Интернет

Улучшаем интерфейс Java-приложения. Для чего в Java нужны интерфейсы

Улучшаем интерфейс Java-приложения. Для чего в Java нужны интерфейсы

В некоторых ситуациях, в процессе разработки программного обеспечения, возникает необходимость, когда разным группам программистов надо «договориться» о том, как их программы будут взаимодействовать. Каждая группа должна иметь возможность писать свой код не зависимо от того, как пишет его другая группа. Интерфейсы и есть этот «договор». Мы уже пользовались интерфейсами в уроке .
В этом уроке мы изучим их подробнее: для чего они нужны, как их объявлять и т.д.

Представьте себе будущее, где автомобилями управляют компьютеры без участия человека. Производители автомобилей пишут программное обеспечение (на Java, конечно 🙂), которое управляет машиной — остановиться, поехать, повернуть и т.д. Другие разработчики делают системы, которые принимают данные GPS (Global Positioning System) и используют эти данные для управления автомобилем. Производители автомобилей публикуют интерфейс-стандарт, который описывает методы для управления машиной. Таким образом сторонние разработчики могут знать какие методы вызывать, чтобы заставить автомобиль двигаться, а производители автомобилей могут изменять внутреннюю реализацию своего продукта в любое время. Ни одна из групп разработчиков не знает как написаны их программы.

Интерфейсы Java

Интерфейсы в Java во многом напоминают классы, но могут содержать только константы, сигнатуры методов и . В интерфейсах нет описания методов. Нельзя создать объект типа интерфейса (но можно использовать в качестве типа — интерфейсные ссылки, об этом позже) — интерфейсы могут только реализовываться некоторым классом или наследоваться другим интерфейсом. Объявление интерфейса очень похоже на объявление класса:

Public interface OperateCar { // константы, если есть // enum перечисление направлений RIGHT, LEFT // сигнатуры методов int turn(Direction direction, double radius, double startSpeed, double endSpeed); int changeLanes(Direction direction, double startSpeed, double endSpeed); int signalTurn(Direction direction, boolean signalOn); int getRadarFront(double distanceToCar, double speedOfCar); int getRadarRear(double distanceToCar, double speedOfCar); }

Сигнатуры методов объявляются без скобок и заканчиваются точкой с запятой. Для использования интерфейса вы должны написать класс, который будет реализовывать ваш интерфейс. Класс который реализует интерфейс, должен описывать все методы, объявленные в интерфейсе. Например:

Public class OperateBMW760i implements OperateCar { // здесь методы интерфейса OperateCar с описанием // например: int signalTurn(Direction direction, boolean signalOn) { // поворот RIGHT или LEFT поворотник on или off } }

В примере выше — производители автомобилей пишут программное обеспечение каждый по-своему, но с одинаковым интерфейсом. Сторонние разработчики — клиенты интерфейса, могут писать собственно ПО с использованием методов, объявленных в интерфейсе.

Интерфейсы в качестве API

Пример с автомобилями показывает как интерфейсы могут использоваться в качестве API (Application Programming Interface ) или интерфейса программирования приложений. Использование API — обычная практика при разработке коммерческого ПО. Обычно компании-разработчики продают программное обеспечение, содержащее набор методов, которые другие компании хотят использовать в своих продуктах.

Интерфейсы и множественное наследование

Интерфейсы играют еще одну важную роль в языке программировния Java. Java не разрешает множественного наследования, но интерфейсы предоставляют альтернативу. В Java класс может наследовать только один класс, но может реализовывать много интерфейсов. Таким образом объекты могут иметь несколько типов: тип их собственного класса и типы всех реализуемых интерфейсов. При создании объектов класса в качестве типа может указываться имя реализованного в классе интерфейса. Другими словами, если класс реализует интерфейс, то на объект этого класса можно присвоить интерфейсной переменной — переменной, в качестве типа которой указано имя соответствующего интерфейса.

Объявление интерфейса

Объявление интерфейса содержит ключевое слово interface , имя интерфейса, список родительских интерфейсов через запятую (если есть) и тело интерфейса. Например:

Public interface GroupedInterface extends Interface1, Interface2, Interface3 { // число e double E = 2.718282; // сигнатуры методов void doSomething (int i, double x); int doSomethingElse(String s); }

Модификатор доступа public означает что интерфейс может быть использован любым классом в любом пакете. Если не определить интерфейс как публичный, он будет доступен только в рамках своего пакета. Интерфейс может наследовать другие интерфейсы, как классы могут наследовать другой класс. В отличие от классов, интерфейсы могут наследовать любое количество других интерфейсов.

Реализация интерфейса

Для объявления класса, реализующего интерфейс, вы должны использовать ключевое слово implements после которого перечисляются интерфейсы.
Класс может реализовывать много интерфейсов. Объявление реализуемых интерфейсов идет после объявления наследуемого (extends) класса (если есть).

Пример простого интерфейса

Рассмотрим интерфейс, который определяет метод для сравнения объектов.

Public interface Relatable { // this (объект, который вызывает isLargerThan) // объект-параметр должен быть того же класса // возвращет 1, 0, -1 // если объект больше, равен или // меньше чем other public int isLargerThan(Relatable other); }

Чтобы иметь возможность сравнивать объекты мы должны реализовать интерфейс Relatable . Любой класс может реализовать интерфейс Relatable , если есть способ сравнить объекты. Для строк сравнивать можно количество символов, для книг — количество страниц, для студентов — вес и т.д. Для плоских геометрических фигур отличной характеристикой будет площадь, для трехмерных — объем. Все эти классы могут реализовать метод isLargerThan() . Если вы знаете, что класс реализует интерфейс Relatable , то вы смело можете сравнивать объекты этого класса.

Реализация интерфейса Relatable

Напишем класс Rectangle , реализующий интерфейс Relatable .

