Windows 8

Как защитить передаваемую информацию? VPN-решения для создания защищенных сетей. Удаленный доступ к информационным ресурсам

Как защитить передаваемую информацию? VPN-решения для создания защищенных сетей. Удаленный доступ к информационным ресурсам

Протокол Kerberos

Протоколы аутентификации:

3. Аутентификация с помощью открытого ключа

Описание DSA

p = простое число длинной L битов, где L принимает значение, кратное 64, в диапазоне от 512 до 1024.

q= 160-битовой простое число - множитель p-1

g = , где h - любое число, меньшее p-1, для которого больше 1

x = число, меньшее q

Используется однонаправленная хэш-функция: Н(m).

Первые три параметра, p, q, g, открыты и могут быть общими для пользователей сети. Закрытым ключом является х, а открытым - у. Чтобы подписать сообщение, m:

1. А генерирует случайное число k, меньше q

2. А генерирует

Его подписью служат параметры r и s, он посылает их В

3. В проверяет подпись, вычисляя

Если v=r, то подпись правильна.

Резюме

Система стандартов IPSec вобрала в себя прогрессивные методики и достижения в области сетевой безопасности. Система IPSec прочно занимает лидирующие позиции в наборе стандартов для создания VPN. Этому способствует ее открытое построение, способное включать все новые достижения в области криптографии. IPsec позволяет защитить сеть от большинства сетевых атак, «сбрасывая» чужие пакеты еще до того, как они достигнут уровня IP на принимающем компьютере. В защищаемый компьютер или сеть могут войти только пакеты от зарегистрированных партнеров по взаимодействию.

IPsec обеспечивает:

  • аутентификацию - доказательство отправки пакетов вашим партнером по взаимодействию, то есть обладателем разделяемого секрета;
  • целостность - невозможность изменения данных в пакете;
  • конфиденциальность - невозможность раскрытия передаваемых данных;
  • надежное управление ключами - протокол IKE вычисляет разделяемый секрет, известный только получателю и отправителю пакета;
  • туннелирование - полную маскировку топологии локальной сети предприятия

Работа в рамках стандартов IPSec обеспечивает полную защиту информационного потока данных от отправителя до получателя, закрывая трафик для наблюдателей на промежуточных узлах сети. VPN-решения на основе стека протоколов IPSec обеспечивают построение виртуальных защищенных сетей, их безопасную эксплуатацию и интеграцию с открытыми коммуникационными системами.

Защита на прикладном уровне

Протокол SSL

Протокол SSL (Secure Socket Layer - уровень защищенных сокетов), разработанный Netscape Communications при участии RSA Data Security, предназначен для реализации защищенного обмена информацией в клиент/серверных приложениях. На практике SSL широко реализуется только совместно с протоколом прикладного уровня HHTP.

Функции безопасности, предоставляемые протоколом SSL:

  • шифрование данных с целью предотвратить раскрытие конфиденциальных данных во время передачи;
  • подписывание данных с целью предотвратить раскрытие конфиденциальных данных во время передачи;
  • аутентификация клиента и сервера.

Протокол SSL использует криптографические методы защиты информации для обеспечения безопасности информационного обмена. Данный протокол выполняет взаимную аутентификацию, обеспечивает конфиденциальность и аутентичность передаваемых данных. Ядро протокола SSL - технология комплексного использования симметричных и асимметричных криптосистем. Взаимная аутентификация сторон выполняется при помощи обмена цифровыми сертификатами открытых ключей клиента и сервера, заверенными цифровой подписью специальных сертификационных центров. Конфиденциальность обеспечивается шифрованием передаваемых данных с использованием симметричных сессионных ключей, которыми стороны обмениваются при установлении соединения. Подлинность и целостность информации обеспечиваются за счет формирования и проверки цифровой подписи. В качестве алгоритмов асимметричного шифрования применяются алгоритм RSA и алгоритм Диффи-Хеллмана.

