Гаджеты

Расчет 3 параллельных сопротивлений. Параллельное и последовательное соединение

Расчет 3 параллельных сопротивлений. Параллельное и последовательное соединение

Параллельное соединение резисторов, наряду с последовательным, является основным способом соединения элементов в электрической цепи. Во втором варианте все элементы установлены последовательно: конец одного элемента соединен с началом следующего. В такой схеме сила тока на всех элементах одинаковая, а падение напряжений зависит от сопротивления каждого элемента. В последовательном соединении есть два узла. К одному подсоединены начала всех элементов, а ко второму их концы. Условно для постоянного тока можно обозначить их как плюс и минус, а для переменного как фазу и ноль. Благодаря своим особенностям находит широкое применение в электрических схемах, в том числе и со смешанным соединением. Свойства одинаковы для постоянного и переменного тока.

Расчет общего сопротивления при параллельном соединении резисторов

В отличие от последовательного соединения, где для нахождения общего сопротивления достаточно сложить значение каждого элемента, для параллельного то же самое будет справедливо для проводимости. А так как она обратно пропорциональна сопротивлению, получим формулу, представленную вместе со схемой на следующем рисунке:

Необходимо отметить одну важную особенность расчета параллельного соединения резисторов: общее значение будет всегда меньше, чем самое маленькое из них. Для резисторов справедливо как для постоянного, так и для переменного тока. Катушки и конденсаторы имеют свои особенности.

Сила тока и напряжение

При расчете параллельного сопротивления резисторов необходимо знать, как рассчитать напряжение и силу тока. В этом случае нам поможет закон Ома, определяющий связь между сопротивлением, силой тока и напряжением.

Исходя из первой формулировки закона Кирхгофа, получим, что сумма сходящихся в одном узле токов равна нулю. Направление выбираем по направлению протекания тока. Таким образом, положительным направлением для первого узла можно считать входящий ток от источника питания. А отрицательными будут отходящие из каждого резистора. Для второго узла картина противоположна. Исходя из формулировки закона, получим, что суммарный ток равен сумме токов, проходящих через каждый параллельно соединенный резистор.

Итоговое напряжение же определяется по второму закону Кирхгофа. Оно одинаково для каждого резистора и равно общему. Эта особенность используется для подключения розеток и освещения в квартирах.

Пример расчета

В качестве первого примера приведем расчет сопротивления при параллельном соединении одинаковых резисторов. Сила тока, протекающая через них, будет одинаковой. Пример расчета сопротивления выглядит так:

По этому примеру прекрасно видно, что общее сопротивление ниже в два раза, чем каждое из них. Это соответствует тому, что суммарная сила тока в два раза выше, чем у одного. А также прекрасно соотносится с увеличением проводимости в два раза.

Второй пример

Рассмотрим пример параллельного соединения трех резисторов. Для расчета используем стандартную формулу:

Похожим образом рассчитываются схемы с большим количеством параллельно соединенных резисторов.

Пример смешанного соединения

Для смешанного соединения, например, представленного ниже, расчет будет производиться в несколько этапов.

Для начала последовательные элементы можно условно заменить одним резистором, обладающим сопротивлением, равным сумме двух заменяемых. Далее общее сопротивление считаем тем же способом, что и для предыдущего примера. Данный метод подойдет и для других более сложных схем. Последовательно упрощая схему, можно получить необходимое значение.

Например, если вместо резистора R3 будут подключены два параллельных, потребуется сначала рассчитать их сопротивление, заменив их эквивалентным. А далее то же самое, что и в примере выше.

Применение параллельной схемы

Параллельное соединение резисторов находит свое применение во многих случаях. Последовательное подключение увеличивает сопротивление, а для нашего случая оно уменьшится. Например, для электрической цепи требуется сопротивление в 5 Ом, но есть только резисторы на 10 Ом и выше. Из первого примера мы знаем, что можно получить в два раза меньшее значение сопротивления, если установить два одинаковых резистора параллельно друг другу.

