Настройка Wi-Fi

Интегральная схема в качестве элемента вычислительного устройства. История отечественной электронной компонентной базы (ЭКБ)

Интегральная схема в качестве элемента вычислительного устройства. История отечественной электронной компонентной базы (ЭКБ)

Большие интегральные схемы

Одним из важнейших путей совершенствования вычислительной техники является широкое применение в ней достижений современной микроэлектроники. Успехи полупроводниковой интегральной электроники привели к созданию нового класса сложных функциональных электронных изделий - больших интегральных схем, которые стали основной элементной базой ЭВМ четвертого поколения (конец 70-х годов).

В одной такой схеме объёмом всего лишь в доли кубического сантиметра размещается блок, занимавший в ЭВМ первого поколения целый шкаф. В результате достигнуто существенное повышение производительности ЭВМ.

Если в ЭВМ третьего поколения быстродействие достигает 20-30 млн операций в секунду, то в машинах четвёртого поколения производительность достигает сотен миллионов операций в секунду. Соответственно возрастает и объём памяти. Наряду с усовершенствованием традиционных устройств памяти на магнитных дисках и лентах создаётся память без движущихся частей. Общий объём внешней памяти в крупных машинах четвёртого поколения превосходит 10 14 символов, что эквивалентно библиотеке, состоящей из нескольких миллионов объёмистых томов.

БИС созданы в результате естественного развития интегральных схем. Предпосылкой их появления является освоение электронной промышленностью планарной технологии изготовления кремниевых полупроводниковых приборов. Принципиальная новизна этой технологии состоит в том, что она позволила заменить обычные дискретные компоненты диффузионными или тонкоплёночными компонентами.

Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) - резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли).

Все современные вычислительные машины строятся на комплексах (системах) интегральных микросхем (ИС). Электронная микросхема называется интегральной, если ее компоненты и соединения между ними выполнены в едином технологическом цикле, на едином основании и имеют общую герметизацию и защиту от механических воздействий. Каждая микросхема представляет собой миниатюрную электронную схему, сформированную послойно в кристалле полупроводника: кремния, германия и т.д. В состав микропроцессорных наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, основанный на стандартизации параметров сигналов взаимодействия (амплитуда, полярность, длительность импульсов и т.п.). Основу набора обычно составляют большие интегральные схемы (БИС) и сверхбольшие интегральные схемы (СБИС). В ближайшем будущем следует ожидать появления ультрабольших ИС (УБИС). Кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинации простейших логических элементов, реализующих функции формирования, преобразования, запоминания сигналов и т.д.

Все современные ЭВМ строятся на микропроцессорных наборах, основу которых составляют большие (БИС) и сверхбольшие интегральные схемы (СБИС). Технологический принцип разработки и производства интегральных схем действует уже более четверти века. Он заключается в послойном изготовлении частей электронных схем по циклу "программа - рисунок - схема". По программам на запыленный фоторезисторный слой наносится рисунок будущего слоя микросхемы. Затем рисунок протравливается, фиксируется, закрепляется и изолируется от новых слоев.

На основе этого создается пространственная твердотельная структура. Например, СБИС типа Pentium включает около трех с половиной миллионов транзисторов, размещаемых в пятислойной структуре. Степень микроминиатюризации, размер кристалла ИС, производительность и стоимость технологии напрямую определяются типом литографии. До настоящего времени доминирующей оставалась оптическая литография, т.е. послойные рисунки на фоторезисторе микросхем наносились световым лучом. В настоящее время ведущие компании, производящие микросхемы, реализуют кристаллы с размерами примерно 400-600 мм2 для процессоров (например, Pentium) и 200-400 мм2 - для схем памяти. Минимальный топологический размер (толщина линий) при этом составляет 0,25-0,135 мкм. Для сравнения можно привести такой пример. Толщина человеческого волоса составляет примерно 100 мкм. Значит, при таком разрешении на толщине 100 мкм требуется вычерчивать более двухсот линий.

Дальнейшие успехи микроэлектроники связываются с электронной (лазерной), ионной и рентгеновской литографией. Это позволяет выйти на размеры 0,13; 0,10 и даже 0,08 мкм. Вместо ранее используемых алюминиевых проводников в микросхемах повсеместно начинают применять медные соединения, что позволяет повысить частоту работы.

Такие высокие технологии порождают целый ряд проблем. Микроскопическая толщина линий, сравнимая с диаметром молекул, требует высокой чистоты используемых и напыляемых материалов, применения вакуумных установок и снижения рабочих температур. Действительно, достаточно попадания мельчайшей пылинки при изготовлении микросхемы - и она попадает в брак. Поэтому новые заводы по производству микросхем представляют собой уникальное оборудование, размещаемое в "чистых помещениях класса 1", микросхемы в которых транспортируются от оборудования к оборудованию в замкнутых сверхчистых мини-атмосферах класса 1000. Мини-атмосфеpa создается, например, сверхчистым азотом или другим инертным газом при давлении КГ4 Торр.

В настоящее время основой построения всех микросхем была и остается КМоп-технология (комплементарные схемы, т.е. совместно использующие п- и р-переходы в транзисторах со структурой "металл - окисел - полупроводник").

Однако появление БИС породило очень серьезную проблему-"что положить на подложку" или, другими словами, каким образом реализовать устройство на схемах с таким колоссальным количеством элементов.

Первым и довольно естественным решением этой проблемы явилось изготовление так называемых заказных схем, разрабатываемых каждый раз специально для использования в конкретной аппаратуре. В то же время проектирование заказных БИС - весьма длительный и трудоемкий процесс, использующий сложные человеко-машинные системы автоматизированного проектирования. Поэтому разработка и изготовление заказных БИС могут быть экономически оправданы только при массовом производстве аппаратуры, в которой эти схемы применяются.