Рисунок 9 Криптозащищенные туннели, сформированные на основе протокола SSL

Согласно протоколу SSL криптозащищенные туннели создаются между конечными точками виртуальной сети. Клиент и сервер функционируют на компьютерах в конечных точках туннеля (рис. 9)

Протокол диалога SSL имеет два основных этапа формирования и поддержки защищаемого соединения:

  • установление SSL-сессии;
  • защищенное взаимодействие.

Первый этап отрабатывается перед непосредственной защитой информационного обмена и выполняется по протоколу начального приветствия (Handshake Protocol), входящему в состав протокола SSL. При установлении повторного соединения, возможно сформировать новые сеансовые ключи на основе старого общего секрета.

В процессе установления SSL - сессии решаются следующие задачи:

  • аутентификация сторон;
  • согласование криптографических алгоритмов и алгоритмов сжатия, которые будут использоваться при защищенном информационном обмене;
  • формирование общего секретного мастер-ключа;
  • генерация на основе сформированного мастер-ключа общих секретных сеансовых ключей для криптозащиты информационного обмена.

Рисунок 10 Процесс аутентификации клиента сервером

В протоколе SSL предусмотрено два типа аутентификации:

  • аутентификация сервера клиентом;
  • аутентификация клиента сервером.

Клиентское/серверное ПО, поддерживающее SSL, может с помощью стандартных приемов криптографии с открытым ключом проверить, что сертификат сервера/клиента и открытый ключ действительны и были выданы источником сертификатов из списка доверенных источников. Пример процесса аутентификации клиента сервером представлен на рисунке 10.

Схема применения протокола

До передачи сообщение по линии передачи данных, сообщение проходит следующие этапы обработки:

1.Сообщение фрагментируется на блоки, пригодные для обработки;

2.Данные сжимаются (опционально);

3.Генерируется MAC ключ ;

4.Данные зашифровываются с помощью ключа ;

1.Используя ключ , данные расшифровываются;

2.Проверяется MAC ключ ;

3.Происходит декомпрессия данных (если использовалось сжатие);

4.Сообщение собирается из блоков и получатель читает сообщение.

Аутентичное распределение ключей

A , Клиент CA Удостоверяющий центр B , Сервер
Генерация пары ключей цифровой подписи: . Передача в УЦ - симметричная схема шифрования; - схема открытого шифрования; - схема ЦП; - любые функции (лучше ОНФ) Генерация пары ключей схемы открытого шифрования: . Передача в УЦ
K - случайный сеансовый ключ.

Если , то K принимается как аутентичный общий секретный ключ

Рабочий этап

A B

Симметричная схема шифрования

. . . и т.д. . . .

Атаки на протокол SSL

Как и другие протоколы, SSL подвержен атакам, связанным с не доверенной программной средой, внедрение программ-закладок и др.:

  • Атака отклика. Заключается в записи злоумышленником успешной коммуникационной сессии между клиентом и сервером. Позднее, он устанавливает соединение с сервером, используя записанные сообщения клиента. Но при помощи уникального идентификатора соединения "nonce" SSL отбивает эту атаку. Коды этих идентификаторов имеют длину 128 бит, в связи с чем злоумышленнику необходимо записать 2^64 идентификаторов, чтобы вероятность угадывания была 50%. Количество необходимых записей и низкую вероятность угадывания делают эту атаку бессмысленной.
  • Атака протокола рукопожатия. Злоумышленник может попытаться повлиять на процесс обмена рукопожатиями для того, чтобы стороны выбрали разные алгоритмы шифрования. Из-за того, что многие реализации поддерживают экспортированное шифрование, а некоторые даже 0-шифрование или MAC-алгоритм, эти атаки представляют большой интерес. Для реализации такой атаки злоумышленнику необходимо подменить одно или более сообщений рукопожатия. Если это происходит, то клиент и сервер вычислят различные значения хэшей сообщения рукопожатия. В результате чего стороны не примут друг от друга сообщения "finished". Без знания секрета злоумышленник не сможет исправить сообщение "finished", поэтому атака может быть обнаружена.
  • Раскрытие шифров. SSL зависит от нескольких криптографических технологий. Шифрование с общедоступным ключом RSA используется для пересылки ключей сессии и аутентификации клиента/сервера. В качестве шифра сессии применяются различные криптографические алгоритмы. Если осуществлена успешная атака на эти алгоритмы, SSL не может уже считаться безопасным. Атаки против определенных коммуникационных сессий могут производиться путем записи сессии, и затем предпринимается попытка подобрать ключ сессии или ключ RSA. В случае успеха открывается возможность прочесть переданную информацию.
  • Злоумышленник посередине. Man-in-the-Middle атака предполагает наличие трех сторон: клиента, сервера и злоумышленника. Злоумышленник, находясь между ними, может перехватывать обмен сообщениями между клиентом и сервером. Атака является эффективной только если для обмена ключами применяется алгоритм Диффи-Хэлмана, так как целостность принимаемой информации и ее источник проверить невозможно. В случае SSL такая атака невозможна из-за использования сервером сертификатов, заверенных центром сертификации.

