Разное

Как это сделано, как это работает, как это устроено. Принципиальное устройство мобильного телефона

Как это сделано, как это работает, как это устроено. Принципиальное устройство мобильного телефона
Схема мобильного устройства. До сих пор не могу понять и представить, как можно на одном квадратом миллиметре процессора, поместить несколько миллионов транзисторов. Мало того что поместить, так еще и чтоб они работали и выпускать процессоры в промышленном масштабе по миллиону штук за раз. А производители телефонов, обещают выпустить еще более маленькие процессоры и более производительные телефоны.

Для того что бы узнать устройство телефона, узнать принцип работы GSM мобильной связи написан этот обзор.

Показать ещё

Далее, можно найти и почитать об устройстве сотового телефона и его основных функциональных узлов. Найти схемы мобильных устройств. Узнать принцип работы мобильного телефона и схемы работы канала GSM. Конструкция и схемотехника телефонных аппаратов сотовой связи стандарта GSM.

Запасные части и ремонт мобильных телефонов.

Магазин запчастей и комплектующих для телефона, планшета, смартфона

radiomaster.net - еще один интернет сервис предоставляющий для загрузки на компьютер или телефон схем устройства телефона и инструкций для простых и мобильных телефонов и другой техники. Схемы мобильных телефонов скачиваются с сайта бесплатно, без рекламы и смс, напрямую с этого сайта. На момент написания обзора скачать бесплатно схемы для сотовых телефонов, можно для более чем 600 моделей мобильных устройств.

market.yandex.ru - поиск и покупка запасных частей для мобильных и сотовых телефонов через не заменимую службу Яндекс.Маркет. Как всегда для пользователей сервиса удобная сортировка и поиск частей телефона по цене и ближайшему расположению магазина запасных частей для сотового телефона.

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

Введение

Мобильные радиотелефоны (MPT) очень быстро внедряются в нашу повседневную жизнь. Миллионы людей ежедневно пользуются МРТ, которые становятся непременным атрибутом современного человека. Все чаще среди разговаривающих по мобильному телефону можно встретить не только деловых людей, но и домохозяек, детей. И все чаще у медиков, ученых, а в последнее время и у самих пользователей МРТ возникает вопрос: а безопасны ли мобильные телефоны? Проблема биологической безопасности сотовых телефонов в нашей стране весьма актуальна. Это связано с тем, что включенный телефон является источником СВЧ (сверхвысокочастотное ) облучения, даже в режиме ожидания. Следует заметить, что человек практически всю свою историю прожил в условиях природного фона радиоизлучения -- это слабое космическое излучение и довольно заметное импульсное излучение за счет молний. И организм человека приспособлен к природному фону. С момента открытия радио прошло уже больше 100 лет, и по мощности радиоизлучения Земля стала во много раз ярче Солнца, но основная доля этой мощности пока приходится на сравнительно низкие частоты, к которым человек адаптирован. Поэтому пока не заметны особенно вредные массовые последствия работы мощных радиостанций и мощных телецентров, хотя их мощность составляет десятки и даже сотни киловатт. Гораздо более вредным является высокочастотное излучение сантиметрового диапазона. Мобильная связь находится пока в самом начале этого диапазона, но постепенно продвигается все дальше (GSM 1800, 1900). Знают ли многие о правилах пользования мобильными телефонами? Какие телефоны необходимо приобретать?

Остановить прогресс невозможно. Мобильная телефонная связь очень полезна, удобна, в ряде случаев просто необходима, но при ее неразумном использовании может оказаться небезопасной. Каждый пользователь мобильного телефона уже сейчас должен знать результаты имеющихся на настоящий момент исследований, чтобы принять меры предосторожности и обезопасить себя от возможных неблагоприятных последствий использования современных достижений радиотелефонии.

Устройство сотового телефона

Мобильный телефон -- переносное средство связи, предназначенное преимущественно для голосового общения. В настоящее время сотовая связь самая распространенная из всех видов мобильной связи, поэтому часто мобильным телефоном называют сотовый телефон, хотя мобильными телефонами помимо сотовых являются также спутниковые телефоны, радиотелефоны и аппараты магистральной связи.

