Интернет

Фазированная антенная решетка (ФАР). Активные фазированные антенные решетки

Фазированная антенная решетка (ФАР). Активные фазированные антенные решетки

Первая в России бортовая радиолокационная станция с активной фазированной антенной решеткой (АФАР) была разработана на предприятии КРЭТ. Сегодня АФАР – основа «интеллекта» современных и будущих истребителей. Чтобы понять, как она устроена, ее особенности, следует вспомнить принцип работы обычного радиолокатора.

Принцип действия любого радара достаточно прост: радар вначале излучает зондирующий импульс в окружающее пространство, а потом «слушает», не последует ли отражений. По принятому отраженному импульсу можно вычислить информацию о цели.

Очевидно, для того чтобы принимать и излучать сигналы, радару нужна антенна. Один из самых распространенных вариантов – отражающая «тарелка», как в системах спутникового телевидения. В самолет уместить такую антенну сложно. Поэтому придумали специальные плоские антенные системы, а приемник и передатчик находятся за антенной.

Для того чтобы увидеть разные цели таким радаром, антенну придется двигать, обычно в двух плоскостях. Для сравнения можно провести аналогию с фонариком в темной комнате: осветить стену целиком луч не может, и для полного осмотра стены нужно «просканировать» ее лучом фонарика. Та же ситуация и с радаром, то есть для осмотра широкого сектора на дистанции потребуется механическое сканирование.

Так как антенна радара очень массивная, двигается она медленно. Для атаки цели истребителем радар с такой антенной держит в «поле зрения» одну, выбранную пилотом, цель. Одновременная атака нескольких целей уже становится проблематичной ситуацией.

Электроника позволяет отказаться от механического сканирования. Разделив антенну на части, можно управлять фазами сигналов.

Устроено это следующим образом: плоская (прямоугольная или круглая) антенна разделена на ячейки, образующие регулярную решетку. В каждой такой ячейке находится специальный прибор – фазовращатель, который может на заданный угол изменять фазу электромагнитной волны, которая попадает в ячейку. Обработанные сигналы из ячеек поступают на приемник. Именно так и можно описать работу фазированной антенной решетки (ФАР).

А если точнее, подобная антенная решетка со множеством элементов-фазовращателей, но с одним приемником и одним передатчиком называется пассивной ФАР. Кстати, первый в мире истребитель, оснащенный РЛС с пассивной ФАР, – наш российский МиГ-31. На нем была установлена РЛС «Заслон» разработки НИИП им. Тихомирова.

Активная фазированная антенная решетка (АФАР) является следующим этапом в развитии пассивной. В такой антенне каждая ячейка решетки содержит свой приемопередатчик. Их количество может превысить одну тысячу.

Таким образом, в АФАР каждый элемент решетки или группа элементов имеет свой собственный миниатюрный передатчик, обходясь без одной большой трубки передатчика, как в радарах с пассивной фазированной решеткой. То есть каждый элемент АФАР состоит из модуля, который содержит щель антенны, фазовращатель, передатчик и приемник.

Одним из отечественных лидеров по созданию АФАР в России является НИИП им. Тихомирова. Гендиректор института Юрий Белый так описал принцип работы АФАР: «Если говорить об АФАР совсем просто, то надо понимать, что традиционный локатор – это отдельные антенна, приемник, передатчик, а в АФАР приемник с передатчиком и антенна рассыпаются на мелкие части, на модули. И множество этих модулей составляют АФАР. То есть каждая маленькая ячеечка, а их тысячи, содержит в себе и передатчик, и приемник. Раньше, если, например, вышел из строя передатчик, самолет становился «слепым». А тут поражены одна-две ячейки, даже десяток, а остальные тысячи продолжают работать».

Таким образом, тысячи независимых передатчиков и приемников обеспечивают ключевые преимущества АФАР. Благодаря им гораздо выше надежность и чувствительность антенны, а также появляется возможность работать на нескольких частотах сразу.

Но главное, что структура АФАР позволяет РЛС параллельно решать несколько задач. Например, не только обслуживать десятки целей, но и параллельно с обзором пространства очень эффективно отстраиваться от помех, ставить помехи радарам противника и даже картографировать поверхность, получая карты высокого разрешения.