Протокол TLS

Цель создания и преимущества

Цель создания TLS - повышение защиты SSL и более точное и полное определение протокола:

  • Более надежный алгоритм MAC
  • Более детальные предупреждения
  • Более четкие определения спецификаций "серой области"

TLS предоставляет следующие усовершенствованные способы защиты:

  • Хэширование ключей для идентификации с помощью сообщений - TLS применяет в коде идентификации сообщения (HMAC) хэширование, предотвращающее от изменения записи при передаче по незащищенной сети, например в Internet. SSL версии 3.0 также поддерживает идентификацию сообщений с помощью ключей, но HMAC считается более надежным, чем функция MAC, применяемая в SSL версии 3.0.
  • Улучшенная псевдослучайная функция (PRF) С помощью PRF создаются данные ключа. В TLS функция PRF определена с помощью HMAC. PRF применяет два алгоритма хэширования, обеспечивающих ее защиту. Если один из алгоритмов будет взломан, данные будут защищены вторым алгоритмом.
  • Улучшенная проверка сообщения "Готово" - Протоколы TLS версии 1.0 и SSL версии 3.0 отправляют обеим конечным системам сообщение "Готово", означающее, что доставленное сообщение не было изменено. Однако в TLS эта проверка основана на значениях PRF и HMAC, что обеспечивает более высокий уровень защиты по сравнению с SSL версии 3.0.
  • Согласованная обработка сертификатов - В отличие от SSL версии 3.0, TLS пытается указать тип сертификата, который может применяться различными реализациями TLS.
  • Особые предупреждающие сообщения - TLS предоставляет более точные и полные предупреждения о неполадках, обнаруженных одной из конечных систем. TLS также содержит информацию о том, когда какие сообщения с предупреждениями следует отправлять.

Протокол SSH

Протокол SSH (Secure Shell-оболочка безопасности) - это набор протоколов аутентификации с открытым ключом, позволяющий пользователю на стороне клиента безопасно регистрироваться на удалённом сервере.

Главная идея протокола заключается в том, что пользователь на стороне клиента, должен загрузить с удаленного сервера открытый ключ и установить с его помощью защищённый канал, используя криптографический мандат. Криптографическим мандатом пользователя является его пароль: его можно зашифровать с помощью полученного открытого ключа и передать на сервер.

Все сообщения шифруются с помощью IDEA .

Архитектура протокола SSH

SSH выполняется между двумя ненадёжными компьютерами, работающими в незащищенной сети(клиент - сервер).

Набор протоколов SSH состоит из трех компонентов:

  • Протокол транспортного уровня SSH (SSH Transport Layer Protocol), обеспечивает аутентификацию сервера. Для этого используется открытый ключ. Исходной информацией для этого протокола как со стороны сервера, так и со стороны клиента, является пара открытых ключей - "ключи головного компьютера". Итогом протоколом является взаимно аутентифицированный защищённый канал, который гарантирует секретность и целостность данных.
  • Протокол аутентификации пользователя SSH (SSH User Authentication Protocol). Выполняется по каналу односторонней аутентификации, установленному протоколом транспортного уровня SSH. Для выполнения аутентификации от клиента к серверу, поддерживаются различные протоколы односторонней аутентификации. Эти протоколы могут применять либо открытый ключ, либо пароль. Например, они могут быть созданы на основе протокола аутентификации с помощью простого пароля. Результатом протокола является взаимно аутентифицированный защищённый канал между сервером и пользователем. Применяются следующие методы:

publickey - клиент высылается ЭЦП , сервер проверяет доверие открытому ключу клиента по имеющейся на сервере копии ключа, затем проверяет аутентичность клиента по Sc.