Хорошей альтернативой заказным БИС явились микропроцессорные наборы - совокупность больших интегральных схем, реализующих сложные функции цифровой аппаратуры. Из этих "кирпичей" достаточно просто строятся микрокомпьютеры (микро-ЭВМ), получившие исключительное развитие и нашедшие широкое применение в разнообразных системах управления.

Микропроцессор является универсальным устройством, способным реализовать любую логическую функцию. Однако программная реализация логики управления осуществляется сравнительно медленно, микропроцессор зачастую не способен обеспечить необходимое быстродействие. В связи с этим в настоящее время широкое распространение получили программируемые БИС с матричной структурой, среди которых особое место занимают программируемые логические матрицы (ПЛМ) - большие интегральные схемы, сочетающие регулярность структуры полупроводникового запоминающего устройства (ЗУ) с универсальностью микропроцессора. ПЛМ обладает существенными преимуществами перед микропроцессором при реализации сложных алгоритмов управления.

В качестве функциональных узлов БИС, ориентированных на реализацию булевых функций, широко используются так называемые матричные схемы.

Матричная схема представляет собой сетку ортогональных проводников, в местах пересечения которых могут быть установлены полупроводниковые элементы с односторонней проводимостью (ЭОП) - диоды или транзисторы.

Рассмотрим матрицы М1и М2 на рисунке №1. Способ включения ЭОП в местах пересечения шин матрицы М1 позволяет реализовать на любом из её выходов любую конъюнкцию её входных переменных, взятых со знаком либо без знака инверсии.

Рисунок №1

Матрица М2 имеет 4 вертикальных и 2 горизонтальных шины. Способ включения ЭОП в местах пересечения шин М2 позволяет реализовать на любом из её выходов любую дизъюнкцию её входных переменных.

Если соединить эти матрицы как показано на рисунке №2, то можно заметить, что любая система булевых функций у1. yn водных переменных x1. xn может быть реализована двухуровневой матричной схемой, на первом уровне которой образуются различные элементарные конъюнкции, а на втором - дизъюнкции соответствующих конъюнкций (y1…yn).

В итоге построение схем с матричной структурой сводится к определению точек пересечения шин, где должны быть включены ЭОП.


Рисунок №2

По способу программирования различают матрицы, настраиваемые (программируемые) на заводе-изготовителе, пользователем и репрограммируемые (многократно настраиваемые).

В матрицах первого типа соединение ЭОП с шинами осуществляется 1 раз с помощью специальных масок, используемых для металлизации определённых участков кристалла БИС. После изготовления БИС полученные соединения изменены быть не могут.

Матрицы второго типа поставляются потребителю не настроенными и содержащими ЭОП в каждой точке пересечения их шин. Настройка сводится к удалению (отключению) некоторых ненужных ЭОП. Физически процесс настройки осуществляется различными способами, например, путём пропускания серии импульсов тока достаточно большой амплитуды через соответствующий ЭОП и разрушения плавкой перемычки, включённой последовательно с этим ЭОП и соединяющей его с одной из шин в точке их пересечения.

Матрицы третьего типа позволяют осуществлять программирование неоднократно. Повторное программирование выполняется электрическим способом после стирания содержимого матриц под действием ультрафиолетового (иногда рентгеновского) облучения или электрическим способом отдельно для каждого ЭОП.

Так же необходимо сказать несколько слов о так называемых программируемых матрицах.

Программируемая логическая матрица (ПЛМ) представляет собой функциональный блок, созданный на базе полупроводниковой технологии и предназначенный для реализации логических схем цифровых систем. В зависимости от внутренней организации программируемые логические матрицы можно разделить на ПЛМ комбинационной логики и ПЛМ с памятью.

Следует отметить, что на кристалле БИС ПЛМ предусмотрена специальная система шин, позволяющая соединять выходы донной матрицы с входами другой. Выполнение разрезов шин и организация необходимых связей между входами и выходами различных матриц осуществляются на этапе настройки ПЛМ на заводе изготовителе.

Всего лет двадцать пять назад радиолюбителям и специалистам старшего поколения пришлось заниматься изучением новых по тому времени приборов — транзисторов. Нелегко было отказываться от электронных ламп, к которым так привыкли, и переключаться на теснящее и все разрастающееся «семейство» полупроводниковых приборов.

А сейчас это «семейство» все больше и больше стало уступать свое место в радиотехнике и электронике полупроводниковым приборам новейшею поколения — интегральным микросхемам, часто называемым сокращенно ИМС.

Что такое интегральная микросхема

Интегральная микросхема - это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема Может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

На аналоговой микросхеме

Из огромного «семейства» аналоговых самыми простыми являются микросхемы-близнецы» К118УН1А (К1УС181А) и К118УН1Б (К1УС181Б), входящие в серию К118.

Каждая из них представляет собой усилитель, содержащий... Впрочем, об электронной «начинке» лучше поговорить лозже. А пока будем считать их «черными ящичками» с выводами для подключения к ним источников питания, дополнительных деталей, входных и выходных цепей.

Разница же между ними заключается только в их коэффициентах усиления колебаний низких частот: коэффициент усиления микросхемы К118УН1А на частоте 12 кГц составляет 250, а микросхемы К118УН1Б — 400.

На высоких частотах коэффициент усиления этих микросхем одинаков — примерно 50. Так что любая из них может быть использована для усиления колебаний как низких, так и высоких частот, а значит, и для наших опытов. Внешний вид и условное обозначение этих микросхем-усилителей на принципиальных схемах устройств показаны на рис. 88.