Сотовый телефон -- вид мобильного телефона (за исключением стационарного сотового телефона) предназначенный для работы в сетях сотовой связи; использует радиоприёмопередатчик и традиционную телефонную коммутацию для осуществления телефонной связи на территории зоны покрытия сотовой сети.

В настоящее время сотовая связь -- самая распространённая из всех видов мобильной связи, поэтому обычно мобильным телефоном называют сотовый телефон, хотя мобильными телефонами помимо сотовых являются также спутниковые телефоны, радиотелефоны и аппараты магистральной связи.

Трубка -- сложное высокотехнологичное (технология?13 мкм) электронное устройство, включающее в себя: приемопередатчик 2-4 ультракоротковолновых (УКВ) диапазонов, специализированный контроллер, дисплей, устройства интерфейса, аккумулятор. Большинство трубок имеет свой уникальный номер IMEI (en:International Mobile Equipment Identify -- международный идентификатор мобильного устройства). IMEI присваивается при производстве сотового телефона и состоит из 15 цифр. Номер расположен на телефоне под аккумулятором и на коробке от телефона под штрих-кодом. В большинстве телефонов его также можно узнать, набрав на клавиатуре код *#06#

Некоторые стандарты мобильной связи используют для идентификации абонента SIM-карту. Она представляет собой флэш-чип (смарт-карту, по-русски -- микросхему-компьютер) с программным управлением, содержит уникальный идентификационный номер IMSI (en:International Mobile Subscriber Identification -- международный идентификационный номер подвижного абонента) и индивидуальный цифровой пароль. Напряжение питания SIM-карты: 3,3 В (постоянный ток).

Последние несколько лет характеризуются интенсивным развитием системы сотовой телефонной радиосвязи. Как следствие, широкое распространение получили новые функциональные источники электромагнитного поля радиочастотного диапазона (ЭМП) - базовые станции (БС) и мобильные (переносные и ручные) радиотелефоны (РТ), способные генерировать ЭМП гигиенически значимые уровни. Всё вышесказанное делает проблему санитарно-гигиенического надзора за объектами системы сотовой радиосвязи особенно актуальной и социально важной.

Работа этой системы основана на принципе деления некоторой территории на зоны (т. н. соты) радиусом обычно 0,5-2 километра (в условиях городской застройки), в центре или в узлах которых расположены БС, которые обслуживают РТ, находящиеся в зоне их действия (рис. 1). Эффективное использование выделяемого для функционирования системы частотного спектра - многократное использование одних и тех же частот, применение различных методов доступа - делает возможным обеспечение телефонной связью значительного числа пользователей в рамках одной сети.


Рис 1.

В Российской Федерации действуют следующие стандарты системы сотовой радиосвязи:

· Аналоговый NMT-450 -рабочий частотный диапазон БС: 463-467,5 МГц; -рабочий частотный диапазон РТ: 453-457,5 МГц.

· Цифровой D-AMPS (IS-136), практически вытеснивший аналоговый стандарт AMPS - рабочий частотный диапазон БС: 869-894 МГц; - рабочий частотный диапазон РТ: 824-849 МГц.

· Цифровой CDMA - рабочий частотный диапазон БС: 869-894 МГц; - рабочий частотный диапазон РТ: 824-849 МГц.

· Цифровой GSM-900 - рабочий частотный диапазон БС: 925-965 МГц; - рабочий частотный диапазон РТ: 890-915 МГц.

· Цифровой DCS (GSM-1800) - рабочий частотный диапазон БС: 1805-1880 МГц;- рабочий частотный диапазон РТ: 1710-1785 МГц.

Все вышеупомянутые стандарты используют ту или иную разновидность угловой (фазовой или частотной) модуляции.

Базовые станции системы сотовой радиосвязи

БС являются приемо-передающими радиотехническими объектами, излучающими электромагнитную энергию в УВЧ диапазоне (300-3000 МГц). Кроме того, каждая БС дополнительно оснащена комплектом приемо-передающего оборудования радиорелейной связи, работающим в диапазоне 3-40 ГГц, отвечающим за интеграцию данной БС в сеть в целом.