password - клиент подтверждает свою аутентичность паролем.

hostbased - аналогично publickey, только используется пара ключей для клиентского хоста; подтвердив аутентичность хоста, сервер доверяет имени пользователя.

  • Протокол связи SSH (SSH Connection Protocol) выполняется по взаимно аутентифицированному защищённому каналу, установленному предыдущими протоколами. Протокол обеспечивает работу защищённого канала при этом разделяя его на несколько защищённых логических каналов.

Протокол распределения ключами

Протокол включает в себя 3 этапа. Первый этап - "Hello" phase, где первый идентификатор это строка, I, отправляется, чтобы начать протокол, за которым следует список поддерживаемых алгоритмов - X.

На 2-й стадии стороны согласуют секретный ключ, s. Для этого применяется алгоритм Диффи-Хеллмана . Сервер подтверждает свою идентичность, отправляя клиенты свой открытый ключ, , верифицированный цифровой подписью, , и подпись дайджеста, h. В качестве идентификатора sid устанавливается значение h.

На стадии 3 секретный ключ, идентификатор сессии и дайджест используются для создании 6 "apllication keys", вычисленных с помощью .

Резюме

К преимуществам протокола относится:

  • возможность действий на сквозной основе (end - to - end) с осуществляющими стеками TCP/IP, существующими интерфейсами прикладного программирования;
  • повышенная эффективность по сравнению с медленными каналами;
  • отсутствие каких-либо проблем с фрагментацией, определением максимального объёма блоков, передаваемых по данному маршруту;
  • сочетание компрессии с шифрованием.

Андрей Субботин Материал приводится с разрешения редакции.

В настоящее время наблюдается резкий рост объемов информации (в том числе и конфиденциальной), передаваемой по открытым каналам связи. По обычным телефонным каналам осуществляется взаимодействие между банками, брокерскими конторами и биржами, удаленными филиалами организаций, проводятся торги ценными бумагами. Поэтому все более актуальной становится проблема защиты передаваемой информации. Несмотря на то, что конкретные реализации систем защиты информации могут существенно отличаться друг от друга из-за различия процессов и алгоритмов передачи данных, все они должны обеспечивать решение триединой задачи:

    конфиденциальность информации (доступность ее только для того, кому она предназначена);

    целостность информации (ее достоверность и точность, а также защищенность ее преднамеренных и непреднамеренных искажений);

    готовность информации (в любой момент, когда в ней возникает необходимость).

Основными направлениями решения этих задач являются некриптографическая и криптографическая защита. Некриптографическая защита включает в себя организационно-технические меры по охране объектов, снижению уровня опасных излучений и созданию искусственных помех. Ввиду сложности и объемности данной темы некриптографическая защита в рамках данной статьи рассматриваться не будет.

Криптографическая защита в большинстве случаев является более эффективной и дешевой. Конфиденциальность информации при этом обеспечивается шифрованием передаваемых документов или всего трафика работы.

Первый вариант более прост в реализации и может использоваться для работы практически с любыми системами передачи электронной почты. Наиболее часто применяются алгоритмы шифрования DES, RSA, ГОСТ 28147-89, "Веста-2".

Второй вариант можно использовать только в специально разработанных системах, и в этом случае требуется алгоритм высокого быстродействия, так как необходима обработка потоков информации в режиме реального времени. Данный вариант можно считать более безопасным по сравнению с первым, так как шифруются не только передаваемые данные, но и сопроводительная информация, которая включает в себя обычно типы данных, адреса отправителя и получателя, маршруты прохождения и многое другое. Такой подход существенно усложняет задачу введения в систему ложной информации, а также дублирование перехваченной ранее подлинной информации.