Public class RectanglePlus implements Relatable { public int width = 0; public int height = 0; public Point origin; // четыре конструктора public RectanglePlus() { origin = new Point(0, 0); } public RectanglePlus(Point p) { origin = p; } public RectanglePlus(int w, int h) { origin = new Point(0, 0); width = w; height = h; } public RectanglePlus(Point p, int w, int h) { origin = p; width = w; height = h; } // метод для передвижения прямоугольника public void move(int x, int y) { origin.x = x; origin.y = y; } // вычисление площади public int getArea() { return width * height; } // метод для реализации интерфейса Relatable public int isLargerThan(Relatable other) { RectanglePlus otherRect = (RectanglePlus)other; if (this.getArea() < otherRect.getArea()) return -1; else if (this.getArea() > otherRect.getArea()) return 1; else return 0; } }

Так как класс RectanglePlus реализует Relatable , размеры любых двух объектов типа RectanglePlus можно сравнивать.

Метод isLargerThan в качестве аргумента принимает объекты типа Relatable . При реализации метода в примере выше мы используем приведение типов, потому что компилятор не поймет что, other — объект типа RectanglePlus и вызов метода other.getArea() без приведения типов приведет к ошибке.

Использование интерфейса в качестве типа

Когда вы объявляете интерфейс, вы объявляете новый ссылочный тип данных. Вы можете использовать название интерфейса в качестве типа данных так же как и любые другие типы. Если вы объявляете переменную типа интерфеса, то вы можете можете присвоить ей объект любого класса, который реализует этот интерфейс.

Рассмотрим пример — метод, который ищет больший объект из двух любых объектов, класс которых реализует интерфейс Relatable:

Public Object findLargest(Object object1, Object object2) { Relatable obj1 = (Relatable)object1; Relatable obj2 = (Relatable)object2; if ((obj1).isLargerThan(obj2) > 0) return object1; else return object2; }

Приведением object1 к типу Relatable , мы делаем возможным вызов метода isLargerThan .

Так же для любого класса, реализующего интерфес Relatable, можно реализвать методы:

Public Object findSmallest(Object object1, Object object2) { Relatable obj1 = (Relatable)object1; Relatable obj2 = (Relatable)object2; if ((obj1).isLargerThan(obj2) < 0) return object1; else return object2; } public boolean isEqual(Object object1, Object object2) { Relatable obj1 = (Relatable)object1; Relatable obj2 = (Relatable)object2; if ((obj1).isLargerThan(obj2) == 0) return true; else return false; }

Переопределение интерфейсов

Допустим, вы написали интерфейс DoIt:

Public interface DoIt { void doSomething(int i, double x); int doSomethingElse(String s); }

Предположим, позже, вы захотели добавить в него третий метод:

Public interface DoIt { void doSomething(int i, double x); int doSomethingElse(String s); boolean didItWork(int i, double x, String s); }

Если вы сделаете это изменение, то все классы, реализующие этот интерфейс сломаются, т.к. они перестанут его реализовывать.

Старайтесь избегать подобных изменений и продумывать интерфейс полностью изначально. Но часто на практике это невозможно и выходом из этой ситуации может быть определение нового интерфейса DoItPlus , который расширяет DoIt:

Public interface DoItPlus extends DoIt { boolean didItWork(int i, double x, String s); }

Теперь пользователи вашего интерфейса смогут перейти к использованию нового интерфейса или остаться со старым без боли.

public void paint(Graphics g)

// Рисование изображения типа Image

g.drawlmage(picture, 35, 35, this ); // this -ссылка апплета на себя

Когда требуется устранить неоднозначность при использовании двух переменных с одним именем, одна из которых является полем класса, другая - локальной переменной.

Обращение к полю класса в этом случае: this.имя_поля_класса

 super - используется как ссылка на экземпляр суперклассас целью обеспечения доступа к нестатическимполям и методам суперкласса.

Доступ кполю суперкласса обеспечивается выражением:super.имя_поля_класса

class ClassA { float x;

class ClassB extends ClassA { int x;

public void method l(int x) {

int iX1 = x; // присваивание значения параметра метода int iX2 = this.x; // присваивание значения поля данного класса float fX = super.x; // присваивание значения поля суперкласса

Доступ к методу суперкласса обеспечивается выражением:super.имя_метода_класса()

Возможность обращения к методу суперкласса полезна при переопределении метода. Если необходимо, в теле переопределенного метода в классе-потомке можно организовать вызов кода старого метода из суперкласса. Например:

public void method2() {...} ...

class ClassB extends ClassA {

public void method2() { super.method2();

Использование this и super в конструкторах - см. пример ConstrDemo.java с комментариями.

Интерфейсы в Java

Технология множественного наследования , реализованная в языке C++, позволяет некоторому классу наследовать различные наборы свойств от нескольких суперклассов, однако создает множество проблем для разработчиков компиляторов, часто служит причиной появления в программах скрытых ошибок. При разработке Java специалисты Sun предпочли исключить из этого языка возможность прямого множественного наследования классов и использоватьинтерфейсы .

Интерфейс - это подобие абстрактного класса, особый вид класса без реализации. Интерфейс

реализуется классом.

Объекты одного класса используют общее поведение (методы). Интерфейс позволяетдополнить описание поведения объекта новыми функциональными возможностями, объявляя набор методов, которые должен поддерживать класс,

реализующий данный интерфейс. Реализация методов осуществляется в классе, а не в интерфейсе.

Скачано с сайта http://ivc.clan.su

Интерфейс представляет собой набор методов без реализации (без тел), который впоследствии может бытьреализован классом.В интерфейсе указывается, что некоторый класс должен делать, но не

как он это делает . Для реализации интерфейса класс должен определить полный набор методов,

которые объявлены в интерфейсе . При этом класс может реализовывать методы интерфейса любым способом, наиболее предпочтительными точки зрения разработчика класса.

Класс в Java может реализовывать несколько интерфейсов, и один интерфейс -использоваться несколькими классами.

Таким образом, интерфейсы можно использовать для придания определенных функциональных возможностей (иными словами, способностей - "ability " - выполнять определенные функции) самым разнообразным классам:как классам,

которые исходно совершенно не связаны между собой, так и классам, связанным между собой иерархией наследования. В Java есть немало интерфейсов, названии которых имеется характерный суффикс " able " (например, Runnable).

Определение интерфейса , как и определение класса в Java, содержит два компонента:

объявление и тело.

Объявление интерфейса имеет вид:

Interface Имя_интерфейса *extends Список_суперинтерфейсов+

1. Модификаторы интерфейса

Public - спецификатордоступа - указывает, что к данному интерфейсу возможен доступ из других пакетов. В случаеотсутствия спецификатора public , доступ разрешен только внутри пакета, в котором интерфейс находится.