Кстати, радары с АФАР используются не только на истребителях. Такую антенну давно применяют в комплексах ПВО, на наземной технике, кораблях и даже на спутниках. Первую в России БРЛС с АФАР создали на предприятии КРЭТ, в корпорации «Фазотрон-НИИР».

Первые образцы радаров с активной фазированной решёткой – АФАР – выпустил Рязанский приборный завод (разработчик НИИПТ г. Москва* ).

Установка этого авиарадара в конструкции боевого самолета считается одним из основных признаков его принадлежности к 5-му поколению авиационной техники. Уже изготовлено 11 комплектов АФАР, три сейчас испытываются в составе бортового оборудования Су-57 (ПАК-ФА, Т-50) – российский многоцелевой истребитель пятого поколения , разрабатываемый подразделением Объединённой авиастроительной корпорации (ОАК) - «ОКБ Сухого». Самолёт разрабатывается для замены в ВВС России истребителя Су-27.

Обычный локатор - это антенна, приёмник и передатчик, в АФАР это единое целое, объединённое в модулях. То есть каждая ячейка, а их около двух тысяч, содержит в себе передатчик и приёмник. В антенну «сливается» вся высокочастотная часть локатора. И если в локаторах предыдущего поколения выходил из строя передатчик, то самолёт становился абсолютно слепым. А у АФАР могут быть поражены одна, две, десяток, сотня ячеек, остальные будут продолжать работать.

Лучшая пятерка истребителей >>

Истребитель имеет одну фронтальную и две боковые антенны, работающие в Х-диапазоне и 2 дополнительные антенны на основе АФАР в L-диапазоне на консоли крыла . В итоге сектор обзора радара Су-57 (ПАК-ФА, Т-50) превышает 200 градусов. Новейший локатор способен сканировать пространство, за считанные доли секунды перемещая луч в пространстве, идентифицировать цели, наводить на них ракеты и работать как средство радиоэлектронного противодействия по принципу применяемому в бортовом комплексе обороны «Президент-С ».

Производство радаров на основе активных фазированных антенных решеток - это переход от кремниевой электроники к революционным гетероструктурам и монолитным СВЧ-микросхемам на основе арсенида галлия , объединяющие в себе несколько ранее самостоятельных приборов. Появление АФАР позволяет реализовать идею сетецентрического (объединения участников боевых действий в единую сеть) проведения боевых действий, когда истребитель становится командным пунктом для наземных войск, сил ПВО, а также группы боевых самолетов.

Самой главной проблемой создания АФАР была проблема перехода на абсолютно новый технологический уровень производства, на монолитные СВЧ-модули на основе арсенида галлия. Разработка структуры была выполнена под руководством нобелевского лауреата академика Жореса Алферова. В модернизацию Рязанского приборного завода под производство АФАР было вложено около 6 миллиардов рублей. Кроме того была проведена модернизация производства на предприятия «Исток». Основное направление деятельности которого - новые разработки и серийное производство современных и перспективных изделий СВЧ-электроники для всех видов связи и радиолокации.

Истребитель ПАК ФА готов к серийному производству >>

В настоящее время НПП "Исток" г. Фрязино поддерживает около 30% всей номенклатуры изделий СВЧ-электроники, выпускаемой в России, что определяет его головную роль в отрасли. Предприятие обладает замкнутыми технологическими циклами разработки и производства СВЧ-транзисторов, монолитных интегральных схем, модулей СВЧ любой функциональной сложности, электровакуумных СВЧ-приборов и комплексированных СВЧ-устройств на их основе, радиоэлектронной аппаратуры и ее составных частей. На сегодняшний день «Исток» уже произвел 25 000 приемо-передающих модулей с заданными характеристиками.

Самое главное: у нас есть новая промышленная технология, которая будет востребована не только в авиации, но и ВМФ и при разработке новых систем ПВО . Новейшие образцы локаторов в интересах этих направлений уже проходят испытания.

* НИИПТ образован 1 марта 1955 года как филиал Московского НИИ-17 Министерства авиационной промышленности. Основным направлением его деятельности является разработка авиационной радиолокационной аппаратуры. Акционерами НИИПТа являются концерн ВКО «Алмаз-Антей» (56% акций) и концерн «Радиоэлектронные технологии» (44%), входящий в госкорпорацию «Ростех».