Уменьшить сопротивление можно еще больше, например, если две пары параллельно соединенных резисторов соединить параллельно относительно друг друга. Можно уменьшить сопротивление еще в два раза, если резисторы имеют одинаковое сопротивление. Комбинируя с последовательным соединением, можно получить любое значение.

Второй пример - это использование параллельного подключения для освещения и розеток в квартирах. Благодаря такому подключению напряжение на каждом элементе не будет зависеть от их количества и будет одинаковым.

Еще один пример использования параллельного подключения - это защитное заземление электрооборудования. Например, если человек касается металлического корпуса прибора, на который произойдет пробой, получится параллельное соединения его и защитного проводника. Первым узлом будет место прикосновения, а вторым нулевая точка трансформатора. По проводнику и человеку будет течь разный ток. Величину сопротивления последнего принимают за 1000 Ом, хотя реальное значение зачастую гораздо больше. Если бы не было заземления, весь ток, протекающий в схеме, пошел бы через человека, так как он был бы единственным проводником.

Параллельное соединение может использоваться и для батарей. Напряжение при этом остается прежним, однако в два раза возрастает их емкость.

Итог

При подключении резисторов параллельно, напряжение на них будет одинаковым, а ток равен сумме протекающих через каждый резистор. Проводимость будет ровняться сумме каждого. От этого и получается необычная формула суммарного сопротивления резисторов.

Необходимо учитывать при расчете параллельного соединения резисторов то, что итоговое сопротивление будет всегда меньше самого маленького. Это также можно объяснить суммированием проводимости резисторов. Последняя будет возрастать при добавлении новых элементов, соответственно и проводимость будет уменьшаться.

1 мОм = 0,001 Ом. 1 кОм = 1 000 = 10³ Ом. 1 МОм = 1 000 000 = 10⁶ Ом.

Эквивалентное сопротивление R eq группы параллельно соединенных резисторов является величиной, обратной сумме величин, обратно пропорциональных сопротивлениям этих резисторов.

Иными словами, проводимость G параллельно соединенных резисторов равна сумме проводимостей этих резисторов:

Эта формула для R eq и используется в данном калькуляторе для расчетов. Например, общее сопротивление трех резисторов 10, 15 и 20 ом, соединенных параллельно, равно 4.62 Ом:

Если параллельно соединены только два резистора, формула упрощается:

Если имеется n соединенных параллельно одинаковых резисторов R , то их эквивалентное сопротивление будет равно

Отметим, что общее сопротивление группы из любого количества соединенных параллельно резисторов всегда будет меньше, чем наименьшее сопротивление резистора в группе и добавление нового резистора всегда приведет к уменьшению эквивалентного сопротивления.

Отметим также, что все резисторы, соединенные параллельно находятся под одним и тем же напряжением. Однако токи, протекающие через отдельные резисторы, отличаются и зависят от их сопротивления. Общий ток через группу резисторов равен сумме токов в отдельных резисторах.

При соединении нескольких резисторов параллельно всегда нужно учитывать их допуски и рассеиваемую мощность.

Примеры применения параллельного соединения резисторов

Одним из примеров параллельного соединения резисторов является шунт в приборе для измерения токов, которые слишком велики для того, чтобы быть напрямую измеренными прибором, предназначенным для измерения небольших токов или напряжений. Для измерения тока параллельно гальванометру или электронному прибору, измеряющему напряжение, подключается резистор с очень маленьким точно известным сопротивлением, изготовленный из материала со стабильными характеристиками. Этот резистор называется шунтом. Измеряемый ток протекает через шунт. В результате на нем падает небольшое напряжение, которое и измеряется вольтметром. Поскольку падение напряжения пропорционально току, протекающему через шунт с известным и точным сопротивлением, вольтметр, подключенный параллельно шунту, можно проградуировать непосредственно в единицах тока (амперах).