Мощность передатчиков БС обычно не превышает 5-10 Вт на несущую.

В основном применяются два типа передающих (приемо-передающих) антенн БС:

· слабонаправленные с круговой диаграммой направленности (ДН) в горизонтальной плоскости - тип "Omni" (рис. 2);


Рис2. Диаграмма направленности антенны типа "Omni"

Направленные (секторные) с углом раствора (шириной) основного лепестка ДН в горизонтальной плоскости обычно 60 или 120 градусов (рис. 3,


Рис. 3.


Рис. 4.

Значение коэффициента усиления по мощности антенн БС относительно изотропного излучателя обычно находится в пределах 8-18 дБ.

Антенны БС устанавливаются на высоте 15-100 метров от поверхности земли на уже существующих постройках: общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т. д., или на специально сооруженных мачтах (рис. 5).


Рис. 5.

В соответствии с п. 6.5 Санитарных правил и норм СанПиН 2.2.4/2.1.8.055-96 "Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)" установка антенн передающих радиотехнических объектов (ПРТО) на крышах домов разрешается при условии, что интенсивность ЭМП в доступных для населения местах не превышает установленных предельно допустимых значений.

К особенностям БС как объектов санитарно-эпидемиологического контроля можно отнести следующее:

· БС являются видом ПРТО, мощность излучения которых (загрузка) непостоянна во времени и зависит от количества абонентов, обслуживаемых БС в данный момент. Количество абонентов в свою очередь связано с местоположением БС, временем суток и днем недели. Типичный график загрузки БС показан на рис. 6.

Рис. 6.

· Благодаря относительно большой высоте размещения и характеристикам ДН передающих антенн в подавляющем большинстве случаев у данного вида ПРТО отсутствует санитарно-защитная зона, т. е. интенсивность ЭМП, создаваемого БС, на селитебной территории на "уровне земли" не превышает предельно допустимых значений.

· Гигиенически значимые уровни ЭМП могут наблюдаться только в непосредственной близости, на расстоянии до 3-5 метров от передающих антенн БС и от антенн радиорелейной связи. Из-за многолучевого распространения ЭМП (переотражения) существует гипотетическая возможность обнаружения таковых в помещениях и на балконах последних этажей зданий, на которых расположены антенны БС, и в помещениях последних этажей зданий первой линии застройки в радиусе 200-300 метров вокруг БС.

· Приемопередающие оборудование БС (кроме антенн) не является источником, потенциально опасным с точки биоэлектромагнитной совместимости.

Антенны РТ имеют ДН типа "Omni", форма которой в значительной мере может искажаться при приближении РТ к телу человека.

Особенностями РТ с точки зрения санитарно-эпидемиологического надзора являются:

· Максимальное приближение достаточно мощного источника ЭМП к жизненно важным органам человека, прежде всего к головному мозгу.

· При оценке интенсивности ЭМП, создаваемого РТ, необходимо рассматривать единую систему "РТ пользователь ", так как присутствие последнего существенно меняет картину распределения и поглощения поля.

· Выходная мощность РТ и, следовательно, условия воздействия ЭМП, зависят от качества связи с БС.

· РТ цифровых стандартов являются источниками импульсно модулированного ЭМП УВЧ диапазона и магнитного поля СНЧ диапазона (30 300 Гц).

Ограничения использования сотовых телефонов

· В местах с повышенной опасностью взрыва (там, где например, рекомендуется выключать двигатель автомобиля)

· В транспорте

С 2000 года в большинстве стран запрещено даже включать телефон на борту самолета. Сейчас на некоторых рейсах разрешено разговаривать по мобильному телефону. Японцы предпочитают не разговаривать по мобильному в общественном транспорте из вежливости.

· В медицинских учреждениях это связано с влиянием на медицинскую аппаратуру, в частности, искусственного жизнеобеспечения.