Подобно классам public, интерфейс public должен описываться в файле с именем Имя_интерфейса.jаvа.

Подразумевается, что каждый интерфейс имеет модификатор реализацииabstract ,который не указывается при объявлении .

2. Имя интерфейса

Формируются по тем же правилам, которые приняты для имен класса. Рекомендуется имя любого интерфейса, как и класса, начинать с прописной буквы!

3. Спецификация суперинтерфейсов

Суперинтерфейсы указываются ключевым словом extends .

Производный интерфейс не должен содержать описания реализаций не только собственных методов, но и методов суперинтерфейсов.

Любой класс, реализующий производный интерфейс, должен определить тела всех методов, объявленных как в данном производном интерфейсе, так и в суперинтерфейсе(ах).

Тело интерфейса заключено в,- и может включать только объявленияметодов и объявления констант (static final полей).

Объявления констант

Каждая переменная (поле) интерфейса по умолчанию считается переменной с модификаторамиpublic ,static иfinal . Эти модификаторы не обязательно указывать при объявлении, однако на практике полезно указывать их явно в качестве постоянного напоминания о статусе поля

(открытая статическая константа ) себе и другим программистам.

Инициализация констант выполняется при объявлении.

Поскольку константы являются открытыми, их можно использовать в любых классах, реализующих данный интерфейс. Если интерфейс объявлен какpublic , константы доступны любому классу, независимо от пакета.

Обращение к константе: Имя_интерфейса.Имя_константы

Объявления методов

Объявление метода, после которого ставится знак ";" , имеет вид:

.getTitle() + ", цена за единицу товара: " + goods[i].getPrice(1) + ", описание: " + goods[i].getDescription() + "." ); }

об использовании интерфейсов

Используя интерфейс, программист получает возможность задать описание того, «что класс делает», не заботясь о деталях, «как он это делает». Каждый класс, реализующий интерфейс, сам может выбирать способы реализации.

Приемы программирования: пример применения интерфейсов

Предположим, в нашей программе есть объект, который следит за текущим временем и каждую минуту (когда время меняется) «сообщает» об этом другим объектам. Это очень логичный и удобный способ организации программы, в которой объекты должны что-то делать при наступлении определенного времени (или события). Гораздо лучше, чем учить каждый объект следить за временем.

Один объект может «сообщить» что-то другому объекту, вызвав его метод. Пусть информацию о времени обрабатывает метод sayTime(int hours, int minutes) . Для того, чтобы вызвать этот метод у какого-то объекта, надо быть уверенным, что такой метод описан в классе этого объекта. Можно определить интерфейс, скажем TimeListener , и реализовать его во всех классах, которым нужно следить за временем, не вмешиваясь в основную иерархию этих классов. И тогда у нас может быть разновидность умной собаки, которая лает ровно в полночь и разновидность кнопки, которая может автоматически срабатывать через заданный промежуток времени.

Класс, следящий за временем будет иметь внутренний список объектов типа TimeListener , методы для добавления и удаления объектов в этот список (те объекты, которые «захотят» следить за временем, вызовут этот метод) и каждую минуту объект этого класса (достаточно одного такого объекта на всю программу) будет вызывать метод sayTime(int hours, int minutes) для каждого из объектов в этом списке.

Пакеты и области видимости

Пакеты

Пакет - это группа взаимосвязанных классов. Взаимосвязь может быть любого типа: тесно взаимодействующие друг с другом классы, классы, выполняющие одни и те же функции или классы одного разработчика.*

Каждый пакет имеет имя . Имя представляет собой обычный идентификатор Java. Особенность заключается в том, что это имя одновременно является названием папки, в которой хранятся файлы классов, входящие в пакет. А точка в имени преобразуется в разделитель имен файловой системы. То есть пакет с именем java.util будет представлен папкой util , находящейся внутри папки java .

В папке хранятся файлы с расширением.java , содержащие описания классов, входящих в пакет. В начале такого файла должен стоять оператор package , после которого записывается имя пакета.

Импортирование пакетов

Полное имя класса состоит из идентификатора, указанного после ключевого слова class и предшествующего ему имени пакета, в котором этот класс находится. Классы ClassA и ClassB , описанные в пакете package1 , имеют полные имена package1.ClassA и package1.ClassB .

Классы, находящиеся внутри одного пакета могут пользоваться сокращенными именами друг друга (что мы до сих пор всегда и делали). В одном из методов класса ClassA можно определить переменную класса ClassB , создать объект класса ClassB и вызвать его метод (например, f()) командами:

ClassB varb = new ClassB(); varb.f();

вместо команд:

Package1.ClassB varb = new package1.ClassB(); varb.f();

Если классы находятся в разных пакетах, для обращения друг к другу они должны пользоваться полными именами.

Это ограничение можно обойти, если импортировать нужный класс из другого пакета.

Для импортирования класса используется ключевое слово import , после которого указывается его полное имя. Например, можно импортировать класс Vector из пакета java.util:

import java.util.Vector;

Теперь можно пользоваться именем Vector вместо java.util.Vector .

Чтобы импортировать пакет полностью (то есть, ко всем классам пакета можно будет обращаться с помощью сокращенного имени), после имени пакета ставится точка и звездочка. Так, команда

import java.util.*;

импортирует все файлы из пакета java.util . Но таким способом пользоваться не рекомендуется, так как при этом из разных пакетов могут импортироваться файлы с одинаковыми именами.*

Eclipse позволяет облегчить жизнь разработчику. Если в программе используется класс с неизвестным именем, на полях редактора кода появляется значок предупреждения об ошибке. Щелчок по этому значку выводит варианты решения проблемы. Например, создать новый класс. Или импортировать существующий (при этом выводится список всех доступных пакетов, содержащих класс с таким именем). Если выбрать вариант "Import" соответствующая директива import будет автоматически добавлена в начало пакета.

Все классы, находящиеся в одном пакете, должны иметь разные имена, иначе возникнет ошибка. К классам, которые находятся в разных пакетах, такого требования предъявить, очевидно, невозможно (поскольку пакеты могут разрабатываться совершенно разными людьми).