Параллельные и последовательные схемы часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет или он слишком дорог, если его приобретать в небольших количествах для массового производства . Например, если устройство содержит много резисторов по 20 кОм и необходим только один резистор 10 кОм. Конечно, несложно найти резистор на 10 кОм. Однако для массового производства иногда бывает лучше поставить два резистора на 20 кОм параллельно, чтобы получить необходимые 10 кОм. Это приведет к снижению себестоимости печатной платы, так как будет снижена оптовая цена компонентов, а также стоимость монтажа, так как будет уменьшено количество типоразмеров элементов, которые должен установить на плату автомат установки компонентов.

Параллельным соединением сопротивлений называется такое соединение, когда начала сопротивлений соединены в одну общую точку, а концы - в другую.

Для параллельного соединения сопротивлений характерны следующие свойства:

Напряжения на зажимах всех сопротивлений одинаковы:
U 1 = U 2 = U 3 = U;
- проводимость всех параллельно соединённых сопротивлений равна сумме проводимостей отдельных сопротивлений:
1/R = 1/R 1 + 1/R 2 + 1/R 3 = R 1 R 2 + R 1 R 3 + R 2 R 3 /R 1 R 2 R 3 ,
где R - эквивалентное (равнодействующее) сопротивление трёх сопротивлений (в данном случае R 1 , R 2 и R 3).

Чтобы получить сопротивление такой цепи, надо перевернуть дробь, определяющую величину её проводимости. Следовательно, сопротивление параллельного разветвления из трёх резисторов:
R = R 1 R 2 R 3 /R 1 R 2 + R 2 R 3 + R 1 R 3 .

Эквивалентным сопротивлением называется такое сопротивление, которым можно заменить несколько сопротивлений (включенных параллельно или последовательно), не изменяя величины тока в цепи.

Чтобы найти эквивалентное сопротивление при параллельном соединении, необходимо сложить проводимости всех отдельных участков, т.е. найти общую проводимость. Величина, обратная общей проводимости, и является общим сопротивлением.

При параллельном соединении эквивалентная проводимость равна сумме проводимостей отдельных ветвей, следовательно, эквивалентное сопротивление в этом случае всегда меньше наименьшего из параллельно включенных сопротивлений.

На практике могут быть случаи, когда цепь состоит из более, чем трёх параллельных ветвей. Все полученные соотношения остаются справедливыми и для цепей, состоящих из любого числа параллельно соединённых резисторов.

Найдём эквивалентное сопротивление двух параллельно включенных сопротивлений R 1 и R 2 (см. рис.). Проводимость первой ветви равна 1/R 1 , проводимость второй ветви - 1/R 2 . Общая проводимость:
1/R = 1/R 1 + 1/R 2 .

Приведём к общему знаменателю:
1/R = R 2 + R 1 /R 1 R 2 ,
отсюда эквивалентное сопротивление
R = R 1 R 2 /R 1 + R 2 .

Эта формула и служит для расчётов общего сопротивления цепи, состоящей из двух параллельно включенных сопротивлений.

Таким образом, эквивалентное сопротивление двух параллельно включенных сопротивлений равно произведению этих сопротивлений, делённому на их сумму.

При параллельном соединении n равных сопротивлений R1 эквивалентное сопротивление их будет в n раз меньше, т.е.
R = R 1 /n.

На схеме, изображённой на последнем рисунке, включено пять сопротивлений R 1 по 30 Ом каждое. Следовательно, общее сопротивление R будет
R = R 1 /5 = 30/5 = 6 Ом.

Можно сказать, что сумма токов, подходящих к узловой точке А (на первом рисунке), равна сумме токов, от неё отходящих:
I = I 1 + I 2 + I 3 .

Рассмотрим, как происходит разветвление тока в цепях с сопротивлениями R 1 и R 2 (второй рисунок). Так как напряжение на зажимах этих сопротивлений одинаково, то
U = I 1 R 1 и U = I 2 R 2 .

Левые части этих равенств одинаковы, следовательно, равны и правые части:
I 1 R 1 = I 2 R 2 ,
или
I 1 /I 2 = R 2 /R 1 ,
т.е. ток при параллельном соединении сопротивлений разветвляется обратно пропорционально сопротивлениям ветвей (или прямо пропорционально их проводимостям). Чем больше сопротивление ветви, тем меньше ток в ней, и наоборот.