Статьи, которые Вам могут быть интересны:

Легкий военно-транспортный самолет Ил-112В >>

Подполковник-инженер М. Михов

Мероприятия по дальнейшему наращиванию боевой мощи ВВС США предусматривают создание не только новых, более совершенных самолетов, но и различного оборудования, применение которого расширило бы их боевые возможности. В частности, командование американских ВВС большое внимание уделяет разработке многофункциональных самолетных радиолокационных станций, которые обеспечивали бы обнаружение воздушных, наземных и надводных целей (одновременно нескольких) и определение их координат, управление бортовым оружием, оценку рельефа местности в интересах обеспечения безопасности полетов на малых высотах.

Американские специалисты считают, что последовательное или одновременное выполнение РЛС нескольких функций в значительной мере зависит от скорости и полноты обзора пространства, то есть от того, насколько быстро луч РЛС будет перемещаться в заданном секторе и изменять свою форму (диаграмму направленности). Отмечается, что для поиска и сопровождения воздушных целей необходима острая диаграмма направленности, сканирующая в пределах всей передней полусферы, а для обзора земной поверхности - плоская диаграмма (косекансквадратной формы по углу места), сканирующая по азимуту в нижней части передней полусферы. В целях эффективного обеспечения полета на малых высотах необходимо быстрое сканирование луча РЛС как в вертикальной, так и в горизонтальной плоскости.

Существующие антенные системы, в которых для формирования диаграммы направленности луча используются параболические отражатели высокочастотных сигналов, не позволяют одной РЛС выполнять несколько функций. Такие антенны, по оценке американских специалистов, не имеют необходимой для многофункциональной РЛС ширины сектора обзора пространства, обладают недостаточной скоростью сканирования луча, имеют большой вес и объем, а также низкую надежность, то есть они не подходят для РЛС, предназначенных для одновременного действия по нескольким целям и выполнения различных функций. Поэтому, например, на самолете FB-111 для обеспечения выполнения всех его боевых задач устанавливаются две РЛС и три антенны.

В связи с этим в США уже в начале 60-х годов начались работы по созданию принципиально новых антенн для самолетных многофункциональных РЛС. Эти антенны представляют собой фазированные антенные решетки (ФАР). Иностранная печать отмечает, что основное преимущество ФАР перед обычной отражательной (зеркальной) антенной заключается в электронном управлении лучом, которое обеспечивается изменением по определенному закону фазы излучаемого сигнала каждого из элементарных излучателей. В решетке может быть от нескольких сотен до нескольких тысяч таких излучателей. Время перемещения луча между двумя крайними положениями не превышает нескольких микросекунд, при этом возможно быстрое изменение формы диаграммы направленности. Существенной особенностью работы ФАР является необходимость включения в комплект РЛС электронной вычислительной машины, которая может достаточно быстро управлять одновременно всеми излучателями решетки. ФАР обеспечивает более широкий сектор обзора, чем обычная антенна, а благодаря неподвижной конструкции ее удобно размещать под обтекателем на борту самолета. Исключаются также тяжелые л громоздкие электромеханические или гидравлические устройства управления и повышается живучесть РЛС, так как она выполняет свои функции даже при выходе из строя значительного количества элементарных излучателей.

Американские специалисты одним из перспективных направлений в развитии ФАР считают создание так называемых "конформированных решеток", элементы которых будут располагаться по сложной выпуклой поверхности различных участков обшивки самолета. При этом может увеличиться зона обзора и освободиться значительный полезный объем в носовой части самолета для размещения других радиоэлектронных средств или вооружения.

Наиболее перспективными, несмотря на сложность электрических схем, иностранные специалисты считают так называемые "активные" ФАР, в которых элементарные излучатели являются самостоятельными приемопередатчиками. Такие ФАР позволяют с высоким КПД реализовать энергетические возможности высокочастотных генераторов и значительно повысить надежность работы РЛС. Существенным препятствием при создании таких РЛС является отсутствие в настоящее время достаточно экономичных, легких и мощных твердотельных высокочастотных генераторов или усилителей мощности. Поэтому в США в качестве промежуточных вариантов ФАР разрабатываются пассивные линзовые антенны (отражательные или проходные), в которых для формирования требуемых диаграмм направленности применяется решетка высокочастотных фазовращателей, облучаемая широким лучом от единого источника мощного высокочастотного сигнала.