Корпус у них пластмассовый прямоугольной формы. Сверху на корпусе — метка, служащая точкой отсчета номеров выводов. Микросхемы рассчитаны на питание от источника постоянного тока напряжением 6,3 В, которое подают через выводы 7 (+Uпит) и 14 (— U пит).

Источником питания может быть сетевой блок питания с регулируемым выходным напряжением или батарея, составленная из четырех элементов 334 и 343.

Первый опыт с микросхемой К118УН1А (или К118УН1Б) проводи по схеме, приведенной на рис. 89. В качестве монтажной платы используй картонную пластинку размерами примерно 50X40 мм.

Микросхему выводами 1, 7, 8 и 14 припаяй к проволочным скобкам, пропущенным через проколы в картоне. Все они будут выполнять роль стоек, удерживающих микросхему на плате, а скобки выводов 7. и 14, кроме того, соединительными контактами с батареей GB 1 (или сетевым блоком питания).

Между ними с обеих сторон от микросхемы укрепи еще по два-три контакта, которые будут промежуточными для дополнительных деталей. Смонтируй на плате конденсаторы С1 (типа К50-6 или К50-3) и С2 (КЯС, БМ, МБМ), подключи к выходу микросхемы головные телефоны В2.

Ко входу микросхемы подключи (через конденсатор С1) электродинамический микрофон В1 любого типа или телефонный капсюль ДЭМ-4м, включи питание и, прижав поплотнее телефоны к ушам, постучи легонько карандашом по микрофону. Если ошибок в монтаже нет, в телефонах должны быть слышны звуки, напоминающие щелчки по барабану.

Попроси товарища сказать что-то перед микрофоном — в телефонах услышишь его голос. Вместо микрофона ко входу микросхемы можешь подключить радиотрансляционный (абонентский) громкоговоритель с его согласующим трансформатором. Эффект будет примерно таким же.

Продолжая опыт с телефонным устройством одностороннего действия, включи между общим (минусовым) проводником цепи питания и выводом 12 микросхемы электролитический конденсатор СЗ, обозначенный на схеме штриховыми линиями. При этом громкость звука в телефонах должна возрасти.

Телефоны станут звучать еще громче, если такой же конденсатор включить в цепь вывода 5 (на рис, 89 — конденсатор С4). Но если при этом усилитель возбудится, то между общим проводом и выводом 11 придется включить электролитический конденсатор емкостью 5 — 10 мкФ на. номинальное напряжение 10 В.

Еще один опыт: включи между выводами 10 и 3 микросхемы керамический или бумажный конденсатор емкостью 5 — 10 тыс. пикофарад. Что получилось? В телефонах появился непрекращающийся -звук средней тональности. С увеличением емкости этого конденсатора тон звука в телефонах должен понижаться, а с уменьшением повышаться. Проверь это.

А теперь раскроем этот «черный ящичек» и рассмотрим его «начинку» (рис. 90). Да, это двухкаскадный усилитель с непосредственной связью между его транзисторами. Транзисторы кремниевые, структуры n-р- n . Низкочастотный сигнал, создаваемый микрофоном, поступает (через конденсатор С1) на вход микросхемы (вывод 3).

Падение напряжения, создающееся на резисторе R 6 в эмиттерной цепи транзистора V 2, через резисторы R 4 и R 5 подается на базу транзистора VI и открывает его. Резистор R 1 — нагрузка этого транзистора. Снимаемый с него усиленный сигнал поступает на базу транзистора V 2 для дополнительного усиления.

В опытном усилителе нагрузкой транзистора V 2 были головные телефоны, включенные в его коллекторную цепь, которые преобразовывали низкочастотный сигнал в звук.

Но его нагрузкой мог бы быть резистор R 5 микросхемы, если соединить вместе выводы 10 и 9. В таком случае телефоны надо включать между общим проводом и точкой соединения этих выводов через электролитический конденсатор емкостью в несколько микрофарад (положительной обкладкой к микросхеме).

При включении конденсатора между общим проводом и выводом 12 микросхемы громкость звука увеличилась, Почему? Потому что он, шунтируя резистор R 6 микросхемы, ослабил действующую в ней отрицательную обратную связь по переменному току.

Отрицательная обратная связь стала еще слабее, когда ты второй конденсатор включил в базовую цепь транзистора V 1. А третий конденсатор, включенный между общим проводом и выводом 11, образовал с резистором R 7 микросхемы развязывающий фильтр, предотвращающий возбуждение усилителя.

Что получилось при включении конденсатора между выводами 10 и 5? Он создал между выходом и входом усилителя положительную обратную связь, которая превратила его в генератор колебаний звуковой частоты.

Итак, как видишь, микросхема К118УН1Б (или К118УН1А) — это усилитель, который может быть низ-кочастотным или высокочастотным, например, в приемнике. Но он может стать и генератором электрических колебаний как низких, так и высоких частот.

Микросхема в радиоприемнике

Предлагаем испытать эту микросхему в высокочастотном тракте приемника, собранного, например, по схеме, приведенной на рис. 91. Входной контур магнитной антенны такого приемника образуют катушка L 1 и конденсатор переменной емкости С1. Высокочастотный сигнал радиостанции, на волну которой контур настроен, через катушку связи L 2 и разделительный конденсатор С2 поступает на вход (вывод 3) микросхемы Л1.

С выхода микросхемы (вывод 10, соединенный с выводом 9) усиленный сигнал подается через конденсатор С4 на детектор, диоды VI и V 2 которого включены по схеме умножения напряжения, а выделенный им низкочастотный сигнал телефоны В1 преобразуют в звук. Приемник питается от батареи GB 1, составленной из четырех элементов 332, 316 или пяти аккумуляторов Д-01.