Таким образом, из нескольких одинаковых резисторов можно получить общий резистор с бОльшей мощностью рассеивания.

При параллельном соединении неодинаковых резисторов в наиболее высокоомном резисторе выделяется наибольшая мощность.

Пример 1. Имеются два сопротивления, включенных параллельно. Сопротивление R 1 = 25 Ом, а R 2 = 50 Ом. Определить общее сопротивление цепи R общ.

Решение. Rобщ = R 1 R 2 /R 1 + R 2 = 25 x 50 / 25 + 50 ≈ 16, 6 Ом.

Пример 2. В ламповом усилителе имеются три лампы, нити накала которых включены параллельно. Ток накала первой лампы I 1 = 1 ампер, второй I 2 = 1, 5 ампера и третьей I 3 = 2, 5 ампера. Определить общий ток цепи накала ламп усилителя I общ.

Решение. I общ = I 1 + I 2 + I 3 = 1 + 1, 5 + 2, 5 = 5 ампер.

Параллельное соединение резисторов часто встречается в радиотехнической аппаратуре. Два или более резисторов включается параллельно в тех случаях, когда ток в цепи слишком большой и может вызвать чрезмерный нагрев резистора.

Примером параллельного соединения потребителей электрической энергии может служить включение электрических ламп обычной осветительной сети, которые соединяются параллельно. Достоинство параллельного соединения потребителей заключается в том, что выключение одного из них не влияет на работу других.

В электротехнике и электронике очень широко используются резисторы. Применяются они в основном для регулирования в схемах тока и напряжения. Основные параметры: электрическое сопротивление (R) измеряется в Омах, мощность (Вт) , стабильность и точность их параметров в процессе эксплуатации. Можно вспомнить ещё множество его параметров, — ведь это обычное промышленное изделие.

Последовательное соединение

Последовательное соединение — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток I=I1=I2 в такой цепи будет одинаковым в каждой её точке. Напротив, напряжение U1, U2 в различных её точках будет разным, причём работа по переносу заряда через всю цепь, складывается из работ по переносу заряда в каждом из резисторов, U=U1+U2. Напряжение U по закону Ома равно току, умноженному на сопротивление, и предыдущее выражение можно записать так:

где R — общее сопротивление цепи. То есть по простому идет падение напряжения в точках соединения резисторов и чем больше подключенных элементов, тем больше происходит падение напряжения

Отсюда следует, что
, общее значение такого соединения определяется суммированием сопротивлений последовательно. Наши рассуждения справедливы для любого количества последовательно соединяемых участков цепи.

Параллельное соединение

Объединим начала нескольких резисторов (точка А). В другой точке (В) мы соединим все их концы. В результате получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей.

Напряжения на всех резисторах будут одинаковы: U=U1=U2=U3, их концы — это точки А и В.

Заряды, прошедшие за единицу времени через каждый резистор, в сумме образуют заряд, прошедший через весь блок. Поэтому суммарный ток через изображенную на рисунке цепь I=I1+I2+I3.

Теперь, использовав закон Ома, последнее равенство преобразуется к такому виду:

U/R=U/R1+U/R2+U/R3.

Отсюда следует, что для эквивалентного сопротивления R справедливо:

1/R=1/R1+1/R2+1/R3

или после преобразования формулы мы можем получить другую запись, такого вида:
.

Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи.

Следует отметить, что обратная сопротивлению величина называется проводимостью. Можно сказать, что при параллельном соединении участков цепи складываются проводимости этих участков, а при последовательном соединении – их сопротивления.

Примеры использования

Понятно, что при последовательном соединении, разрыв цепи в одном месте приводит к тому, что ток перестает идти по всей цепи. Например, ёлочная гирлянда перестаёт светить, если перегорит всего одна лампочка, это плохо.

Но последовательное соединение лампочек в гирлянде даёт возможность использовать большое количество маленьких лампочек, каждая из которых рассчитана на напряжение сети (220 В), делённое на количество лампочек.