В зависимости от способа подачи высокочастотных сигналов имеются пассивные проходные ФАР двух видов: с открытой волноводной системой, когда решетка облучается одним широким лучом от слабонаправленного источника, и с закрытой, когда передаваемый высокочастотный сигнал подается к элементарным фазовращателям решетки при помощи разветвленной системы волноводов.

Один из вариантов пассивной проходной ФАР с закрытой волноводной системой - волноводная щелевая решетка, в которой излучающими элементами являются щели в стенках волноводов. Управление фазой высокочастотного сигнала в такой решетке производится не в отдельном элементе, а в группе элементов путем применения группового фазовращателя в соответствующем отрезке волновода. В данном случае возможности электрического управления диаграммой направленности ФАР в плоскости, проходящей вдоль отрезка волновода, резко уменьшаются, и в связи с этим возникает необходимость использования механического сканирования луча.

Одной из основных частей элементарной ячейки ФАР является высокочастотный фазовращатель. Обычно фазовращатели выполняются на ферритах или реактивных диодах, причем, несмотря на значительные вносимые потери и малую допустимую рассеиваемую мощность, предпочтение отдается последним из-за их небольшого веса, простоты управления и высокой скорости переключения.

Рис. 1. Блок-схема модуля РЛС MERA: 1 - антенна; 2 - антенный переключатель; 3 - умножитель частоты; 4 - сигнал переключения с приема на передачу; 5 - смеситель; 6 - импульсный усилитель; 7 - импульсный сигнал модуляции; 8 - усилитель промежуточной частоты; 9 - фазовращатель приемного тракта, 10 - логическая схема управления; 11 - фазовращатель передающего тракта; 12 - фазосдвигающее устройство; 13 - усилитель мощности; 14 - управляющие сигналы от ЭВМ

Рис, 2. Модуль РЛС MERA. а - расположение основных элементов в верхней и нижней частях модуля; б - внешний вид модуля в собранном виде

Управление фазовращателями обычно осуществляется с помощью сигналов, поступающих от цифровой ЭВМ В иностранной печати отмечается, что если сигналы имеют малое количество разрядов, то уменьшается количество фиксированных значении фазы высокочастотного сигнала и при установке луча РЛС возникают ошибки квантования, а увеличение разрядности управляющих сигналов приводит к усложнению конструкции фазовращателей и возрастанию их веса. Американские специалисты провели опыты по оценке этих ошибок путем учета падения мощности излучения в требуемом направлении при максимальной ошибке квантования и получили следующие результаты: при одноразрядном управляющем сигнале (установка фазы через 180°) это падение составляет 4 дб (60 проц.), а при двухразрядном (установка фазы через 90°) - всего 0,9 дб (20 проц.). Из этого был сделан вывод, что для большинства самолетных РЛС оптимальным является управление двухразрядным сигналом. При этом считается, что ошибка квантования вполне компенсируется за счет большой скорости перемещения луча и дальнейшей обработки принятого сигнала.

В результате проводимых работ в США во второй половине 60-х годов фирмы "Тексас инструменте", "Макссон электроникс", "Хьюз эркрафт", "Рейтеон" и некоторые другие разработали ряд опытных образцов РЛС, имеющих активные и пассивные ФАР и электронное управление луча. Краткое описание некоторых из них приводится ниже.

РЛС MERA (Molecular Electronics for Radar Application) , созданная специалистами фирмы "Тексас инструменте", является одной из первых станций с активной ФАР. Впервые эта РЛС была продемонстрирована в 1968 году. Ее антенная решетка состоит из 604 твердотельных модулей, которые работают в 3-см диапазоне волн Блок-схема одного такого модуля показана на рис. 1 При передаче для возбуждения модулей используются сигналы частотой 2250 МГц, а при приеме отраженных сигналов - гетеродины, работающие на частоте 2125 МГц. Компоновка, внешний вид и размеры модуля показаны на рис. 2 (цифровые обозначения соответствуют обозначениям на рис. 1). Элементы модулей на площади ФАР были размещены по эмпирическому положению: два-три модуля на площадь, равную квадрату длины волны РЛС. Для достижении мощности в импульсе бортовой РЛС (предназначенной для обзора земной поверхности), равной 60 кВт, предполагалось использовать модули мощностью излучения по 100 Вт Однако технические возможности выполнения твердотельных усилителей такой мощности в заданных габаритах оказались нереальными, и возникший при этом энергетический дефицит был компенсирован за счет применения схем сжатия импульсов. Сообщалось, что среднее расчетное время наработки РЛС на один отказ составило несколько сотен часов.