Поэтому при импортировании нескольких пакетов, в которых содержатся классы с одинаковыми именами, может возникнуть путаница в этих именах. Однако Java справляется с этой проблемой, «отдавая» сокращенное имя первому из импортированных классов. К другому классу можно обратиться с помощью его полного имени.

Если же совпадут и имена пакетов и имена классов, проблема окажется неразрешимой. А поскольку программист может пользоваться множеством пакетов разных разработчиков, такая ситуация вполне вероятна, если разработчики не договорятся. Поэтому существует соглашение об именовании пакетов (особенно тех, которые впоследствии могут распространяться).

Рекомендуется для названия пакета использовать адрес сайта фирмы-разработчика. Адреса сайтов есть практически у всех серьезных разработчиков программ (и, что самое главное, адреса сайтов не могут совпадать). Адрес сайта рекомендуется записывать наоборот. То есть, если адрес - sun.com, то имя пакета должно начинаться с com.sun. Кстати, таких пакетов довольно много в вашей системе, их поставляет фирма Sun Microsystems, разработчик языка Java.

Файловая структура Java-проекта

Итак, Java-проект может состоять из нескольких пакетов. Каждому пакету в файловой структуре операционной системы соответствует одна папка.

В пакете могут содержаться классы и интерфейсы. Они хранятся в файлах с расширением.java.

В каждом файле с расширением.java обязательно описывается один класс или интерфейс, название которого совпадает с названием этого файла. Он должен быть объявлен как открытый (перед объявлением класса указывается ключевое слово public ). Все остальные классы и интерфейсы из этого файла являются закрытыми - их нельзя использовать за пределами этого пакета (ни с помощью длинного, ни с помощью короткого имени). Поэтому с классом Dog , который мы разрабатывали на прошлом занятии, можно работать исключительно в пределах его пакета.

Все классы и интерфейсы, которые впоследствии предполагается использовать в других пакетах, должны быть объявлены открытыми (а значит, находиться в отдельных файлах).

Eclipse создает новый файл с расширением.java автоматически, если выполнить команду New --> Class или New --> Interface .

Файл с расширением.java - это обычный текстовый файл. Его можно открывать и редактировать как с помощью Eclipse, так и в любом другом текстовом редакторе (даже в Блокноте).

Для каждого класса (открытого или закрытого) Java создает файл с расширением.class . Это двоичный файл, в котором хранятся команды на внутреннем языке Java. Эти файлы недоступны для редактирования в Eclipse (если попытаться их открыть, Eclipse на самом деле откроет соответствующий.java -файл). Чтобы они не мешали, их можно скрыть с помощью фильтра. Для этого в представлении Navigator нажмите маленькую треугольную кнопку справа (menu ) и выберите команду Filters... В открывшемся окне поставьте галочку напротив расширения.class , чтобы скрыть из панели Navigator соответствующие файлы.

Области видимости классов

Область видимости класса - это участок программы, в котором можно объявлять переменные и создавать объекты этого класса.

об объектах "невидимых" классов

Объект, созданный в области видимости своего класса, может продолжать свое существование и за ее пределами. Но переменные типа "невидимого" класса объявить нельзя, поэтому обращаться к такому объекту можно только с помощью переменных типов "видимых" классов-предков. Следовательно, и вызывать можно лишь те методы объекта, которые его класс унаследовал от соответствующего предка.

Обычный класс всегда виден в пределах своего пакета. Если класс является открытым, он виден также из других пакетов (в этом случае к нему надо обращаться, используя полное имя или, если предварительно импортировать пакет, сокращенное).

Вложенные классы, объявленные без модификатора public , видны только в методах содержащего их класса. Классы, описанные в методах, видны только в пределах этих методов.

Анонимные классы видны лишь в пределах команды, которой они создаются.

Области видимости членов класса

Члены класса (методы и атрибуты), объявленные как public , видны везде, где виден сам класс.

Члены класса, объявленные как protected видны в самом классе и его потомках.

Члены класса, объявленные как private , видны только в пределах класса.

Если к члену класса не применяется ни один из модификаторов public , private , protected , он виден в пределах текущего пакета.

"Видимость" поля означает, что его можно использовать в выражениях, передавать в качестве аргумента в методы, изменять его значение с помощью присваивания.

"Видимость" метода означает возможность его вызова.

Для обращения к полям и методам класса используется полное имя, состоящее из имени объекта соответствующего класса и собственно имени атрибута или метода. В теле метода того же класса имя объекта можно опускать (если подразумевается this - объект, для которого вызван данный метод).

Области видимости переменных

Переменные, объявленные в теле метода, видны от места объявления до конца блока, в котором это объявление находится. Границы блока задаются фигурными скобками {} . Поэтому в следующем примере:

{ int x = 0; } { int x = 2; }

используются две разные переменные x (первая переменная, равная 0, перестает существовать за границами своего блока).

Переменные, являющимися параметрами метода, видны во всем теле метода.

Перечисленные переменные называются локальными переменными . Двух локальных переменных с одинаковыми именами и перекрывающимися областями видимости быть не должно. Нельзя, например, объявить две переменных следующим образом:

int x = 0; { int x = 2; }

Нельзя, в частности, объявлять в теле метода переменную, совпадающую (по имени) с одним из параметров метода.

Конфликты имен

Конфликт имен возникает, если в одной области видимости оказываются два объекта с одинаковыми именами, причем такая ситуация является в языке разрешенной (в противном случае это не конфликт имен, а ошибка в программе).

Конфликт имен возникает, когда импортируются два пакета, содержащие классы с одинаковыми именами.

В этом случае Java отдает предпочтение классу, который был импортирован первым. Для обращения ко остальным классам следует использовать их полные имена.

Java "просматривает" имена классов в следующем порядке. Сначала - классы, импортированные поодиночке. Потом - классы, определенные в данном пакете. В последнюю очередь классы из пакетов, импортируемых полностью в порядке следования команд import .

Конфликт имен возникает так же, когда имя одного из параметров метода совпадает с именем одного из атрибутов этого же класса. Такая ситуация возникает довольно часто, поскольку для метода, изменяющего значение этого атрибута, такое называние параметра довольно наглядно. Например:

class Dog { int age; ... public void setAge(int age) { ... }; ... }

Такой заголовок метода setAge(int age) лучше, чем использовавшийся нами на прошлом занятии setAge(int a) , поскольку сразу позволяет судить о назначении параметра. Однако возникает вопрос: к чему будет относиться имя age в теле этого метода - к атрибуту или к параметру.