Последовательное соединение резисторов на примере 3-х лампочек и ЭДС

Зато при последовательном подключении предохранительного устройства его срабатывание (разрыв плавкой вставки) позволяет обесточить всю электрическую цепь, расположенную после него и обеспечить нужный уровень безопасности, и это хорошо. Выключатель в сеть питания электроприбора включается также последовательно.

Параллельное соединение также широко используется. Например, люстра – все лампочки соединены параллельно и находятся под одним и тем же напряжением. Если одна лампа перегорит, — не страшно, остальные не погаснут, они остаются под тем же самым напряжением.


Параллельное соединение резисторов на примере 3-х лампочек и генератора

При необходимости увеличения способности схемы рассеивать тепловую мощность, выделяющуюся при протекании тока, широко используются и последовательное, и параллельное объединение резисторов. И для последовательного, и параллельного способов соединения некоторого количества резисторов одного номинала общая мощность равна произведению количества резисторов на мощность одного резистора.

Смешанное соединение резисторов

Также часто используется смешанное соединение. Если,например необходимо получить сопротивление определенного номинала, но его нет в наличии можно воспользоваться одним из выше описанных способов или воспользоваться смешанным соединением.

Отсюда, можно вывести формулу которая и даст нам необходимое значение:

Rобщ.=(R1*R2/R1+R2)+R3

В нашу эпоху развития электроники и различных технических устройств в основе всех сложностей лежать простые законы, которые поверхностно рассматриваются на данном сайте и думаю, что вам они помогут успешно применять в своей жизни. Если например взять ёлочную гирлянду, то соединения лампочек идет друг за другом, т.е. грубо говоря это отдельно-взятое сопротивление.

Не так давно гирлянды стали соединятся смешанным способом. Вообще, в совокупности все эти примеры с резисторами взяты условно, т.е. любым элементом сопротивления может быть ток проходящий через элемент с падением напряжения и выделением тепла.

Практически каждому, кто занимался электрикой, приходилось решать вопрос параллельного и последовательного соединения элементов схемы. Некоторые решают проблемы параллельного и последовательного соединения проводников методом «тыка», для многих «несгораемая» гирлянда является необъяснимой, но привычной аксиомой. Тем не менее, все эти и многие другие подобные вопросы легко решаются методом, предложенным еще в самом начале XIX века немецким физиком Георгом Омом. Законы, открытые им, действуют и поныне, а понять их сможет практически каждый.

Основные электрические величины цепи

Для того чтобы выяснить, как то или иное соединение проводников повлияет на характеристики схемы, необходимо определиться с величинами, которые характеризуют любую электрическую цепь. Вот основные из них:

Взаимная зависимость электрических величин

Теперь необходимо определиться , как все вышеперечисленные величины зависят одна от другой. Правила зависимости несложны и сводятся к двум основным формулам:

  • I=U/R.
  • P=I*U.


Здесь I – ток в цепи в амперах, U – напряжение, подводимое к цепи в вольтах, R – сопротивление цепи в омах, P – электрическая мощность цепи в ваттах.

Предположим, перед нами простейшая электрическая цепь, состоящая из источника питания с напряжением U и проводника с сопротивлением R (нагрузки).

Поскольку цепь замкнута, через нее течет ток I. Какой величины он будет? Исходя из вышеприведенной формулы 1, для его вычисления нам нужно знать напряжение, развиваемое источником питания, и сопротивление нагрузки. Если мы возьмем, к примеру, паяльник с сопротивлением спирали 100 Ом и подключим его к осветительной розетке с напряжением 220 В, то ток через паяльник будет составлять:

220 / 100 = 2,2 А.

Какова мощность этого паяльника ? Воспользуемся формулой 2:

2,2 * 220 = 484 Вт.

Хороший получился паяльник, мощный, скорее всего, двуручный. Точно так же, оперируя этими двумя формулами и преобразуя их, можно узнать ток через мощность и напряжение, напряжение через ток и сопротивление и т.д. Сколько, к примеру, потребляет лампочка мощностью 60 Вт в вашей настольной лампе:

60 / 220 = 0,27 А или 270 мА.