Опыт разработки, схемы и некоторые конструктивные решения экспериментальной РЛС MERA были использованы при создании в начале 70-х годов опытного образца РЛС RASSR (Reliable Advanced Solid State Radar), Специалисты фирмы считали, что эта РЛС вполне может быть установлена на перспективных тактических самолетах 70-х годов. Ее ФАР состояла из 1648 приемопередающих модулей, сходных по принципу построения с модулями РЛС MERA.

Фирма "Макссон электроникс" по заказу командования авиации ВМС США разработала опытный образец РЛС 1-см диапазона с отражательной ФАР. Эта РЛС в 1969 году была установлена на самолете А-6 для проведения летных испытаний. ФАР диаметром 72 см состояла из 1500 элементов с высокочастотными фазовращателями на реактивных диодах. Размеры каждого из элементов - 98х10x10 мм. Сигнал на решетку подавался от четырехрупорного облучателя. Управление фазовращателями решетки осуществлялось с помощью сигналов, поступающих от легкой малогабаритной бортовой ЭВМ весом 2,3 кг, которая обеспечивала установку луча в течение 250 мкс. Электроснабжение РЛС производилось от специального блока питания весом 2,7 кг. Потребляемая мощность станции 700 Вт.

По сообщениям иностранной печати, специалисты этой фирмы на базе вышеупомянутого опытного образца разработали проект усовершенствованной РЛС с ФАР диаметром 144 см, состоящей из 6000 элементов. Расчетный вес такой решетки 77 кг, а стоимость 150 тыс. долларов. Фазовращатели решетки выдерживают мощность излучения более 2 Вт, поэтому американские специалисты считают, что такая РЛС могла бы обладать мощностью в импульсе 1,5 МВт, а этого вполне достаточно для самолетных станций любого класса. Для такой РЛС предполагалось использовать модифицированную ЭВМ, которая обеспечивает установку луча за 1,5 мкс.

Для перспективных истребителей-перехватчиков авиации ВМС США в 1969 году фирмой "Хьюз эркрафт" была разработана РЛС ESIRA (Electronically Scanned Interceptor Radar Antenna). Ее пассивная отражательная ФАР диаметром около 150 см состоит из 2400 элементов и четырехрупорного облучателя.

Рис.3.. Внешний вид РЛС AN/APO-140
Рис. 4. Бортовая РЛС с щелевой полноводной ФАР, установленная в носовой части самолета F-I4
Рис. 5. Основные блоки и ФАР обзорной навигационной РЛС RDR-1400

По заказу командования ВВС США американская фирма "Рейтеон" разработала РЛС AN/APQ-140, которая предназначалась для установки на сверхзвуковой стратегический бомбардировщик В-1, создаваемый фирмой "Боинг". Опытный образец этой РЛС с отражательной ФАР диаметром около 70 см, состоящей из 3800 элементов (рис. 3), прошел летные испытания на специальном самолете. Однако по ряду причин принятие этой РЛС на вооружение было отложено, и на первых этапах серийного производства самолета B-1 на него планируется устанавливать не одну многофункциональную РЛС, а комплект станций, представляющий собой усовершенствованный вариант комплекта РЛС самолета FB-111.

Зарубежная печать сообщает, что интенсивные работы по созданию самолетных РЛС с ФАР, проводимые в США со второй половины 60-х годов, не дали ожидаемых результатов. В связи с техническими трудностями, возникшими при реализации проектов, и недостаточно высокой надежностью твердотельных элементов ФАР современные американские боевые самолеты до сих пор не имеют бортовых РЛС с полным электронным управлением луча. Кроме того, существенное влияние на выполнение программ оказала высокая стоимость работ.

По данным иностранной печати, в США при создании многофункциональных РЛС применяется промежуточный конструктивный вариант ФАР, представляющий собой волноводную щелевую решетку с закрытой фидерной системой и питанием от общего высокочастотного генератора мощности. Как указывалось ранее, ограниченное электронное управление диаграммой направленности в такой антенне должно сочетаться с механическим сканированием ее решетки. Однако, несмотря на это, они имеют преимущества перед обычными антеннами. В частности, отмечается, что тщательная фазировка излучателей значительно уменьшает уровень боковых лепестков, а отсутствие вынесенного вперед облучателя или контррефлектора позволяет при данных размерах обтекателя увеличить диаметр антенны и ее предельные угловые отклонения, а следовательно, сузить диаграмму направленности и увеличить зону обзора. Кроме того, приближение центра тяжести антенной системы к узлам ее подвески позволяет значительно упростить их конструкцию и повысить скорость перемещения антенны.