Во многих транзисторных приемниках усилитель высокочастотного тракта образуют транзисторы, а в этом — микросхема. Только в этом и заключается разница между ними. Имея опыт предыдущих практикумов, ты, надеюсь, сможешь самостоятельно смонтировать иг наладить такой приемник и даже, если пожелаешь, дополнить его усилителем НЧгдля громкоговорящего радиоприема.

На логической микросхеме

Составной частью многих цифровых интегральных микросхем является логический элемент И-НЕ, условное обозначение которого ты видишь на рис. 92, а. Его символом служит знак «&», помещаемый внутри прямоугольника, обычно в верхнем левом углу, заменяющий союз «И» в английском языке. Слева два или больше входов, справа — один выход.

Небольшой кружок, которым начинается линия связи выходного сигнала, символизирует логическое Отрицание «НЕ» на выходе микросхемы. На языке цифровой техники «НЕ» означает, что элемент И-НЕ является инвертором, то есть устройством, выходные параметры которого противоположны входным.

Электрическое состояние и работу логического элемента характеризуют уровнями сигналов на его входах и выходе. Сигнал небольшого (или нулевого) напряжения, уровень которого не превышает 0,3 — 0,4 В, принято (в соответствии с двоичной системой счисления) называть логическим нулем (0), а сигнал более высокого напряжения (по сравнению с логическим 0), уровень которого может быть 2,5 — 3,5 В, — логической единицей (1).

Например, говорят: «на выходе элемента логическая 1». Это значит, что в данный момент на выходе элемента появился сигнал, напряжение которого соответствует уровню логической 1.

Чтобы не углубляться в технологию и устройство элемента И-НЕ, будем рассматривать его как «черный ящичек», у которого для электрического сигнала есть два входа и один выход.

Логика же элемента заключается в том, что при подаче на один из его входов логического О, а на второй вход логической 1, на выходе появляется сигнал логической 1, который исчезает при подаче на оба входа сигналов, соответствующих логической 1.

Для опытов, закрепляющих в памяти это свойство элемента, потребуются наиболее распространенная микросхема К155ЛАЗ, вольтметр постоянного тока, свежая батарея 3336Л и два резистора сопротивлением 1...1,2 кОм.

Микросхема К155ЛАЗ состоит из четырех элементов 2И-НЕ (рис. 92, б), питающихся от одного общего источника постоянного тока напряжением 5 В, но каждый из них работает как самостоятельное логическое устройство. Цифра 2 в названии микросхемы указывает на то, что ее элементы имеют по два входа.

Внешним видом и конструктивно она, как и все микросхемы серии К155, не отличается от уже знакомой тебе аналоговой микросхемы К118УН1, только полярность подключения источника питания иная. Поэтому сделанная ранее тобой картонная плата подойдет и для опытов с этой микросхемой. Источник питания подключают: +5 В — к выводу 7» — 5 В — к выводу 14.

Но эти выводы не принято обозначать на схематическом изображении микросхемы. Объясняется это тем, что на принципиальных электрических схемах элементы, составляющие микросхему, изображают раздельно, например, как на рис. 92, в. Для опытов можно использовать любой из ее четырех элементов.

Микросхему выводами 1, 7, 8 и 14 припаяй к проволочным стойкам на картонной плате (как на рис. 89). Один из входных выводов любого из ее элементов, например, элемента с выводами 1 3, соедини через ре-.зистор сопротивлением 1...1.2 кОм с выводом 14, вывод второго входа — непосредственно с общим («заземленным») проводником цепи питания, а к выходу элемента подключи вольтметр постоянного тока (рис. 93, а).

Включии питание. Что показывает вольтметр? Напряжение, равное примерно 3 В. Это напряжение соответствует сигналу логической 1 на выходе элемента. Тем же вольтметром измерь напряжение на выводе первого входа, И здесь, как видишь, тоже логическая 1. Следовательно, когда на одном из входов элемента логическая 1, а на втором логический 0, на выходе будет логическая 1.

Теперь вывод и второго входа соедини через резистор сопротивлением 1...1.2 кОм с выводом 14 и одновременно проволочной перемычкой — с общим проводником, как показано на рис. 93, б.

При этом на выходе, как и в первом опыте, будет логическая 1. Далее, следя за стрелкой вольтметра, удали проволочную перемычку, чтобы и на второй вход подать сигнал, соответствующий логической 1.

Что фиксирует вольтметр? Сигнал на выходе элемента преобразовался в логический 0. Так оно и должно быть! А если любой из входов периодически замыкать на общий провод и тем самым имитировать подачу на него логического 0, то с такой же частотой на выходе элемента станут появляться импульсы тока, о чем будут свидетельствовать колебания стрелки вольтметра. Проверь это опытным путем.

Свойство элемента И-НЕ изменять свое состояние под воздействием входных управляющих сигналов широко используется в различных устройствах цифровой вычислительной техники. Радиолюбители же, особенно начинающие, очень часто используют логический элемент как инвертор — устройство, сигнал на выходе которого противоположен входному сигналу.

Подтвердить такое свойство элемента может следующий опыт. Соедини вместе выводы обоих входов элемента и через резистор сопротивлением 1...1,2 кОм подключи их к выводу 14 (рис. 93, в).

Так ты подашь на общий вход элемента сигнал, соответствующий логической 1, напряжение которого можно измерить вольтметром. Что при этом получается на выходе?

Стрелка вольтметра, подключенного к нему, чуть отклонилась от нулевой отметки шкалы. Здесь, следовательно, как и предполагалось, сигнал соответствует логическому 0.