Сопротивление спирали лампы в рабочем режиме:

220 / 0,27 = 815 Ом.

Схемы с несколькими проводниками

Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:

  1. Параллельное.
  2. Последовательное.
  3. Смешанное.

Параллельное соединение проводников

В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:

180 / 220 = 0,818 А.

А затем и ее сопротивление:

220 / 0,818 = 269 Ом.

Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток - втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.

Все лампы в нем соединены параллельно и подключены к сети. Получается, при параллельном соединении трех ламп общее сопротивление нагрузки уменьшилось втрое? В нашем случае - да, но он частный – все лампы имеют одинаковые сопротивление и мощность. Если каждая из нагрузок будет иметь свое сопротивление, то для подсчета общего значения простого деления на количество нагрузок мало. Но и тут есть выход из положения – достаточно воспользоваться вот этой формулой:

1/Rобщ. = 1/R1 + 1/R2 + … 1/Rn.

Для удобства использования формулу можно легко преобразовать:

Rобщ. = (R1*R2*… Rn) / (R1+R2+ … Rn).

Здесь Rобщ . – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.

Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.

Последовательное соединение

Теперь настала пора выяснить, как изменятся параметры цепи, если проводники (в нашем случае лампы) соединить последовательно.

Расчет сопротивления при последовательном соединении проводников исключительно прост:

Rобщ. = R1 + R2.

Те же три шестидесятиваттные лампы, соединенные последовательно, составят уже 2445 Ом (см. расчеты выше). Какими будут последствия увеличения сопротивления цепи? Согласно формулам 1 и 2 становится вполне понятно, что мощность и сила тока при последовательном соединении проводников упадет. Но почему теперь все лампы горят тускло? Это одно из самых интересных свойств последовательного подключения проводников, которое очень широко используется. Взглянем на гирлянду из трех знакомых нам, но последовательно соединенных ламп.

Общее напряжение, приложенное ко всей цепи, так и осталось 220 В. Но оно поделилось между каждой из ламп пропорционально их сопротивлению! Поскольку лампы у нас одинаковой мощности и сопротивления, то напряжение поделилось поровну: U1 = U2 = U3 = U/3. То есть на каждую из ламп подается теперь втрое меньшее напряжение, вот почему они светятся так тускло. Возьмете больше ламп – яркость их упадет еще больше. Как рассчитать падение напряжения на каждой из ламп, если все они имеют различные сопротивления? Для этого достаточно четырех формул, приведенных выше. Алгоритм расчета будет следующим:

  1. Измеряете сопротивление каждой из ламп.
  2. Рассчитываете общее сопротивление цепи.
  3. По общим напряжению и сопротивлению рассчитываете ток в цепи.
  4. По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.

Хотите закрепить полученные знания ? Решите простую задачу, не заглядывая в ответ в конце:

В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?

Смешанное соединение

С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?

Смешанное соединение проводников

Как определить общее сопротивление цепи? Для этого вам понадобится разбить схему на несколько участков. Вышеприведенная конструкция достаточно проста и участков будет два - R1 и R2,R3. Сначала вы рассчитываете общее сопротивление параллельно соединенных элементов R2,R3 и находите Rобщ.23. Затем вычисляете общее сопротивление всей цепи, состоящей из R1 и Rобщ.23, соединенных последовательно:

  • Rобщ.23 = (R2*R3) / (R2+R3).
  • Rцепи = R1 + Rобщ.23.

Задача решена, все очень просто. А теперь вопрос несколько сложнее.

Сложное смешанное соединение сопротивлений

Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:

Rобщ.245 = R2+R4+R5.

Теперь параллельно к Rобщ.245 подключаем R3:

Rобщ.2345 = (R3* Rобщ.245) / (R3+ Rобщ.245).

Rцепи = R1+ Rобщ.2345+R6.

Вот и все!

Ответ на задачу о елочной гирлянде

Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.

Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.