Целостность передаваемой по открытым каналам связи информации обеспечивается использованием специальной электронной подписи, которая позволяет установить авторство и подлинность информации. Электронная подпись в настоящее время широко применяется для подтверждения юридической значимости электронных документов в таких системах обмена информации, как Банк - Банк, Банк - Филиал, Банк - Клиент, Биржа - Брокерская контора и т. п. Из наиболее распространенных алгоритмов электронной подписи можно назвать такие, как RSA, PGP, ElGamal.

Готовность информации в большинстве случаев обеспечивается организационно-техническими мерами и установкой специального отказоустойчивого оборудования. Выбор того или иного алгоритма криптографического преобразования обычно сопряжен с большими трудностями. Приведем несколько характерных примеров.

Положим, разработчик системы защиты утверждает, что полностью реализовал в ней требования ГОСТ 28147-89. Этот ГОСТ был опубликован, но не полностью. Не были опубликованы некоторые специальные криптографические подстановки, от которых существенно зависит ее криптостойкость. Таким образом, в правильности реализации ГОСТ можно быть уверенным только при наличии сертификата ФАПСИ, которого у большинства разработчиков нет.

Разработчик системы защиты сообщает, что у реализовал алгоритм RSA. При этом он умалчивает о том, что реализация должна лицензироваться фирмой RSA Data Security Inc. (патент США # 4 405 829). Более того, вывоз из США реализаций RSA с длиной ключа более 40 бит запрещен (криптостойкость такого ключа оценивается специалистами примерно в несколько дней работы обычного компьютера с процессором Pentium).

Разработчик системы защиты сообщает, что в ней реализован алгоритм PGP, который широко применяется у нас в стране благодаря бесплатно распространявшимся до 1995 г. его исходным текстам через BBS США. Здесь две проблемы. Первая - электронная подпись сделана на базе алгоритма RSA и, с точки зрения охраны авторских прав, также должна лицензироваться фирмой RSA Data Security Inc. Вторая - распространяемые программы нечувствительны к вмешательству в их работу, поэтому с помощью специального криптовируса можно легко получить секретный ключ для формирования электронной подписи.

В заключение хочется с сожалением отметить, что в нашей стране практически отсутствует нормативно-методическая база, с помощью которой можно было бы обоснованно сопоставлять предлагаемые системы защиты информации и выбирать наиболее оптимальные решения.

Посетитель нашего сайта обратился с просьбой о консультации по защите информации клиентов:

Я пишу дипломную работу на тему: Защита персональных данных пациента в сети поликлиник. Предположим есть такая программа для регистрации пациентов в нескольких поликлиниках, и они связаны с друг другом по сети(как обычно это бывает). Мне нужно обеспечить безопасность информации о пациентах. Пожалуйста помогите мне раскрыть этот вопрос… Как выполняется взлом, или же кража информации (по сети, внешне и т.д.); каким образом защитить информацию; пути решения этой проблемы и т.д. Оочень прошу помогите…Ais

Что ж, эта задача для многих актуальна во все времена. Информационная безопасность — это отдельное направление в IT.

Как похищают информацию и взламывают информационные системы?

Действительно, для того чтобы защититься от утечки информации прежде всего нужно понимать отчего такие утечки случаются. Как происходит взлом иформационных систем?

Большинство проблем с безопасностью — изнутри

Возможно для опытных специалистов по безопасности это и звучит банально, но для многих людей это будет откровением: большая часть проблем с информационной безопасностью происходит по вине самих пользователей информационных систем. Я ткну пальцем в небо и моя цифра взята «с потолка», но по моему мнению и опыту 98% всех хищений и взломов происходят либо по халатности пользователей, либо умышленно, но опять же изнутри. Поэтому, бОльшую часть усилий стоит направить именно на внутреннюю безопасность. Самое интересное, что я читал по этому поводу, это одно из суждений учителя Инь Фу Во :

Другими словами, мотивы для утечки информации и способы её устроить, рождаются именно изнутри, и чаще всего в таком деле фигурируют те люди, которые уже и так имеют доступ к этой информации.