Ответ: к параметру. Имя параметра «перекрывает» имя атрибута.

Для того, чтобы обратиться к атрибуту, следует использовать полное имя (т.е. указатель на объект this ).

Реализация метода должна выглядеть следующим образом:

public void setAge(int age) { this .age = age; // проверку диапазона параметра в этом примере проигнорируем };
Дополнительная литература

1. Вязовик Н.А. Программирование на Java. (глава 8)

2. Хабибуллин И.Ш. Самоучитель Java 2. (глава 3)

Пользовательский интерфейс на Java прошел весьма тернистый путь становления и развития. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы, ограниченной функциональности. Появление.NET с более быстрыми графическими компонентами еще больше пошатнуло позиции Java. Но нет худа без добра - все эта движуха только подстегивала разработчиков Java к развитию и улучшению графических библиотек. Посмотрим, что из этого получилось.

Abstract Window Toolkit

AWT была первой попыткой Sun создать графический интерфейс для Java. Они пошли легким путем и просто сделали прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках данной ОС. Но с другой стороны, нет никакой гарантии, что различия в размерах компонентов и шрифтах не испортят внешний вид программы при запуске ее на другой платформе. Кроме того, чтобы обеспечить мультиплатформенность, пришлось унифицировать интерфейсы вызовов компонентов, из-за чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. К примеру, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок.

Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Освоить AWT довольно просто, но написать что-то сложное будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

Достоинства:

  • часть JDK;
  • скорость работы;
  • графические компоненты похожи на стандартные.

Недостатки:

  • использование нативных компонентов налагает ограничения на использование их свойств. Некоторые компоненты могут вообще не работать на «неродных» платформах;
  • некоторые свойства, такие как иконки и всплывающие подсказки, в AWT вообще отсутствуют;
  • стандартных компонентов AWT очень немного, программисту приходится реализовывать много кастомных;
  • программа выглядит по-разному на разных платформах (может быть кривоватой).

заключение:

В настоящее время AWT используется крайне редко - в основном в старых проектах и апплетах. Oracle припрятал обучалки и всячески поощряет переход на Swing. Оно и понятно, прямой доступ к компонентам оси может стать серьезной дырой в безопасности.

Swing

Вслед за AWT Sun разработала набор графических компонентов под названием Swing. Компоненты Swing полностью написаны на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Стало легко создавать новые компоненты, наследуясь от существующих и рисуя все, что душе угодно. Стала возможной поддержка различных стилей и скинов. Вместе с тем скорость работы первых версий Swing оставляла желать лучшего. Некорректно написанная программа и вовсе могла повесить винду намертво.

Тем не менее благодаря простоте использования, богатой документации и гибкости компонентов Swing стал, пожалуй, самым популярным графическим фреймворком в Java. На его базе появилось много расширений, таких как SwingX, JGoodies, которые значительно упрощают создание сложных пользовательских интерфейсов. Практически все популярные среды программирования Java включают графические редакторы для Swing-форм. Поэтому разобраться и начать использовать Swing не составит особого труда.

Достоинства:

  • часть JDK, не нужно ставить дополнительных библиотек;
  • по Swing гораздо больше книжек и ответов на форумах. Все проблемы, особенно у начинающих, гуглу досконально известны;
  • встроенный редактор форм почти во всех средах разработки;
  • на базе свинга есть много расширений типа SwingX;
  • поддержка различных стилей (Look and feel).

Недостатки:

  • окно с множеством компонентов начинает подтормаживать;
  • работа с менеджерами компоновки может стать настоящим кошмаром в сложных интерфейсах.

Заключение:

Swing жил, Swing жив, Swing будет жить. Хотя Oracle и старается продвигать JavaFX, на сегодняшний день Swing остается самым популярным фреймворком для создания пользовательских интерфейсов на Java.

Standard Widget Toolkit


Как
выглядит
SWT

SWT был разработан в компании IBM в те времена, когда Swing еще был медленным, и сделано это было в основном для продвижения среды программирования Eclipse. SWT, как и AWT, использует компоненты операционной системы, но для каждой платформы у него созданы свои интерфейсы взаимодействия. Так что для каждой новой системы тебе придется поставлять отдельную JAR-библиотеку с подходящей версией SWT. Это позволило более полно использовать существующие функции компонентов на каждой оси. Недостающие функции и компоненты были реализованы с помощью 2D, как в Swing. У SWT есть много приверженцев, но, положа руку на сердце, нельзя не согласиться, что получилось не так все просто, как хотелось бы. Новичку придется затратить на изучение SWT намного больше времени, чем на знакомство с тем же Swing. Кроме того, SWT возлагает задачу освобождения ресурсов на программиста, в связи с чем ему нужно быть особенно внимательным при написании кода, чтобы случайное исключение не привело к утечкам памяти.

Достоинства:

  • использует компоненты операционной системы - скорость выше;
  • Eclipse предоставляет визуальный редактор форм;
  • обширная документация и множество примеров;
  • возможно использование AWT- и Swing-компонентов.

Недостатки:

  • для каждой платформы необходимо поставлять отдельную библиотеку;
  • нужно все время следить за использованием ресурсов и вовремя их освобождать;
  • сложная архитектура, навевающая суицидальные мысли после тщетных попыток реализовать кастомный интерфейс.

Заключение:

Видно, что в IBM старались. Но получилось уж очень на любителя…

JavaFX


JavaFX можно без преувеличения назвать прорывом. Для отрисовки используется графический конвейер, что значительно ускоряет работу приложения. Набор встроенных компонентов обширен, есть даже отдельные компоненты для отрисовки графиков. Реализована поддержка мультимедийного контента, множества эффектов отображения, анимации и даже мультитач. Внешний вид всех компонентов можно легко изменить с помощью CSS-стилей. И самое прекрасное - в JavaFX входит набор утилит, которые позволяют сделать родной инсталлятор для самых популярных платформ: exe или msi для Windows, deb или rpm для Linux, dmg для Mac. На сайте Oracle можно найти подробную документацию и огромное количество готовых примеров. Это превращает программирование с JavaFX в легкое и приятное занятие.