· При вождении -- в России, на Украине и в Республике Беларусь -- водителю запрещено пользоваться средством связи, удерживая его в руке (то есть разрешено при использовании гарнитуры hands-free)

· В учебных заведениях

· В государственных и др. учреждениях

· В храмах

· В театрах

Здоровье и мобильный телефон

Шведские ученые («Lund University"), экспериментируя на крысах, показали, что постоянное воздействие электромагнитных полей, создаваемых мобильными телефонами во время разговора, приводит к изменению структуры и функции отделов головного мозга. Кроме того, микроскопическое исследование тканей головного мозга крыс выявило в них клеточные изменения, аналогичные тем, что наблюдаются при болезни Альцгеймера.

Ношение мобильного телефона в кармане может привести к снижению на треть мужской способности к воспроизведению потомства. Особенно опасно носить включенный мобильный телефон недалеко от паха - в кармане брюк или на ремне. Автор исследования Имре Фейес из Университета Сегеда обследовал 221 добровольца на протяжении 13 месяцев. Оказалось, что число сперматозоидов в сперме тех, кто пользовался телефоном, было в среднем на 30 процентов ниже. Кроме того, отмечался и больший процент поврежденных сперматозоидов, что еще более повышало риск бесплодия.

Споры о вреде или безвредности мобильных ведутся постоянно. Сторонники вреда часто высказывают версию о том, что финансовый интерес производителей телефонов является причиной сокрытия или «приукрашивания» результатов исследований на эту тему.

Сотовым телефоном пользовались практически все, но мало кто задумывался – как же все это работает? В данном литературном опусе мы попытаемся рассмотреть, как же происходит связь с точки зрения Вашего оператора связи.

Когда Вы набираете номер и начинаете звонить, ну, или Вам кто-нибудь звонит, то Ваш аппарат по радиоканалу связывается с одной из антенн ближайшей базовой станции.

Каждая из базовых станций содержит от одной до двенадцати приемо-передающих антенн, направленных в разные стороны, чтобы обеспечить связью абонентов со всех сторон. На профессиональном жаргоне антенны также называют «секторами». Вы их сами наверняка неоднократно видели – большие серые прямоугольные блоки.

От антенны сигнал по кабелю передается непосредственно в управляющий блок базовой станции. Совокупность секторов и управляющего блока обычно и называется – BS, Base Station, базовая станция . Несколько базовых станций, чьи антенны обслуживают какую-либо определенную территорию или район города, подсоединены к специальному блоку – так называемому LAC, Local Area Controller, «контроллер локальной зоны» , часто называемому просто контроллером . К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, подключены к самому центральному «мозговому» блоку – MSC, Mobile services Switching Center, Центр Управления Мобильными услугами , в простонародье более известный как коммутатор . Коммутатор обеспечивает выход (и вход) на городские телефонные линии, на других операторов сотовой связи и так далее.

То есть в итоге вся схема выглядит примерно так:

В небольших GSM-сетях используется только один коммутатор, в более крупных, обслуживающих более миллиона абонентов, могут использоваться два, три и более MSC , объединенных между собой.

Зачем же такая сложность? Казалось бы, можно антенны просто подключить к коммутатору – и все, никаких проблем бы не было... Но не все так просто. Дело тут в одном простом английском слове – handover . Этим термином обозначается эстафетная передача обслуживания в сотовых сетях. То есть, когда вы идете по улице или едите на машине (электричке, велосипеде, роликовых коньках, асфальтоукладчике...) и при этом разговариваете по телефону, то, для того чтобы связь не прерывалась (а она не прерывается), необходимо вовремя переключать Ваш телефон из одного сектора в другой, из одной BS в другую, из одной Local Area в другую и так далее. Соответственно, если бы сектора были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору, которому и без того есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку, что снижает вероятность отказа оборудования и, как следствие, потери связи.

Пример – если вы с телефоном переходите из зоны действия одного сектора в зону действия другого, то переводом телефона занимается управляющий блок BS, не затрагивая при этом «вышестоящие» устройства – LAC и MSC . Соответственно, если переход происходит между разными BS , то им управляет LAC и так далее.

Работу коммутатора следует рассмотреть чуть подробнее. Коммутатор в сотовой сети осуществляет практически те же функции, что и АТС в проводных телефонных сетях. Именно он определяет, куда Вы звоните, кто Вам звонит, отвечает за работу дополнительных услуг, и, в конце концов – вообще, определяет, можно ли звонить или нет.