Сюда же можно отнести и всевозможные вирусы, трояны, зловредные расширения для браузеров. Поскольку эти вещи проникают в компьютеры пользователей просто по незнанию. И если пользователь с зараженного компьютера будет работать с важной информацией — то соответственно с помощью этих вещей можно похитить и её. Сюда же относим и плохие пароли, социальную инженерию, фейковые сайты и письма — со всем этим легко справляться, нужно просто быть внимательным.

Атаки MITM

Этот пункт будет следующим в списке, поскольку это самый очевидный способ для хищения информации. Речь идёт о перехвате. Аббревиатура означает Man In The Middle — человек на середине. То есть, для кражи информации происходит как бы вклинивание злоумышленника в канал передачи данных — он изобретает и использует какой то способ, для того чтобы перехватить данные на пути их следования.

Как происходит перехват информации

В свою очередь, способов организовать MITM тоже много. Это и всевозможные фейки сайтов и сервисов, различные снифферы и прокси. Но суть всегда одна — злоумышленник заставляет «думать» какую-либо из сторон, что он — это другая сторона и при обмене все данные проходят через него.

Как защититься от перехвата информации?

Способы тоже очевидны. И сводятся к двум:

  1. Не допустить, чтобы злоумышленник мог вклиниться в процесс обмена данными
  2. Даже если исключить это невозможно и каким-то образом произошло — не допустить чтобы злоумышленник смог читать и использовать перехваченную информацию.

Варианты организации этого тоже не отличаются многообразием, по крайней мере в своей сути. Реализаций конечно же достаточно. Давайте рассмотрим именно суть этих методов защиты.

Использовать туннелирование и виртуальные приватные сети

VPN — Virtual Privat Network. Наверняка слышал о нём каждый. Это первый, и часто единственный, способ, который позволяет организовать безопасное информационное пространство для обмена нескольких учреждений. Суть его — построение сети туннелей поверх глобальной незащищенной сети (Интернет). Именно такой способ я и рекомендую как первый к внедрению в подобной системе офисов. VPN позволит офисам работать как-бы в единой локальной сети. Но связь между офисами будет происходить по интернету. Для этого между офисами организовываются VPN-туннели.

Примерно таким образом это работает. VPN-туннель, это как бы «труба» в интернете, внутри которой проложена ваша локальная сеть. Технически, такой тунель можно организовать множеством способом. Самих VPN — есть несколько реализаций — это и pptp, и l2tp, ipsec. позволяет — получается такой «VPN на коленке». Это конечно не исключает возможности для MITM — данные можно перехватить, «подключиться к трубе». Но здесь мы и переходим ко второму пункту защиты — шифрованию.

Шифрование данных в сети

Для того чтобы атака MITM не могла быть успешной, достаточно зашифровать все передаваемые данные. Я не буду вдаваться в подробности, но суть такова, что вы превращаете передаваемый между вами трафик в нечитабельную субстанцию, которую невозможно прочитать и использовать — шифруете. При этом, расшифровать эти данные может только адресат. И наоборот.

Соответственно, даже если злоумышленник сумеет организовать MITM-атаку — он перехватит передаваемые вами данные. Но он не сможет их расшифровать, а значит никакого вреда не нанесёт. Да и не будет он организовывать такую атаку, зная что вы передаете шифрованные данные. Так вот, та самая «труба» из предыдушего пункта, это именно шифрование.

В принципе, вся современная информационная безопасность сводится именно к этим двум вещам — туннелированию и шифрованию. Тот же https — это только шифрование, данные передаются открыто, в глобальной сети, любой желающий может организовать атаку и перехватить их. Но пока у него нет ssl-сертификатов и ключей для расшировки этих данных — ничем это и никому не грозит.

Защита путем обучения пользователей

Это те самые пресловутые 98%. Даже если вы построите сверхшифрованные двойные туннели с двухфакторной аутентификацией — это ничем вам не поможет, пока пользователи могут подхватить троян или использовать слабые пароли.