Затем, не отключая резистор от вывода 14 микросхемы, несколько раз подряд замкни проволочной перемычкой вход элемента на общий проводник (на рис. 93, в показано штриховой линией со стрелками) и одновременно следи за стрелкой вольтметра. Так ты убедишься в том, что когда на входе инвертора логический 0, на выходе в это время логическая 1 и, наоборот, когда на входе логическая 1 — на выходе логический 0.

Так работает инвертор, особенно часто используемый радиолюбителями в конструируемых ими импульсных устройствах.

Примером такого устройства может служить генератор импульсов, собранный по схеме, приведенной на рис. 94. В его работоспособности ты можешь убедиться сейчас же, затратив на это всего несколько минут.

Выход элемента D1.1 соедини с входами элемента D 1.2 той же микросхемы, его выход — с входами элемента DJ .3, а выход этого элемента (вывод 8) — с входом элемента D 1.1 через переменный резистор R1. К выходу элемента D 1.3 (между выводом 8 и общим проводником) подключи головные телефоны B 1, a параллельно элементам D1.1 и D 1.2 электролитический конденсатор С1.

Движок переменного резистора установи в правое (по схеме) положение и включи питание — в телефонах услышишь звук, тональность которого можно изменять переменным резистором.

В этом эксперименте элементы D 1.1, D 1.2 и D 1.3, соединенные между собой последовательно, подобно транзисторам трехкаскадного усилителя, образовали мультивибратор — генератор электрических импульсов прямоугольной формы.

Микросхема стала генератором благодаря конденсатору и резистору, создавшим между выходом и входом элементов частотозависимые цепи обратной связи. Переменным резистором частоту импульсов, генерируемых мультивибратором, можно плавно изменять примерно от 300 Гц до 10 кГц.

Какое практическое применение может найти такое импульсное устройство? Оно может стать, например, квартирным звонком, пробником для проверки работоспособности каскадов приемника и усилителя НЧ, генератором для тренировок по приему на слух телеграфной азбуки.

Самодельный игровой автомат на микросхеме

Подобное устройство можно превратить в игровой автомат «Красный или зеленый?». Схема такого имлульсного устройства приведена на рис. 95. Здесь элементы D 1.1, D 1.2, D 1.3 той же (или такой же) микросхемы К155ЛАЗ и конденсатор С1 образуют аналогичный мультивибратор, импульсы которого управляют транзисторами VI и V 2, включенными по схеме с общим эмиттером.

Элемент D 1.4 работает как инвертор. Благодаря ему импульсы мультивибратора поступают на базы транзисторов в противофазе и открывают их поочередно. Так, например, когда на входе инвертора уровень логической 1, а на выходе уровень логического 0, то в Эти моменты, времени транзистор В1 открыт и лампочка HI в его коллекторной цепи горит, а транзистор V 2 закрыт и его лампочка Н2 не горит.

При следующем импульсе инвертор изменит свое состояние на обратное. Теперь откроется транзистор V 2 и загорится лампочка Н2, а транзистор VI закроется и лампочка H 1 погаснет.

Но частота импульсов, генерируемых мультивибратором, сравнительно высокая (не меньше 15 кГц) и лампочки, естественно, не могут реагировать на каждый импульс.

Поэтому они светятся тускло. Но стоит нажать на кнопку S1, чтобы ее контактами замкнуть накоротко конденсатор С1 и тем самым сорвать генерацию мультивибратора, как тут же ярко загорится лампочка того из транзисторов, на базе которого в этот момент окажется напряжение, соответствующее логической 1, а другая лампочка совсем погаснет.

Заранее невозможно сказать, какая из лампочек после нажатия на кнопку будет продолжать гореть — можно только гадать. В этом смысл игры.

Игровой автомат вместе с батареей питания (3336Л или три элемента 343, соединенные последовательно) можно разместить в коробке небольших размеров, например в корпусе «карманного» приемника.

Лампочки накаливания HI и Н2 (МН2,5-0,068 или МН2,5-0,15) размести под отверстиями в лицевой стенке корпуса и закрой их колпачками или пластинками органического стекла красного и зеленого цветов. Здесь же укрепи выключатель питания (тумблер ТВ-1) и кнопочный выключатель §1 (типа П2К или КМ-Н) остановки мультивибратора.

Налаживание игрового автомата заключается в тщательном подборе резистора R 1. Его сопротивление должно быть таким, чтобы при остановке мультивибратора кнопкой S 1 по крайней мере 80 — 100 раз число загораний каждой из лампочек было примерно одинаково.

Сначала проверь, работает ли мультивибратор. Для этого параллельно конденсатору С1, е,мкость которого может быть 0,1...0,5 мкФ, подключи электролитический конденсатор емкостью 20...30 мкФ, а к выходу мультивибратора головные телефоны — в телефонах должен появиться звук низкой тональности.

Этот звук — признак работы мультивибратора. Затем удали электролитический конденсатор, резистор R 1 замени подстроечным резистором сопротивлением 1,2...1,3 кОм, а между выводами 8 и 11 элементов DI .3 и D 1.4 включи вольтметр постоянного тока. Изменением сопротивления подстро-ечного резистора добейся такого положения, чтобы вольтметр показывал нулевое напряжение между выходами этих элементов микросхемы.

Число играющих может быть любое. Каждый по очереди нажимает на кнопку остановки мультивибратора. Выигрывает тот, кто при равном числе ходов, например двадцати нажатий на кнопку, большее число раз угадает цвета загорающихся лампочек после остановки мультивибратора.

К сожалению, частота мультивибратора описанного здесь простейшего игрового автомата из-за разрядки батареи несколько изменяется, что, конечно, сказывается на равновероятности зажигания разных лампочек, поэтому лучше питать его от источника стабилизированного напряжения 5 В.