На последнем пункте остановимся – а что происходит, когда Вы включаете свой телефон?

Вот, включаете Вы свой телефон. На Вашей SIM-карте есть специальный номер, так называемый IMSI – International Subscriber Identification Number, Международный Опознавательный Номер Абонента . Это номер уникален для каждой SIM-карты в мире, и как раз по нему операторы отличают одного абонента от другого. При включении телефона он посылает этот код, базовая станция передает его на LAC, LAC – на коммутатор, в свою очередь. Тут в действие вступают два дополнительных модуля, связанных с коммутатором – HLR, Home Location Register и VLR, Visitor Location Register . Соответственно, Регистр Домашних Абонентов и Регистр Гостевых Абонентов . В HLR хранятся IMSI всех абонентов, которые подключены к данному оператору. В VLR в свою очередь содержатся данные обо всех абонентах, которые в данный момент пользуются сетью данного оператора. IMSI передается в HLR (разумеется, в сильно зашифрованном виде; вдаваться подробно в особенности шифрования мы не будем, скажем только, что за этот процесс отвечает еще один блок – AuC, Центр Аутентификации), HLR , в свою очередь, проверяет – есть ли у него такой абонент, и, если есть, то не заблокирован ли он, например, за неуплату. Если все в порядке, то этот абонент прописывается в VLR и с этого момента может совершать звонки. У крупных операторов может быть не один, а несколько параллельно работающих HLR и VLR . А теперь попробуем все вышесказанное отобразить на рисунке:

Вот мы вкратце рассмотрели, как работает сотовая сеть. На самом деле там все куда сложнее, но если описывать все как есть досконально, то данное изложение по объему вполне может превысить «Войну и мир».

Далее мы рассмотрим, а как (и главное – за что!) оператор списывает у нас деньги со счета. Как Вы уже наверное слышали, тарифные планы бывают трех разных типов – так называемые «кредитные», «авансовые» и «припейд», от английского Pre-Paid , то есть предоплаченный. В чем же различие? Рассмотрим, как может происходить списание денег при разговоре:

Допустим, Вы куда-либо позвонили. На коммутаторе зафиксировалось – абонент такой-то звонил туда-то, поговорил, допустим, сорок пять секунд.

Первый случай – у Вас кредитная или авансовая система оплаты. В таком случае происходит следующее: данные о Ваших и не только Ваших звонках накапливаются в коммутаторе и затем, в порядке общей очереди, передаются в специальный блок, называемый Биллингом , от английского to bill – платить по счетам. Биллинг отвечает за все вопросы, связанные с деньгами абонентов – рассчитывает стоимость звонков, списывает абонентскую плату, списывает деньги за услуги и так далее.

Скорость передачи информации из MSC в Биллинг зависит от того, какова вычислительная мощность биллинга , или, другими словами, с какой скоростью он успевает переводить технические данные о совершенных звонках в непосредственные деньги. Соответственно, чем больше абоненты разговаривают, или чем более «тормозной» биллинг, тем медленнее будет двигаться очередь, соответственно, тем больше будет задержка между самим разговором и фактическим списанием денег за этот разговор. С этим фактом связано часто высказываемое некоторыми абонентами недовольство – «Мол, деньги воруют! Два дня не разговаривал – энную сумму списали...». Но при этом совсем не учитывается, что за разговоры, которые происходили, например, три дня назад, деньги-то сразу и не списали... Хорошее люди стараются не замечать... А в эти дни, например, биллинг мог просто не работать – из-за аварии, или из-за того, что его как-нибудь модернизировали.

В обратную сторону – от биллинга к MSC – стоит другая очередь, в которой биллинг сообщает коммутатору о состоянии счетов абонентов. Опять же довольно частый случай – задолженность счета может достигать нескольких десятков долларов, а по телефону еще можно звонить – это как раз из-за того, что «обратная» очередь еще не подошла и коммутатор пока не знает о том, что Вы злостные неплательщик и Вас давно надо заблокировать.