Достоинства:

  • быстрая работа за счет графического конвейера;
  • множество различных компонентов;
  • поддержка стилей;
  • утилиты для создания установщика программы;
  • приложение можно запускать как десктопное и в браузере как часть страницы.

Недостатки:

  • фреймворк еще разрабатывается, поэтому случаются и падения и некоторые глюки;
  • JavaFX пока не получил широкого распространения.

Заключение:

Хорошая работа, Oracle. Фреймворк оставляет только позитивные впечатления. Разобраться несложно, методы и интерфейсы выглядят логичными. Хочется пользоваться снова и снова!

Визуальные библиотеки на практике

SWT: погодный виджет

Для демонстрации возможностей наиболее популярных графических библиотек и основных принципов работы с ними сделаем несколько небольших виджетов с отображением различной информации.

И начнем, пожалуй, с самого популярного виджета - отображения текущей погоды, для реализации которого выберем SWT.

Любая программа на SWT начинается с создания объекта Display. Он служит своеобразным контекстом приложения, который содержит необходимые методы для обращения к ресурсам системы и обеспечивает цикл событий. Следующим шагом будет создание не менее важного объекта Shell. Shell представляет собой обычное окно операционной системы. В конструктор shell передается Display, чтобы создать окно верхнего уровня.

Display display = new Display(); shell = new Shell(display, SWT.NO_TRIM);

Так как мы создаем виджет, нам не нужно отображать стандартное обрамление окна и кнопки управления, для этого мы указали флаг NO_TRIM. Для фона мы будем использовать картинку - прямоугольник с закругленными углами. В принципе, окно SWT может принимать любые формы. Чтобы добиться такого эффекта, используем класс Region. Все, что нужно, - добавить в этот класс все видимые точки из картинки фона, пропуская прозрачные.

Загружаем картинку:

Image image = new Image(display, "images/bg.png#26759185");

В изображениях разных форматов прозрачность задается по-разному, поэтому и извлекается информация о прозрачных областях тоже не одинаково. Создаем область фона и добавляем туда все видимые точки:

Region region = new Region(); ImageData imageData = image.getImageData(); if (imageData.alphaData != null) { Rectangle pixel = new Rectangle(0, 0, 1, 1); for (int y = 0; y < imageData.height; y++) { for (int x = 0; x < imageData.width; x++) { if (imageData.getAlpha(x, y) == 255) { pixel.x = imageData.x + x; pixel.y = imageData.y + y; region.add(pixel); } } } } else { ImageData mask = imageData.getTransparencyMask(); Rectangle pixel = new Rectangle(0, 0, 1, 1); for (int y = 0; y < mask.height; y++) { for (int x = 0; x < mask.width; x++) { if (mask.getPixel(x, y) != 0) { pixel.x = imageData.x + x; pixel.y = imageData.y + y; region.add(pixel); } } } }

Устанавливаем форму окна:

Shell.setRegion(region);

Теперь нужно создать слушателя событий для окна. Нас будут интересовать события рисования окна, события мыши и нажатия клавиш, чтобы окно можно было передвигать по экрану.

Listener listener = new Listener() { int startX, startY; public void handleEvent(Event e) { if (e.type == SWT.KeyDown && e.character == SWT.ESC) { shell.dispose(); } if (e.type == SWT.MouseDown && e.button == 1) { startX = e.x; startY = e.y; } if (e.type == SWT.MouseMove && (e.stateMask & SWT.BUTTON1) != 0) { Point p = shell.toDisplay(e.x, e.y); p.x -= startX; p.y -= startY; shell.setLocation(p); } if (e.type == SWT.Paint) { e.gc.drawImage(image, imageData.x, imageData.y); } } };

Итак, по нажатию на клавишу Esc окно закроется. При нажатии левой клавиши мыши на области окна запомним координаты нажатия. При движении мыши с зажатой левой клавишей - передвигаем окно на экране соответственно движению. При событии перерисовки - рисуем картинку фона, используя графический контекст GC.

Назначим слушатель соответствующим событиям окна:

Shell.addListener(SWT.KeyDown, listener); shell.addListener(SWT.MouseDown, listener); shell.addListener(SWT.MouseMove, listener); shell.addListener(SWT.Paint, listener);

Устанавливаем размер окна равным размеру изображения:

Shell.setSize(imageData.x + imageData.width, imageData.y + imageData.height);

Открываем окно и запускаем цикл событий:

Shell.open(); while (!shell.isDisposed ()) { if (!display.readAndDispatch ()) display.sleep (); }

Не забываем в конце освободить использованные ресурсы:

Region.dispose(); image.dispose(); display.dispose();

Запустив программу на этом этапе, мы получим прямоугольничек, который можно двигать мышкой и закрывать по Esc.

Настало время добавить содержания. Будем отображать текущую погоду в виде иконки состояния (солнечно, дождь, снег…), показаний температуры и времени последнего обновления.

Для расположения графических компонентов в окне в нужном виде используются менеджеры компоновки. Менеджер компоновки занимается не только расположением компонентов, но и изменением их размеров при изменении размеров окна. Для нашего виджета будем использовать GridLayout. Этот менеджер располагает компоненты в ячейках воображаемой таблицы. Создаем GridBagLayout на две колонки с различной шириной колонок (флаг false в конструкторе), устанавливаем его в качестве менеджера компоновки окна:

GridLayout layout = new GridLayout(2, false); shell.setLayout(layout);

Для картинки статуса используем компонент Label. В качестве родителя передаем объект окна. Вторым параметром можно установить стиль компонента. Для каждого компонента набор возможных флагов стиля разный, их можно посмотреть в документации или прямо в исходниках компонента.

//draw status image Label imageLabel = new Label(shell, SWT.NONE); imageLabel.setLayoutData(new GridData(SWT.LEFT, SWT.TOP, true, true, 1, 1));

Флаги в классе GridData означают, что метка будет располагаться слева вверху, будет растягиваться горизонтально и вертикально (флаги, установленные в true) при наличии свободного места и занимает одну строку и один столбец таблицы компоновки.