Поэтому, самым важным в защите является именно забота об обучении пользователей. Я давно этим стараюсь заниматься и на сайте уже есть некоторые материалы, которые в этом могут помочь:

  1. Суть антивирусной защиты — . Здесь я постарался подробно раскрыть вопросы о том, что такое вредоносное ПО и вирусы и как жить не находясь в постоянном страхе чем-то «заразить» свой компьютер, даже без антивируса.
  2. — описывал свой, довольно простой метод генерации сильных паролей «из головы».

Я думаю, после прочтения данной статьи и этих мануалов вы будете знать об информационной безопасности больше, чем 90% людей:) По крайней мере, вы сможете задавать уже более конкретные вопросы и находить чёткую информацию.

А тем временем, у меня есть новость, друзья. Мы идём в SMM! И я рад представить вам нашу группу на Facebook —

Задача реализация корпоративной сети компании в рамках одного здания может быть решена относительно легко. Однако на сегодня инфраструктура компаний имеет географически распределенные отделы самой компании. Реализация защищенной корпоративной сети в таком случае задача более сложного плана. В таких случаях зачастую используют безопасные vpn сервера .

Концепция построения виртуальных защищенных сетей VPN

В концепции создании виртуальных сетей VPN лежит простая идея — если в глобальной сети есть 2 узла, которым нужно обменяться данными, то между ними нужно создать виртуальный защищенный туннель для реализации целостности и конфиденциальности данных, передающих через открытые сети.

Основные понятие и функции сети VPN

При наличии связи между корпоративной локальной сетью и сетью Интернет возникают двух типов:

  • несанкционированный доступ к ресурсам локальной сети через вход
  • несанкционированный доступ к информации при передаче через открытую сеть Интернет

Защита данных при передаче по открытым каналам основана на реализации виртуальных защищенных сетей VPN. Виртуальной защищенной сетью VPN называют соединение локальные сетей и отдельных ПК через открытую сеть в единую виртуальную корпоративную сеть. Сеть VPN разрешает с помощью туннелей VPN создавать соединения между офисами, филиалами и удаленными пользователями, при этом безопасно транспортировать данные (рис.1).

Рисунок — 1

Туннель VPN являет собой соединение, проходящее через открытую сеть, где транспортируются криптографически защищенные пакеты данных. Защита данных при передаче по туннелю VPN реализована на следующих задачах:

  • криптографическое шифрование транспортируемых данных
  • аутентификация пользователей виртуальной сети
  • проверка целостности и подлинности передаваемых данных

VPN-клиент являет собой программный или аппаратный комплекс, работающий на основе персонального компьютера. Его сетевое ПО изменяется для реализации шифрования и аутентификации трафика.

VPN-сервер — также может быть программным или аппаратным комплексом, реализующий функции сервера. Он реализует защиту серверов от несанкционированного доступа из других сетей, а также организацию виртуальной сети между клиентами, серверами и шлюзами.

Шлюз безопасности VPN сетевое устройство, подключаемое к 2 сетям и реализует функции аутентификации и шифрования для множества хостов, находящихся за ним.

Суть туннелирования заключается в том, чтобы инкапсулировать (упаковать) данные в новый пакет. Пакет протокола более низкого уровня помещается в поле данных пакета протокола более высокого или такого же уровня (рис.2). Сам процесс инкапсуляции не защищает от искажения или несанкционированного доступа, он разрешает защитить конфиденциальность инкапсулированных данных.

Рисунок — 2

При прибытии пакета в конечную точка виртуального канала из него извлекается внутренний исходных пакет, расшифровывают и используют дальше по внутренней сети (рис.3).

Рисунок — 3

Также инкапсуляция решает проблему конфликта двух адресов между локальными сетями.

