Настройка Wi-Fi

Скачать презентацию на тему архитектура фон неймана. Презентация на тему "джон фон нейман"

Скачать презентацию на тему архитектура фон неймана. Презентация на тему

Слайд 2

Текст слайда:

Слайд 3


Текст слайда:

Слайд 4


Текст слайда:

Ю. Вигнер, школьный товарищ фон Неймана, лауреат Нобелевской премии, говорил, что его ум - это "совершенный инструмент, шестеренки которого подогнаны друг к другу с точностью до тысячных долей сантиметра"

Слайд 5

Текст слайда:

Слайд 6

Текст слайда:

Слайд 7


Текст слайда:

Слайд 8

Текст слайда:

Отчет, озаглавленный "Предварительный доклад о машине EDVAC" представлял собой прекрасное описание не только самой машины, но и ее логических свойств.

Слайд 9


Текст слайда:

Увидев, сколько шума наделал фон Нейман и его "Предварительный доклад", Моучли и Эккерт были глубоко возмущены. В свое время по соображениям секретости они не смогли опубликовать никаких сообщений о своем изобретении. И вдруг Голдстейн, нарушив секретность, предоставил трибуну человеку, который только-только присоединился к проекту. Споры о том, кому должны принадлежать авторские права на EDVAC и ENIAC привели в конце концов к распаду рабочей группы.

Слайд 10


Текст слайда:

Слайд 11


Текст слайда:

Использование двоичной системы счисления в вычислительных машинах

Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.

Слайд 12


Текст слайда:

Однотипность кодирования информации

Разнотипные слова информации различаются по способу использования, но не способами кодирования.

Слайд 13


Текст слайда:

Программное управление ЭВМ

Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.

Слайд 14

Текст слайда:

Память компьютера используется не только для хранения данных, но и программ

При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.

Слайд 15


Текст слайда:

Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы

В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.

Слайд 16


Текст слайда:

Возможность условного перехода в процессе выполнения программы.

Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

Слайд 17


Текст слайда:

Алгоритм реализуется через последовательное выполнение команд

Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой. Адрес следующей команды однозначно определяется в процессе выполнения текущей команды (возможны условные переходы). Процесс вычисления продолжается до выполнения команды, предписывающей завершение вычисление.


Джон фон Нейман (1903 - 1957 гг.) - венгеро-американский математик еврейского происхождения, сделавший важный вклад в квантовую физику, квантовую логику, функциональный анализ, теорию множеств, информатику, экономику и другие отрасли науки.


Архитектура ЭВМ – это внутренняя структура в машине, ее логическая организация, определяющая процесс обработки и методы кодирования данных, состав, назначение, принципы взаимодействия технических средств и программного обеспечения.


Процессор

В 1945 году Джон фон Нейман создает архитектуру ЭВМ.

Машина фон Неймана состоит из запоминающего устройства (памяти) - ЗУ, арифметико-логического устройства - АЛУ, устройства управления – УУ, а также устройств ввода и вывода.

Устройство ввода

Устройство вывода



В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

Герман Голдстайн

Артур Беркс

Джон фон Нейман



В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления.

Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.


Системы счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная


Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.


При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.


В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.


Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.


Достижения Джона фон Неймана.

Джон фон Нейман был удостоен высших академических почестей. Он был избран членом Академии точных наук (Лима, Перу), Американской академии искусств и наук, Американского философского общества, Ломбардского института наук и литературы, Нидерландской королевской академии наук и искусств, Национальной академии США, почетным доктором многих университетов США и других стран.



Слайд 2

Архитектура фон Неймана Принципы Джона фон Неймана Машина фон Неймана Краткая биография Джона фон Неймана Достижения Джона фон Неймана

Слайд 3

Архитектура фон Неймана.

Архитектура фон Неймана - широко известный принцип совместного хранения программ и данных в памяти компьютера.

Слайд 4

Когда говорят об архитектурефон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Слайд 5

Принципы Джона фон Неймана.

“Универсальная вычислительная машина должна содержать несколько основных устройств: арифметики, памяти, управления и связи с оператором. Нужно, чтобы после начала вычислений, работа машины не зависела от оператора”. “Необходимо, чтобы машина могла запоминать некоторым образом не только цифровую информацию, требуемую для данного вычисления, но также и команды, управляющие программой, с помощью которой должны производиться эти вычисления”.

Слайд 6

“Если приказы машине представить с помощью числового кода и если машина сможет каким-то образом отличать число от приказа, то память можно использовать для хранения как чисел, так и приказов” (принцип хранимой программы).

Слайд 7

“Помимо памяти для приказов, должно существовать еще устройство, способное автоматически выполнять приказы, хранящиеся в памяти”.