В SWT нет прозрачного фона компонентов, и позади картинки статуса будет красоваться белый фон, чего, конечно, не хотелось бы. Поэтому создадим объект Color с цветом фона окна:

Color bgColor = new Color(display, 0x2b, 0x2b, 0x2b);

В конце программы этот объект также необходимо очистить, вызвав метод dispose. Устанавливаем цвет фона и картинку статуса, которую можно загрузить из файла точно так же, как мы загрузили картинку фона вначале:

ImageLabel.setBackground(bgColor); Image statusImage = new Image(display, "images/1.png#26759185"); imageLabel.setImage(statusImage);

Теперь добавим Label с текущей температурой и расположим его в правой верхней части окна:

Label temperatureLabel = new Label(shell, SWT.NONE); temperatureLabel.setLayoutData(new GridData(SWT.RIGHT, SWT.TOP, false, false, 1, 1));

Установим какую-нибудь температуру:

TemperatureLabel.setText("+1 \u2103");

Для записи температуры по Цельсию используется юникодный номер соответствующего символа со служебными символами \u.

Шрифт по умолчанию для текстовых меток слишком маленький. Так что создадим новый, побольше:

FontData fD = temperatureLabel.getFont().getFontData(); fD.setHeight(30); fD.setStyle(SWT.BOLD); Font newFont = new Font(display, fD); temperatureLabel.setFont(newFont); Шрифт, как и другие ресурсные объекты, нужно освобождать. Для этого воспользуемся слушателем события разрушения метки:

TemperatureLabel.addDisposeListener(new DisposeListener() { public void widgetDisposed(DisposeEvent e) { newFont.dispose(); } });

Наконец, добавим метку с описанием погодных условий:

Label descriptionLabel = new Label(shell, SWT.WRAP); descriptionLabel.setLayoutData(new GridData(SWT.FILL, SWT.CENTER, true, true, 2, 1)); descriptionLabel.setText("Облачно с прояснениями, небольшой дождь"); descriptionLabel.setBackground(bgColor); descriptionLabel.setForeground(display.getSystemColor(SWT.COLOR_WHITE));

Текст может быть довольно длинным, так что при создании метки указываем флаг WRAP, чтобы текст автоматически разбивался на несколько строк при нехватке места. Расположим компонент по центру и разрешим ему заполнить все горизонтальное пространство. Также укажем, что компонент занимает два столбца таблицы компоновки. Запускаем и получаем окошко с картинки «Виджет погоды».

Теперь можно прикрутить какой-нибудь сервис погоды, создать таймер для автоматического обновления - и виджет готов.

Swing: всегда свежие новости

На Swing мы напишем виджет для отображения RSS-новостей. Начинаем, как и в прошлый раз, с создания окна. Класс, реализующий функционал стандартного окна в Swing, называется JFrame. По умолчанию закрытие окна приложения в Swing не приводит к остановке программы, так что лучше прописать, как должно себя вести окно при закрытии:

JFrame frame = new JFrame(); frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

Для представления новостей лучше всего подходит таблица. Swing построен на паттерне «Модель -представление - контроллер» (MVC). В архитектуре MVC модель предоставляет данные, представление отвечает за отображение данных (например, текст, поля ввода), а контроллер обеспечивает взаимодействие между моделью и представлением. Таблица хорошо демонстрирует этот подход. Для представления данных используется класс, реализующий интерфейс TableModel.

Для хранения информации о доступных новостях заведем класс FeedMessage c полями для названия статьи и даты выхода:

Public class FeedMessage { public String title; public Date publicationDate; }

Чтобы упростить и ускорить разработку, наследуем нашу модель данных от класса AbstractTableModel, который предлагает готовую реализацию почти всех методов интерфейса TableModel.

Public class RssFeedTableModel extends AbstractTableModel { private List entries = new ArrayList<>(); public void updateData(List entries) { this.entries = entries; fireTableDataChanged(); } public int getRowCount() { return entries.size(); } public int getColumnCount() { return 2; } public Object getValueAt(int rowIndex, int columnIndex) { switch (columnIndex) { case 0: return entries.get(rowIndex).title; case 1: return entries.get(rowIndex).publicationDate; } return null; } }

Метод fireTableDataChanged сообщает представлению, что модель данных изменилась и необходима перерисовка.

Создаем таблицу и немного изменяем ее вид, чтобы она была больше похожа на виджет. Убираем линии между строками и столбцами, увеличиваем высоту строки и убираем заголовок таблицы с названиями колонок:

JTable table = new JTable(new RssFeedTableModel()); table.setShowGrid(false); table.setIntercellSpacing(new Dimension(0, 0)); table.setRowHeight(30); table.setTableHeader(null);

Теперь займемся внешним видом ячеек. Swing позволяет назначать отдельные классы представления для разных типов данных. За отрисовку отдельных ячеек таблицы отвечает класс, наследующий интерфейс TableCellRenderer. По умолчанию используется DefaultTableCellRenderer, который представляет собой текстовую метку.

Назначим свой отрисовщик ячейки для данных типа String. Изменим стандартный цвет шрифта и сделаем чередующийся цвет фона, чтобы улучшить читаемость.

Table.setDefaultRenderer(String.class, new DefaultTableCellRenderer() { Color oddColor = new Color(0x25, 0x25, 0x25); Color evenColor = new Color(0x1a, 0x1a, 0x1a); Color titleColor = new Color(0x3a, 0xa2, 0xd7); public Component getTableCellRendererComponent(JTable table, Object value, boolean isSelected, boolean hasFocus, int row, int column) { super.getTableCellRendererComponent(table, value, isSelected, hasFocus, row, column); setBackground(row % 2 == 0 ? oddColor: evenColor); setForeground(titleColor); setFont(font); return this; } });

Чтобы таблица начала использовать наш отрисовщик, необходимо добавить метод, который возвращает тип данных для каждой ячейки, в модель данных:

Public Class getColumnClass(int columnIndex) { switch (columnIndex) { case 0: return String.class; case 1: return Date.class; } return Object.class; }

Новостей может быть много, поэтому поместим таблицу на панель прокрутки и сделаем ползунок прокрутки невидимым, чтобы он не портил нам дизайн виджета:

JScrollPane scrollPane = new JScrollPane(table); table.setFillsViewportHeight(true); scrollPane.getVerticalScrollBar().setPreferredSize (new Dimension(0,0));

Добавляем компонент прокрутки на главную панель окна. Вторым аргументом можно передать размещение компонента. По умолчанию главная панель окна использует менеджер компоновки BorderLayout, который располагает компоненты по сторонам света. Поместим таблицу с прокруткой в центре.