В США уже разработаны РЛС нескольких типов с щелевыми антенными решетками. Например, на многоцелевых палубных истребителях F-14 "Томкэт" устанавливаются созданные фирмой "Хьюз эркрафт" РЛС системы управления оружием AN/AWG-9 (рис. 4). Сообщается, что сочетание в данной РЛС электронного и быстрого механического сканирования луча обеспечивает одновременное сопровождение нескольких воздушных целей. На базе этой станции фирма разработала серию РЛС "Атлас", которые планируется устанавливать на перспективных тактических самолетах. Антенну аналогичного типа (в виде щелевой волноводной решетки) применила фирма "Юнайтед эркрафт" в РЛС "Меркурий", которую предполагается использовать на перспективном истребителе ВВС США. Антенна РЛС "Меркурий", макет которой демонстрировался фирмой в конце 1974 года, представляет собой 30 горизонтальных отрезков волноводов со щелевыми излучателями, расположенными в узких стенках волноводов. Ее конструкция обеспечивает механическое сканирование по азимуту в пределах ±70° и электронное до 50° по углу места.

Американская печать отмечает, что благодаря своим преимуществам и относительно несложной конструкции щелевые волноводные антенные решетки найдут применение не только в многофункциональных, но и в более простых самолетных бортовых РЛС. В частности, фирма "Бендикс" разработала обзорную навигационную РЛС RDR-1400 (рис. 5), у которой антенная решетка обеспечивает только формирование луча, а обзор по обеим угловым координатам (азимуту и углу места) осуществляется за счет механического ее вращения. RDR-1400 имеет узкую диаграмму направленности и предназначена для обнаружения малоразмерных надводных целей. Ее намечается устанавливать на патрульные и поисково-спасательные самолеты и вертолеты.

Многие иностранные специалисты считают, что в течение ближайших лет наиболее вероятным типом антенны самолетных многофункциональных РЛС будет щелевая волноводная решетка с частичным механическим сканированием, а принятие на вооружение РЛС, имеющих полностью электронное управление луча, следует ожидать не ранее начала 80-х годов.

Активная фазированная антенная решётка (АФАР ) - фазированная антенная решётка, в которой направление излучения и (или) форма диаграммы направленности регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на активных излучающих элементах .

Активная фазированная антенная решётка конструктивно состоит из модулей, которые объединяют излучающий элемент (или группу излучающих элементов) и активные устройства (усилительные, генераторные или преобразовательные). Эти устройства могут в простейшем случае усиливать передаваемый или принимаемый излучающим элементом сигнал, а также осуществлять преобразование частоты сигнала, генерировать (формировать) сигнал, преобразовывать сигнал из аналоговой в цифровую форму и (или) из цифровой в аналоговую. Для совместной согласованной работы все модули АФАР должны быть объединены цепью распределения сигнала возбудителя (в режиме приёма - цепью сбора сигнала в приёмное устройство), или работа модулей должна быть синхронизирована от единого источника.

В отличие от АФАР, пассивная ФАР не содержит активных устройств. Например, в передающей системе, оснащенной пассивной ФАР, радиосигнал генерируется и усиливается до требуемой мощности в едином для всей системы радиопередатчике, после чего распределяется (а мощность радиосигнала делится) между излучающими элементами. Напротив, в передающей АФАР нет единого выходного мощного усилителя: менее мощные усилители размещены в каждом её модуле.

Сравнение с пассивной решёткой[править | править вики-текст]

В обычной пассивной решётке один передатчик мощностью несколько киловатт питает несколько сотен элементов, каждый из которых излучает только десятки ватт мощности. Современный микроволновый транзисторный усилитель может, однако, также произвести десятки ватт, и в радаре с активной фазированной решёткой несколько сотен модулей, каждый мощностью в десятки ватт, создают в целом мощный главный луч радара в несколько киловатт.