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

Интегральная схема (микросхема) – миниатюрное электронное устройство, состоящее из большого количества радиоэлектронных элементов, конструктивно и электрически связанных между собой. Обычно интегральная схема создается для выполнения конкретной функции. По сути, микросхема объединяет в себе какую-то электронную схему, где все элементы (транзисторы , диоды , резисторы, конденсаторы) и электрические связи между ними конструктивно выполнены на одном кристалле. Поскольку размеры отдельных компонентов очень малы (микро- и нанометры), то на одном кристалле при современном развитии технологий, можно поместить более миллиона электронных компонентов.

У понятия интегральная схема есть несколько синонимов: микросхема, микрочип, чип. Несмотря на некоторую особенность определения этих терминов и разницу между ними, в обиходе все они применяются для обозначения интегральной схемы. В современных электронных устройствах самых различных сфер применения, начиная от бытовых приборов и заканчивая сложными медицинскими и научными электроприборами, сложно найти прибор, в котором бы не применялись интегральные схемы. Иногда одна микросхема выполняет практически все функции в электронном приборе.

Интегральные схемы делятся на группы по нескольким критериям. По степени интеграции – количеству элементов, размещенных на кристалле. По типу обрабатываемого сигнала: цифровые, аналоговые и аналого-цифровые. По технологии их производства и используемых материалов – полупроводниковые, пленочные и т.д.

На сегодняшний день уровень развития технологий при производстве интегральных схем находится на очень высоком уровне. Повышения степени интеграции, улучшение параметров интегральных схем тормозится не технологическими ограничениями, а процессами, происходящими на молекулярном уровне в используемых для производства материалах (обычно полупроводниках). Поэтому исследования производителей и разработчиков микрочипов ведутся в направлении поиска новых материалов, которые смогли бы заменить

Чтобы работала любая мало-мальски сложная электроника, обычно необходимо много деталей. Когда их много, то они могут «объединяться», скажем, в интегральные схемы. Что они собой являют? Как классифицируются? Каким образом изготавливаются, и какие сигналы передают?

Чем являются логические интегральные схемы (ИС)

По сути, это микроэлектронное устройство, которое базируется на кристалле произвольной сложности, что изготовлено на полупроводниковой плёнке или пластине. Оно помещается в неразборный корпус (хотя может обойтись и без него, но только когда он является частью микросборки). Первая интегральная схема была запатентована в 1968 году. Это стало своеобразным прорывом в промышленности, хотя предоставленное устройство и не очень сильно соответствовало современным представлениям по своим параметрам. Интегральные схемы в массе своей изготавливаются для поверхностного монтажа. Часто под ИС понимают один только кристалл или плёнку. Наибольшее распространение получила интегральная схема на пластине кремния. Так вышло, что его применение в промышленности имеет ряд преимуществ, например, эффективность передачи сигналов.

Уровни проектирования

Данные устройства являются сложными, что прекрасно отображается. Сейчас они создаются при помощи специальных САПР, которые автоматизируют и значительно ускоряют производственные процессы. Итак, при проектировании прорабатывается:

  1. Логический уровень (инверторы, И-НЕ, ИЛИ-НЕ и им подобные).
  2. Системо- и схемотехнический (прорабатываются триггеры, шифраторы, АЛУ, компараторы и прочее);.
  3. Электрический (конденсаторы, транзисторы, резисторы и им подобные устройства).
  4. Топологический уровень - фотошаблоны для производства.
  5. Физический - как реализовывается один транзистор (или небольшая группа) на кристалле.
  6. Программный - создаются инструкции для микроконтроллеров, микропроцессоров и ПЛИС. Разрабатывается модель поведения с помощью вертикальной схемы.

Классификация

Говоря о том, как различают интегральные схемы, нельзя избрать только один параметр вида сложности техники, о которой ведётся речь. Поэтому в рамках статьи было отобрано целых три.

Степень интеграции

  1. Малая интегральная схема. Содержит меньше ста элементов.
  2. Средняя интегральная схема. Количество элементов колеблется в диапазоне сотня/тысяча.
  3. Большая интегральная схема. Содержит от тысячи до 10 000 элементов.
  4. В них есть свыше десяти тысяч элементов.

Как правило, для бытовых устройств часто используется большая интегральная схема. Ранее использовались и другие категории:

  1. Ультрабольшая интегральная схема. В неё зачисляли те образцы, которые могли похвастаться количеством элементов в диапазоне от 1 млн. до 1 млрд.
  2. Гигабольшая интегральная схема. Сюда относили образцы, количество элементов которых превышало 1 млрд. элементов.

Но в данный момент времени они не применяются. А все образцы, которые раньше относили к УБИС и ГБИС, сейчас проходят как СБИС. В целом, это позволило значительным образом сэкономить на количестве групп, поскольку две последних типа обычно используются специфически в больших научно-исследовательских центрах, где работают компьютерные системы, мощность которых измеряется в десятках и сотнях терабайт.

Технология изготовления

Ввиду различных возможностей производства интегральные схемы также классифицируются по тому, как они изготавливаются и из чего:

1. Полупроводниковые. В них все элементы и соединения выполняются на одном и том же полупроводниковом кристалле. Полупроводниковые интегральные схемы используют такие материалы, как кремний, германий, арсенид галлия и оксид гафния.

2. Пленочные. Все элементы и соединения сделаны как плёнки:

Толстоплёночные.

Тонкоплёночные.

3. Гибридная. Имеет бескорпусные диоды, транзисторы или иные электронные активные компоненты. Пассивные (как то резисторы, катушки индуктивности, конденсаторы) размещены на общей керамической подложке. Все они помещаются в один герметизированный корпус.