Frame.getContentPane().add(scrollPane, BorderLayout.CENTER);

Как и в прошлый раз, уберем стандартное обрамление окна. А в качестве заголовка окна будем использовать стилизованную текстовую метку, которую разместим вверху окна.

JLabel titleLabel = new JLabel("Xakep RSS"); Font titleFont = new Font("Arial", Font.BOLD, 20); titleLabel.setFont(titleFont); titleLabel.setHorizontalAlignment(SwingConstants.CENTER); titleLabel.setForeground(Color.WHITE); titleLabel.setPreferredSize(new Dimension(0, 40)); frame.getContentPane().add(titleLabel, BorderLayout.NORTH);

В отличие от SWT, объекты «цвет» и «шрифт» освобождаются автоматически, так что можно больше не переживать за утечки памяти.

Добавляем слушатели мыши, чтобы окно можно было двигать по экрану.

MouseAdapter listener = new MouseAdapter() { int startX; int startY; public void mousePressed(MouseEvent e) { if (e.getButton() == MouseEvent.BUTTON1) { startX = e.getX(); startY = e.getY(); } } public void mouseDragged(MouseEvent e) { Point currCoords = e.getLocationOnScreen(); frame.setLocation(currCoords.x - startX, currCoords.y - startY); } }; titleLabel.addMouseListener(listener); titleLabel.addMouseMotionListener(listener);

Теперь поменяем форму окна на прямоугольник с закругленными углами. Лучше всего это делать в слушателе компонента, так как, если размер окна изменится, форма окна будет правильно пересчитана:

Frame.addComponentListener(new ComponentAdapter() { public void componentResized(ComponentEvent e) { frame.setShape(new RoundRectangle2D.Double(0, 0, frame.getWidth(), frame.getHeight(), 20, 20)); } });

Устанавливаем размер окна, убираем обрамление и делаем окно полупрозрачным.

Frame.setSize(520, 300); frame.setUndecorated(true); frame.setOpacity(0.85f);

Наконец, открываем окно в графическом потоке. SwingUtilities.invokeLater(new Runnable() { public void run() { frame.setVisible(true); } });

Осталось дописать загрузку данных в отдельном потоке, и получим такой вот виджет с последними новостями твоего любимого журнала:).

JavaFX: послушаем музычку

И наконец, гвоздь сезона - JavaFX. Воспользуемся его мультимедийными возможностями и компонентом для построения графиков и сделаем простенький эквалайзер.

Для начала наследуем класс виджета от Application. Это основной класс приложения в JavaFX. Application содержит основные методы жизненного цикла приложения. Компоненты формы создаются в методе start, аргументом которому служит класс Stage. Stage представляет собой окно программы. Изменим стиль окна на TRANSPARENT, чтобы убрать обрамление и кнопки. В Stage помещается класс Scene, в котором задаются размеры окна и цвет фона. В Scene, в свою очередь, передаем класс Group, в который будем помещать дочерние компоненты:

Public void start(Stage primaryStage) { primaryStage.initStyle(StageStyle.TRANSPARENT); Group root = new Group(); Scene scene = new Scene(root, 400, 200, Color.TRANSPARENT); primaryStage.setScene(scene);

Для отображения эквалайзера используем столбиковую диаграмму, по осям которой будем отображать частоту и мощность звука:

CategoryAxis xAxis = new CategoryAxis(); NumberAxis yAxis = new NumberAxis(0,50,10); BarChart bc = new BarChart(xAxis,yAxis); bc.setPrefSize(400, 200); bc.setLegendVisible(false); bc.setAnimated(false); bc.setBarGap(0); bc.setCategoryGap(1); bc.setVerticalGridLinesVisible(false); bc.setHorizontalGridLinesVisible(false); xAxis.setLabel("Частота"); yAxis.setLabel("Мощность"); yAxis.setTickLabelFormatter(new NumberAxis.DefaultFormatter(yAxis, null, "dB"));

Заполняем диаграмму начальными данными:

XYChart.Series series1 = new XYChart.Series(); series1Data = new XYChart.Data; String categories = new String; for (int i=0; i(categories[i], 50); series1.getData().add(series1Data[i]); } bc.getData().add(series1);

Создаем прямоугольник с закругленными углами, чтобы придать виджету соответствующую форму:

Rectangle rectangle = new Rectangle(0, 0, 400, 200); Stop stops = new Stop { new Stop(0, new Color(0, 0, 0, 0.8)), null}; LinearGradient lg2 = new LinearGradient(0, 0, 0, 0, false, CycleMethod.NO_CYCLE, stops); rectangle.setFill(lg2); rectangle.setArcHeight(20); rectangle.setArcWidth(20);

Добавляем оба компонента к группе:

Root.getChildren().addAll(rectangle, bc);

Назначаем слушателей мыши к группе, чтобы двигать окно по экрану:

Root.setOnMousePressed(new EventHandler() { public void handle(MouseEvent me) { initX = me.getScreenX() - primaryStage.getX(); initY = me.getScreenY() - primaryStage.getY(); } }); root.setOnMouseDragged(new EventHandler() { public void handle(MouseEvent me) { primaryStage.setX(me.getScreenX() - initX); primaryStage.setY(me.getScreenY() - initY); } });

Загружаем песню в плеер:

File file = new File("выпусти меня отсюда.mp3"); Media audioMedia = null; audioMedia = new Media(file.toURI().toURL().toString()); audioMediaPlayer = new MediaPlayer(audioMedia);

Добавляем слушатель, который будет обновлять столбиковую диаграмму:

AudioMediaPlayer.setAudioSpectrumListener(new AudioSpectrumListener() { public void spectrumDataUpdate(double timestamp, double duration, float magnitudes, float phases) { for (int i = 0; i < series1Data.length; i++) { series1Data[i].setYValue(magnitudes[i] + 60); } } });

Делаем сцену видимой и запускаем песню:

PrimaryStage.show(); audioMediaPlayer.play();

Запускаем приложение:

Public static void main(String args) { launch(args); }

И наслаждаемся такой вот красотой.