Слайд 8

“Поскольку машина является вычислительной, в ней должно быть арифметическое устройство, способное складывать, вычитать, умножать и делить”. “Наконец, должно существовать устройство ввода и вывода, с помощью которого осуществляется связь между оператором и машиной”.

Слайд 9

Машина должна работать с двоичными числами, быть электронной, а не механической и выполнять операции последовательно, одна за другой.

Слайд 10

Таким образом, “по фон Нейману” главное место среди функций, выполняемых компьютером, занимают арифметические и логические операции. Для них предусмотрено арифметико-логическое устройство.

Слайд 11

Управление работой АЛУ - и вообще всей машины - осуществляется с помощью устройства управления. (Как правило, в компьютерах устройство управления и арифметико-логическое устройство объединены в единый блок - центральный процессор.) Роль хранилища информации выполняет оперативная память. Здесь хранится информация как для арифметико-логического устройства (данные), так и для устройства управления.

Слайд 12

Машина фон Неймана.

  • Слайд 13

    Краткая биография Джона фон Неймана.

    Американский математик и физик Джон фон Нейман был родом из Будапешта. Своими необычайными способностями этот человек стал выделяться очень рано: в шесть лет он разговаривал на древнегреческом языке, а в восемь освоил основы высшей математики. До 1930-х годов работал в Германии. (1903-1957)

    Слайд 14

    Он выполнял фундаментальные исследования, связанные с математической логикой, теорией групп, алгеброй операторов, квантовой механикой, статистической физикой, развил теорию игр и теорию автоматов.

    Слайд 15

    В 1945 году был опубликован доклад фон Неймана, вкотором он наметил основные принципы построения и компоненты современного компьютера. Идеи, отраженные в докладе, развивались, и примерно через год появилась статья “Предварительное рассмотрение логической конструкции электронного вычислительного устройства”. Здесь важно, что авторы, отвлекшись от электронных ламп и электрических схем,сумели обрисовать формальную организацию компьютера.

    Слайд 16

    Достижения Джона фон Неймана.

    Джон фон Нейман был удостоен высших академических почестей. Он был избран членом Академии точных наук (Лима, Перу), Американской академии искусств и наук, Американского философского общества, Ломбардского института наук и литературы, Нидерландской королевской академии наук и искусств, Национальной академии США, почетным доктором многих университетов США и других стран. Джон фон Нейман умер 8 февраля 1957 года.

    Слайд 17

    Архитектурные принципы организации ЭВМ, указанные Джоном фон Нейманом, долгое время оставались почти неизменными, и лишь в конце 1970-х годов в архитектуре суперЭВМ и матричных процессоров появились отклонения от этих принципов. .

    Посмотреть все слайды

    «Джон фон Нейман» - Джон фон Нейман придумал схему постройки компьютера. Цикл выполняется неизменно. Команды центрального процессора. Архитектура фон Неймана. Джон фон Нейман. Венгро-американский математик. Праотец современной архитектуры компьютеров. Этапы выполнения цикла. Процессор. Скорость перехода.

    «Этапы развития ЭВМ» - Информатика в лицах. Электронно-вычислительный этап. Этап. Машина Colossus. Говард Эйкен. Маршрут. Период. Он быстрее человека. Электронно-вычислительный этап. Годы применения. Первая электронная вычислительная машина. Создана ЭВМ. Фашистский режим. Прогресс наук и машин. Механический период. Вычислительная техника и человек.

    «Первые механические машины» - В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке. В 1977 году появился первый массовый персональный компьютер Apple II, что явилось предвестником бума всеобщей компьютеризации населения. В 1950-х - 1960-х годах на западном рынке появилось несколько марок подобных устройств.

    «Первые компьютеры» - Первый макет электронного лампового компьютера, Дж. Athlon XP (Pentium 4) 2003. Саламинская доска. Компьютеры IBM. о. Саламин в Эгейском море (300 лет до н.э.). Magic mouse (фирма apple). ILLIAC-IV (США) 20 млн. оп/c многопроцессорная система 1976. Intel 4004 4-битные данные 2250 транзисторов 60 тыс.

    «Счётные машины» - Детище Джеймса. Служащие. Кассовый аппарат. Зарождение счёта. Счёт нужен был всем поколениям человечества. Работающий программируемый компьютер. Работая с перфолентой. Колоссус. Серийные электронные компьютеры. Паскаль. Русские счеты. Цельные кукурузные початки. История происхождения счетных машин. У китайцев в основе счета лежала не десятка, а пятерка.

    «История развития поколений вычислительной техники» - Арабский ученый. Основные даты. Разработки отечественной вычислительной техники. Стержни. Сергей Александрович Лебедев. Индийские ученые. Американский предприниматель. Джил Амдал. Болгарин. Акции компании. Первые представители компьютеров III поколения. Быстродействующая ЭВМ. Поколения ЭВМ. Автоматическое вычислительное устройство.