Авансовый же от кредитного тарифы отличаются лишь способом расчета с абонентом – в первом случае человек вносит какую-либо сумму на счет, и деньги за разговоры постепенно вычитаются из этой суммы. Это способ удобен тем, что позволяет в какой-то мере планировать и ограничивать свои расходы на связь. Второй вариант – кредитный, при котором суммарная стоимость всех разговоров за какой-либо период («биллинговый цикл »), обычно за месяц, выставляется в виде счета, который абонент должен оплатить. Кредитная система удобна тем, что страхует Вас от тех случаев, когда срочно необходимо позвонить, а деньги на счету вдруг закончились и телефон заблокирован.

Припейды устроены совсем по-другому:

В припейде биллинг как таковой обычно называют «Припейд платформой ».

Непосредственно в момент начала телефонного соединения устанавливается прямая связь между коммутатором и припейд платформой . Никаких очередей, данные передаются в обе стороны непосредственно в процессе разговора, в режиме реального времени. В связи с этим припейдам присущи следующие характерные черты – это отсутствие абонентской платы (так как нет такого понятия, как биллинговый период ), ограниченный набор дополнительных услуг (их технически трудно тарифицировать в режиме «реального времени»), невозможность «уйти в минус» - разговор просто прервется, как только кончатся деньги на счету. Явным достоинством припейдов является возможность точно контролировать количество денег на счету, и, как следствие, свои расходы.

В припейдах еще иногда наблюдается некоторое забавное явление – если припейд платформа по каким либо причинам отказывается работать, например, из-за перегрузки, то, соответственно, для абонентов припейд-тарифов в это время все звонки становятся абсолютно бесплатными. Что, собственно, их – абонентов - не может не радовать.

А как же рассчитываются наши деньги, когда мы разговариваем, находясь в роуминге ? Да и как вообще телефон работает в роуминге? Что же, попробуем ответить и на эти вопросы:

Номер IMSI состоит из 15-ти цифр, и первые 5 цифр, так называемые СС – Country Code (3 цифры) и NC – Network Code (5 цифр) – четко характеризуют оператора, к которому подключен данный абонент. По этим пяти цифрам VLR гостевого оператора находит HLR домашнего оператора и смотрит в нем – а, собственно, можно ли этому абоненту пользоваться роумингом у данного оператора? Если да, то IMSI прописывается у VLR гостевого оператора, а в HLR домашнего – ссылка на тот самый гостевой VLR , чтобы знать, где искать абонента.

Со списанием денег в биллинге ситуация тоже не очень простая. Из-за того, что звонки обрабатывает гостевой коммутатор, но деньги подсчитывает свой, «домашний» биллинг , вполне возможны большие задержки в списании средств – до месяца. Хотя существуют и системы, например, «Camel2 », которые и в роуминге работают по принципу припейда, то есть списывают деньги в реальном времени.

Тут возникает очередной вопрос – а за что списываются деньги в роуминге ? Если «дома» все понятно – есть четко прописанные тарифные планы, то с роумингом ситуация другая – денег списывают много и непонятно, за что. Ну что же, попробуем разобраться:

Все телефонные звонки в роуминге делятся на 3 основных категории:

Входящие звонки – в таком случае стоимость звонка складывается из:

Стоимости международного звонка из дома в гостевой регион
+
Стоимость входящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного гостевого оператора

Исходящий звонок домой:

Стоимость международного звонка из гостевого региона домой
+
Стоимость исходящего звонка у гостевого оператора

Исходящий звонок по гостевому региону:

Стоимость исходящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного оператора

Как видно, стоимость звонков в роуминге зависит только от двух вещей – от того, к какому оператору абонент подключен дома и того, каким оператором абонент пользуется в гостях. При этом выявляется одна очень важная вещь – стоимость минуты в роуминге абсолютно не зависит от выбранного абонентом тарифного плана.

