...

Индийский производитель телевизоров Vu представил три новых серии телевизоров: Pixelight TV, UltraSmar...