4. Смешанная. Здесь есть не только полупроводниковый кристалл, но и тонкоплёночные (или толстоплёночные) пассивные элементы, которые размещаются на его поверхности.

Вид обрабатываемого сигнала

И третий, самый последний вид, основывается на том, какие сигналы обрабатывает интегральная схема. Они бывают:

  1. Аналоговые. Здесь входные и выходные сигналы меняются согласно закону Они могут принимать значение в диапазоне от отрицательного до положительного напряжения питания.
  2. Цифровые. Здесь любой входной или выходной сигнал может иметь два значения: логической единицы или нуля. Каждому из них соответствует свой заранее определённый уровень напряжения. Так, микросхемы типа ТТЛ диапазон 0-0,4В оценивают в ноль, а 2,4-5В в единицу. Могут быть и другие разделения, всё зависит от конкретного образца.
  3. Аналогово-цифровые. Совмещают в себе преимущества и особенности предыдущих образцов. К примеру, в них могут быть усилители сигналов и аналого-цифровые преобразователи.

Правовые особенности

Что говорится про интегральные схемы в законодательстве? У нас в стране предоставлена правовая охрана топологий интегральных микросхем. Под ней подразумевают зафиксированное на определённом материальном носителе геометрически-пространственного расположения определённой совокупности конкретных элементов и связей меж ними (согласно статье 1448 Гражданского кодекса Российской Федерации). Автор топологии имеет такие интеллектуальные права на своё изобретение:

  1. Авторские.
  2. Исключительное право.

Кроме этого автору топологии могут принадлежать и другие преференции, в том числе - возможность получения вознаграждения за её использование. действует на протяжении десяти лет. За это время изобретатель, или человек, которому этот статус был уступлен, может зарегистрировать топологию в соответствующей службе интеллектуальной собственности и патентов.

Заключение

Вот и всё! Если у вас возникло желание собрать свою схему - можно только пожелать успеха. Но одновременно хочется обратить ваше внимание на одну особенность. Если есть желание собрать микросхему, то необходимо основательно подготовиться к этому процессу. Дело в том, что для её создания требуется исключительная чистота на уровне хирургической операционной, к тому же, из-за мелкости деталей поработать паяльником в обычном режиме не получится - все действия осуществляются машинами. Поэтому в домашних условиях можно создавать только схемы. При желании можно приобрести промышленные разработки, которые будут предлагаться на рынке, но идею с их изготовлением дома без значительных финансов лучше оставить.

Интегральная микросхема (или просто интегральная схема) есть совокупность, как правило, большого количества взаимосвязанных компонентов (транзисторов, диодов, конденсаторов, резисторов и т.п.), изготовленная в едином технологическом цикле (т.е. одновременно), на одной и той же несущей конструкции - подложке - и выполняющая определенную функцию преобразования информации.

Термин «интегральная схема» (ИС) отражает факт объединения (интеграции) отдельных деталей - компонентов - в конструктивно единый прибор, а также факт усложнения выполняемых этим прибором функций по сравнению с функциями отдельных компонентов.

Компоненты, которые входят в состав ИС и тем самым не могут быть выделены из нее в качестве самостоятельных изделий, называются элементами ИС или интегральными элементами. Они обладают некоторыми особенностями по сравнению с транзисторами и т.д., которые изготавливаются в виде конструктивно обособленных единиц и соединяются в схему путем пайки.

В основе развития электроники лежит непрерывное усложнение функций, выполняемых электронной аппаратурой. На определенных этапах становится невозможным решать новые задачи старыми средствами или, как говорят, на основе старой элементной базы, например с помощью электронных ламп или дискретных транзисторов. Основными факторами, лежащими в основе смены элементной базы, являются: надежность, габариты и масса, стоимость и мощность.

Особенностью изделий микроэлектроники является высокая степень сложности выполняемых функций, для чего создаются схемы, в которых количество компонентов исчисляется миллионами. Отсюда ясно, что обеспечить надежность функционирования при соединении компонентов вручную - задача невыполнимая. Единственным способом ее решения является применение качественно новых высоких технологий.

Для изготовления интегральных схем используется групповой метод производства и планарная технология.

Групповой метод производства заключается в том, что, во-первых, на одной пластине полупроводникового материала одновременно изготавливается большое количество интегральных схем; во-вторых, если позволяет технологический процесс, то одновременно обрабатываются десятки таких пластин. После завершения цикла изготовления ИС пластина разрезается в двух взаимно-перпендикулярных направлениях на отдельные кристаллы, каждый из которых представляет собой ИС.

Планарная технология - это такая организация технологического процесса, когда все элементы и их составляющие создаются в интегральной схеме путем их формирования через плоскость.

Одна или несколько технологических операций при изготовлении ИС заключается в соединении отдельных элементов в схему и присоединении их к специальным контактным площадкам. Поэтому необходимо, чтобы выводы всех элементов и контактные площадки находились в одной плоскости. Такую возможность обеспечивает планарная технология.



Финальная операция - корпусирование - это помещение ИС в корпус с присоединением контактных площадок к ножкам ИС (рис. 2.20).


Стоимость D одной ИС (одного кристалла) упрощенно можно вычислить следующим образом:

где А - затраты на научно-исследовательские и опытно-кон­струк­торские работы по созданию ИС; В - затраты на технологическое оборудование, помещение и др.; С - текущие расходы на материалы, электроэнергию, заработную плату, в пересчете на одну пластину; Z - количество пластин, изготовляемых до амортизации основных производственных фондов; X - количество кристаллов на пластине; Y - отношение годных ИС к количеству, запущенному в производство в начале его.