Варианты создания виртуальных защищенных каналов

При создании VPN есть два популярных способа(рис.4):

  • виртуальных защищенный канал между локальными сетями (канал ЛВС-ЛВС)
  • виртуальный защищенных канал между локальной сетью и узлом (канал клиент-ЛВС)

Рисунок — 4

Первый метод соединения разрешает заменить дорогие выделенные каналы между отдельными узлами и создать постоянно работающие защищенные каналы между ними. Здесь шлюз безопасности служит интерфейсом между локальной сетью и туннелем. Многие предприятия реализуют такой вид VPN для замены или дополнения к .

Вторая схема нужна для соединения с мобильными или удаленными пользователями. Создания туннеля инициирует клиент.

С точки зрения информационной безопасности самым лучшим вариантом является защищенный туннель между конечными точками соединения. Однако такой вариант ведет к децентрализации управления и избыточности ресурсов, ибо нужно ставить VPN на каждом компьютере сети. Если внутри локальной сети, которая входит в виртуальную, не требует защиты трафика, тогда в качестве конечной точки со стороны локальной сети может выступать или маршрутизатор этой же сети.

Методы реализации безопасности VPN

При создании защищенной виртуальной сети VPN подразумевают, что передаваемая информация будет иметь критерии защищаемой информации , а именно: конфиденциальность, целостность, доступность. Конфиденциальность достигается с помощью методов асимметричного и симметричного шифрования. Целостность транспортируемых данных достигается с помощью . Аутентификация достигается с помощью одноразовых/многоразовых паролей, сертификатов, смарт-карт, протоколов .

Для реализации безопасности транспортируемой информации в виртуальных защищенных сетях, нужно решить следующие задачи сетевой безопасности:

  • взаимная аутентификация пользователей при соединении
  • реализация конфиденциальности, аутентичности и целостности транспортируемых данных
  • управление доступом
  • безопасность периметра сети и
  • управление безопасностью сети

VPN-решения для создания защищенных сетей

Классификация сетей VPN

На основе глобальной сети Интернет можно реализовывать почти все виды трафика. Есть разные схемы классификации VPN. Самая распространенная схема имеет 3 признака классификации:

Защищенный канал — канал между двумя узлами сети, вдоль определенного виртуального пути. Такой канал можно создать с помощью системных методов, основанных на разных уровнях модели OSI (рис.5).

Рисунок — 5

Можно заметить, что VPN создаются на достаточно низких уровнях. Причина такова, что чем ниже в стеке реализованы методы защищенного канала, тем проще их реализовать прозрачными для приложений. На канальном и сетевом уровнях зависимость приложений от протоколов защиты исчезает. Если для защиты информации реализован протокол из верхних уровней, то способ защиты не зависит от технологии сети, что можно считать плюсом. Однако приложение становится зависимым от конкретного протокола защиты.

VPN канального уровня . Методы на таком уровня разрешают инкапсулировать трафик третьего уровня (и более высоких) и создавать виртуальные туннели типа точка-точка. К таким относят VPN-продукты на основе протокола .

VPN сетевого уровня . VPN-продукты такого уровня реализуют инкапсуляцию IP в IP. К примеру используют протокол .

VPN сеансового уровня . Некоторые VPN реализуют подход «посредники каналов», такой метод работает над транспортным уровнем и ретранслирует трафик из защищенной сети в общедоступною сеть Интернет для каждого сокета отдельно.

Классификация VPN по архитектуре технического решения

Делят на:

  • внутрикорпоративные VPN — нужны для реализации защищенной работы между отделами внутри компании
  • VPN с удаленным доступом — нужны для реализации защищенного удаленного доступа к корпоративным информационным ресурсам
  • межкорпоративные VPN — нужны между отдельными частями бизнеса разнесенных географически

Классификация VPN по методу технической реализации

Делят на:

  • VPN на основе маршрутизаторов — задачи защиты падают на устройство маршрутизатора
  • VPN на основе межсетевых экранов — задачи защиты падают на устройство межсетевого экрана
  • VPN на основе программных решений — применяется ПО, которое выигрывает в гибкости и настройке, однако проигрывает в пропускной способности
  • VPN на основе специальных аппаратных устройствах — устройства, где шифрование реализовано специальными отдельными микросхемами, реализуют высокую производительность за большие деньги