Хотелось бы добавить еще одно замечание – если два телефона одного оператора вместе находятся в роуминге у другого оператора (ну, например, двое друзей поехали отдыхать), то разговаривать им друг с другом выйдет весьма накладно – звонящий платит, как за исходящий домой, а принимающий звонок – как за входящий из дома. Это один из недостатков стандарта GSM – то, что связь в этом случае идет через дом. Хотя технически вполне реально устроить связь «напрямую», но кто из операторов на это пойдет, если можно оставить все как есть и зарабатывать деньги?

Еще один вопрос, в последнее время часто интересующий владельцев более чем одного мобильного телефона – а сколько будет стоить переадресованный звонок с одного телефона на другой? И на этот вопрос ответить вполне реально:

Допустим, с телефона B установлена переадресация на телефон С. С телефона А звонят на телефон B – соответственно, звонок переадресовывается на аппарат С. В этом случае платят:

Телефон А – как за исходящий на телефон В
(вообщем-то, это логично – ведь он на него и звонит)
Телефон В – платит цену переадресации
(обычно несколько центов за минуту)
+
стоимость международного звонка из региона, где зарегистрирован В, в регион, где зарегистрирован С
(если телефоны одного региона, то это составляющая равна нулю).
Телефон С – платит как за входящий с телефона А

В завершении тем хотелось бы упомянуть еще один тонкий момент – а сколько будет стоить переадресация в роуминге? А вот тут начинается самое интересное:

Например, в телефоне стоит переадресация по условию занятости на домашний номер. Тогда при входящем звонке образуется так называемая «роуминговая петля » - звонок пойдет на домашний телефон через гостевой коммутатор , соответственно, стоимость такого переадресованного звонка для роумера будет равна сумме стоимостей входящего и исходящего домой звонков плюс еще стоимость самой переадресации. И что забавно при этом – роумер может даже не знать, что подобный звонок имел место быть, и впоследствии удивиться, увидев счет за связь.

Отсюда следует практический совет – при поездках желательно отключать все виды переадресации (можно оставить только безусловную – в этом случае «роуминговой петли» не получается), особенно переадресации на голосовую почту – иначе впоследствии можно долго удивляться – «Куда ж это деньги делись-то, а?»

Список терминов, использовавшихся в тексте:

AuC – Autentification Center, Центр Аутентификации, отвечает за кодирование информации при передаче в сети и приеме из сети
Billing – Биллинг, система учета денежных средств у оператора
BS – Base Station, базовая станция, несколько приемо-передающих антенн, принадлежащих одному управляющему устройству.
Camel2 – одна из систем Prepaid, в которой реализовано мгновенное списывание средств в роуминге
CC – Country Code, код страны в стандарте GSM (для России – 250)
GSM – Global System for Mobile Communications, самый распрострастраненный в мире стандарт сотовой связи
Handover – передача управления трубкой от одной антенны/базовой станции/LAC к другой
HLR – Home Location Register, реестр домашних абонентов, содержит подробную информацию о всех абонентах, подключенных к данному оператору.
IMEI – International Mobile Equipment Identification, международный серийный номер оборудования в стандарте GSM, уникален у каждого аппарата
IMSI – International Mobile Subscriber Identification, международный серийный номер подписчика на услуги стандарта GSM, уникален у каждого абонента
LAC – Local Area Controller, Контроллер Локальной Зоны, устройства, управляющее работой некоторого количесва базовых станций, чьи антенны обслуживают опеределенную территорию.
Local Area – Локальная зона, территория, обслуживаемая BS, входящими в состав одного LAC
MSC - Mobile services Switching Center, Центр Управления Мобильными услугами, коммутатор – центральное звено сети GSM.
NC – Network Code, Сетевой Код, код конкретного оператора в данной стране в стандарте GSM (для MTS – 01, BeeLine – 99).
Prepaid – Припейд, предоплата – система биллинга, основанная на мгновенном списании средств.
Roaming – Роуминг, пользование сетью другого, «гостевого» оператора.
SIM – Subscriber Identification Module, Модуль Опознавания Абонента, СИМ-карта – электронный блок, вставляемые в телефон, на котором записан IMSI абонента.
VLR – Visitor Location Register, реестр активных абонентов – содержит информацию об всех абонентах, кто в данный момент пользуется услугами данного оператора.