Кроме очевидных комментариев относительно затрат, нужно отметить следующее. Увеличение Y достигается созданием все более современной технологии, пожалуй, наиболее сложной и чистой среди многих новейших производств. Роста числа кристаллов X на пластине можно достичь двумя путями: увеличением размера пластины и уменьшением размеров отдельных элементов. Эти оба направления используются разработчиками.

В заключение заметим, что все константы, входящие в формулу, не являются ни постоянными, ни зависимыми друг от друга, поэтому анализ на минимум стоимости на самом деле является сложным и многофакторным.

Классификация ИС. Классификация ИС может производиться по различным признакам, ограничимся здесь лишь одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки (рис. 2.21). Эти ИС составляют основу современной микроэлектроники.

Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки (рис. 2.22). В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщи­на пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше). Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные эле­менты типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т.п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

Гибридная ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называют навесными, подчеркивая этим их обособленность от основного технологического цикла получения пленочной части схемы.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений - металлической разводкой.

Полупроводни ковые ИС . В настоящее время различают следующие полупроводниковые ИС: биполярные, МОП (металл-окисел-полупроводник) и БИМОП. Последние представляют собой сочетание первых двух, и в них комбинируются положительные их качества.

Технология полупроводниковых ИС основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слои с разным типом проводимости р-n -переходы на границах слоев. Отдельные слои используются в качестве резисторов, а р-n -переходы - в диодных и транзисторных структурах.

Легирование пластины приходится осуществлять локально, т.е. на отдельных участках, разделенных достаточно большими расстояниями. Локальное легирование осуществляется с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках. При изготовлении полупроводниковых ИС роль маски обычно играет пленка двуокиси кремния SiO 2 , покрывающая поверхность кремниевой пластины. В этой пленке специальными методами гравируется необходимая совокупность отверстий различной формы или, как говорят, необходимый рисунок (рис. 2.22 ). Отверстия в масках, в частности в окисной пленке, называют окнами.

Теперь кратко охарактеризуем составные части (элементы) полупроводниковых ИС. Основным элементом биполярных ИС является n-p-n -транзистор: на его изготовление ориентируется весь технологический цикл. Все другие элементы должны изготавливаться, по возможности, одновременно с этим транзистором, без дополнительных технологических операций.

Основным элементом МДП ИС является МДП-транзистор. Изготовление других элементов также подстраивается под базовый транзистор.

Элементы биполярной ИС необходимо тем или иным способом изолировать друг от друга с тем, чтобы они не взаимодействовали через кристалл.

Элементы МОП ИС не нуждаются в специальной изоляции друг от друга, так как взаимодействие между смежными МОП-транзисторами не имеет места. В этом - одно из главных преимуществ МОП ИС по сравнению с биполярными.

Характерная особенность полупроводниковых ИС состоит в том, что среди их элементов отсутствуют катушки индуктивности и, тем более, трансформаторы. Это объясняется тем, что до сих пор не удалось использовать в твердом теле какое-либо физическое явление, эквивалентное электромагнитной индукции. Поэтому при разработке ИС стараются реализовать необходимую функцию без использования индуктивностей, что в большинстве случаев удается. Если же катушка индуктивности или трансформатор принципиально необходимы, их приходится использовать в виде навесных компонентов.

Размеры кристаллов у современных полупроводниковых ИС достигают 20х20 мм 2 . Чем больше площадь кристалла, тем более сложную, более многоэлементную ИС можно на нем разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

Функциональную сложность ИС принято характеризовать степенью интеграции, т.е. количеством элементов (чаще всего транзисторов) на кристалле. Максимальная степень интеграции составляет 10 б элементов на кристалле. Повышение степени интеграции (а вместе с нею и сложности функций, выполняемых ИС) - одна из главных тенденций в микроэлектронике.

Для количественной оценки степени интеграции используют условный коэффициент k = lgN. В зависимости от его значения инте­ральные схемы называются по-разному:

k ≤ 2 (N ≤ 100) - интегральная схема (ИС);

2 ≤ k ≤ 3 (N ≤ 1000) - интегральная схема средней степени интеграции (СИС);

3 ≤ k ≤ 5 (N ≤ 10 5) - большая интегральная схема (БИС);
k > 5 (N>10 5) - сверхбольшая интегральная схема (СБИС).

Ниже приведены английские обозначения и их расшифровки:

IС - Integrated Circuit;

MSI - Medium Scale Integration;

LSI - Large Scale Integration;

VLSI - Very Large Scale Integration.

Кроме степени интеграции, используют еще такой показатель, как плотность упаковки - количество элементов (чаще всего транзисторов) на единицу площади кристалла. Этот показатель, который характеризует главным образом уровень технологии, в настоящее время составляет до 500-1000 элементов/мм 2 .

Гибридные ИС. Пленочные, а значит, и гибридные ИС в зависимости от технологии изготовления делятся на толсто- и тонкопленочные.

Толстопленочные ГИС (обозначим их ТсГИС) изготавливаются весьма просто. На диэлектрическую пластинку-подложку наносят пасты разного состава. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные - получение резисторов; диэлектрические - изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску - трафарет - с окнами в тех местах, куда должна попасть паста данного слоя. После этого приклеивают навесные компоненты и соединяют их выводы с контактными площадками.

Тонкопленочные ГИС (обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС. Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. Вырастив очередную пленку, меняют химический состав газа и тем самым электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, как в случае ТсГИС, либо маской, подобно окисной маске в полупроводниковых ИС (см. рис. 1.4).

Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.

Степень интеграции ГИС не может оцениваться так же, как в случае полупроводниковых ИС. Тем не менее, существует термин большая ГИС (или БГИС), который означает, что в состав ГИС в качестве навесных компонентов входят не отдельные транзисторы, а целые полупроводниковые ИС.