В то время как результат идентичен, активные решётки намного более надёжны, поскольку хотя отказ одного приёмо-передающего элемента решётки и искажает диаграмму направленности антенны, что несколько ухудшает характеристики локатора, в целом он остаётся работоспособным. Катастрофического отказа лампы передатчика, которая является проблемой обычных радаров, просто не может произойти. Дополнительная выгода - экономия веса без большой лампы высокой мощности, связанной с ней системой охлаждения и большого блока питания высокого напряжения.

Другой особенностью, которая может использоваться только в активных решётках, является способность управлять усилением индивидуальных приёмно-передающих модулей. Если это может быть сделано, диапазон углов, через которые луч может быть отклонен, существенно увеличивается, и таким образом многие из ограничений геометрии решёток, которые имеют обычные фазированные решётки могут быть обойдены. Такие решётки называют решётками суперувеличения. Из изданной литературы неясно, используют ли какая-либо существующая или проектируемая антенная решётка эту технику.

Недостатки[править | править вики-текст]

Технология АФАР имеет две ключевые проблемы:

Рассеивание мощности[править | править вики-текст]

Первая проблема - рассеивание мощности. Из-за недостатков микроволновых транзисторных усилителей (монолитная микроволновая интегральная схема, MMIC (англ.)русск.), эффективность передатчика модуля - типично меньше чем 45%. В результате, AФAР выделяет большое количество теплоты, которая должна быть рассеяна, чтобы предохранить чипы передатчика от расплавления - надёжность GaAs MMIC-чипов улучшается при низкой рабочей температуре. Традиционное охлаждение воздухом, используемое в обычных ЭВМ и авионике, плохо подходит при высокой плотности упаковки элементов AФAР, в результате чего современные AФAР охлаждаются жидкостью (американские проекты используют polyalphaolefin (PAO) хладагент, подобный синтетической гидравлической жидкости). Типичная жидкостная система охлаждения использует насосы, вводящие хладагент через каналы в антенне, и выводящие затем его к теплообменнику - им может быть как воздушный охладитель (радиатор) так и теплообменник в топливном баке - со второй жидкостью, охлаждающей петлю теплообмена, чтобы уменьшить нагрев содержимого топливного бака.

По сравнению с обычным радаром истребителя с воздушным охлаждением, радар с AФAР более надёжен, однако потребляет больше электроэнергии и требует более интенсивного охлаждения. Но AФAР может обеспечить намного большую передаваемую мощность, что необходимо для большей дальности обнаружения цели (увеличение передающей мощности однако имеет недостаток - увеличения следа, по которому радиоразведка противника или RWR могут обнаружить радар).

Стоимость

Другая проблема - стоимость массового производства модулей. Для радара истребителя, требующего типично от 1000 до 1800 модулей, стоимость AФAР становится неприемлемой, если модули стоят больше чем сто долларов каждый. Ранние модули стоили приблизительно 2 тыс. долл., что не допускало массового использования AФAР. Однако стоимость таких модулей и MMIC-чипов постоянно уменьшается, поскольку себестоимость их разработки и производства постоянно снижается.

Несмотря на недостатки, активные фазированные решётки превосходят обычные радарные антенны почти во всех отношениях, обеспечивая более высокую следящую способность и надёжность, пусть и при некотором увеличении в сложности и, возможно, стоимости.


РАДИОЛОКАЦИОННЫЙ КОМПЛЕКС С АФАР ПАК ФА

RADAR SYSTEM WITH AESA PAK FA

04.03.2014


Один из ключевых элементов для перспективного авиационного комплекса дальней авиации (ПАК ДА) — радиолокационная система — уже разрабатывается в России, сообщил в интервью РИА Новости генеральный директор Научно-исследовательского института приборостроения им В.В.Тихомирова Юрий Белый.
Ранее Минпромторг сообщил о заключении контракта с Минобороны о начале финансирования проекта создания ПАК ДА. Планируется, что этот самолет войдет в госпрограмму вооружения 2016-2025 годов.
«Если вы под элементом понимаете радиолокационную систему, то в настоящий момент мы как раз рассматриваем это предложение», — сказал Белый, отвечая на вопрос РИА Новости об участии в проекте разработки ПАК ДА. «Мы выполнили аванпроект, передали фирме Туполева, защитили его, <..> ждем, когда дадут отмашку и окончательные ТЗ», — пояснил директор НИИП.