Windows 8

Руководство системы обнаружения вторжений. Компании и продукты

Руководство системы обнаружения вторжений. Компании и продукты

Обнаружение вторжений - это еще одна задача, выполняемая сотрудниками, ответственными за безопасность информации в орга­низации, при обеспечении защиты от атак. Обнаружение вторжений - это активный процесс, при котором происходит обнаружение хакера при его попытках проникнуть в систему. В идеальном случае такая система лишь выдаст сигнал тревоги при попытке проникновения. Обнаружение вторжений помогает при идентификации активных уг­роз посредством оповещений и предупреждений о том, что злоумыш­ленник осуществляет сбор информации, необходимой для проведения атаки. В действительности это не всегда так.

Системы обнаружения вторжений (IDS) появились давно. Первыми из них можно считать ночной дозор и сторожевых собак. Дозорные и сторожевые собаки выполняли две задачи: они определяли иницииро­ванные кем-то подозрительные действия и пресекали дальнейшее про­никновение злоумышленника. Как правило, грабители избегали встречи с собаками и, в большинстве случае, старались обходить стороной зда­ния, охраняемые собаками. То же самое можно сказать и про ночной до­зор. Грабители не хотели быть замеченными вооруженными дозорными или охранниками, которые могли вызвать полицию.

Сигнализация в зданиях и в автомобилях также является разно­видностью системы обнаружения вторжений. Если система оповеще­ния обнаруживает событие, которое должно быть замечено (напри­мер, взлом окна или открытие двери), то выдается сигнал тревоги с зажиганием ламп, включением звуковых сигналов, либо сигнал тре­воги передается на пульт полицейского участка. Функция пресечения проникновения выполняется посредством предупреждающей наклей­ки на окне или знака, установленного перед домом. В автомобилях, как правило, при включенной сигнализации горит красная лампочка, предупреждающая об активном состоянии системы сигнализации.

Все эти примеры основываются на одном и том же принципе: об­наружение любых попыток проникновения в защищенный периметр объекта (офис, здание, автомобиль и т. д.). В случае с автомобилем или зданием периметр защиты определяется относительно легко. Стены строения, ограждение вокруг частной собственности, двери и окна автомобиля четко определяют защищаемый периметр. Еще од­ной характеристикой, общей для всех этих случаев, является четкий критерий того, что именно является попыткой проникновения, и что именно образует защищаемый периметр.

Если перенести концепцию системы сигнализации в компьютер­ный мир, то получится базовая концепция системы обнаружения вторжений. Необходимо определить, чем в действительности являет­ся периметр защигы компьютерной системы или сети. Очевидно, что периметр защиты в данном случае - это не стена и не ограждение.



Периметр защиты сети представляет собой виртуальный пери­метр, внутри которого находятся компьютерные системы. Этот пери­метр может определяться межсетевыми экранами, точками разделения соединений или настольными компьютерами с модемами. Данный пе­риметр может быть расширен для содержания домашних компьютеров сотрудников, которым разрешено соединяться друг с другом, или парт­неров по бизнесу, которым разрешено подключаться к сети. С появле­нием в деловом взаимодействии беспроводных сетей периметр защиты организации расширяется до размера беспроводной сети.

Сигнализация, оповещающая о проникновении грабителя, предна­значена для обнаружения любых попыток входа в защищаемую об­ласть, когда эта область не используется.

Система обнаружения вторжений IDS предназначена для разгра­ничения авторизованного входа и несанкционированного проникно­вения, что реализуется гораздо сложнее. Здесь можно в качестве при­мера привести ювелирный магазин с сигнализацией против грабите­лей. Если кто-либо, даже владелец магазина, откроет дверь, то срабо­тает сигнализация. После этого владелец должен уведомить компа­нию, обслуживающую сигнализацию, о том, что это он открыл мага­зин, и что все в порядке. Систему IDS, напротив, можно сравнить с охранником, следящим за всем, что происходит в магазине, и выяв­ляющим несанкционированные действия (как, например, пронос ог­
нестрельного оружия). К сожалению, в виртуальном мире «огне­стрельное оружие» очень часто остается незаметным.

Вторым вопросом, который необходимо принимать в расчет, яв­ляется определение того, какие события являются нарушением пери­метра безопасности. Является ли нарушением попытка определить работающие компьютеры? Что делать в случае проведения известной атаки на систему или сеть? По мере того как задаются эти вопросы, становится понятно, что найти ответы на них не просто. Более того, они зависят от других событий и от состояния системы-цели.

Существуют два основных типа IDS: узловые (HIDS) и сетевые (NIDS).

Система HIDS располагается на отдельном узле и отслеживает признаки атак на данный узел. Система NIDS находится на отдельной системе, отслеживающей сетевой трафик на наличие признаков атак, проводимых в подконтрольном сегменте сети.

Узловые IDS (H1DS) представляют собой систему датчиков, за­гружаемых на различные сервера организации и управляемых цен­тральным диспетчером. Датчики отслеживают различные типы собы­тий и предпринимают определенные действия на сервере либо пере­дают уведомления. Датчики HIDS отслеживают события, связанные с сервером, на котором они загружены. Сенсор HIDS позволяет опре-
делить, была ли атака успешной, если атака имела место на той же платформе, на которой установлен датчик.

Вероятно возникновение разногласий, связанных с управлением и настройкой, между администраторами безопасности (управляющими работой IDS) и системными администраторами. Так как процесс дол­жен постоянно находиться в активном состоянии, необходима хоро­шая координация в их работе.

Существует пять основных типов датчиков HIDS: анализаторы журналов; датчики признаков; анализаторы системных вызовов; анализаторы поведения приложений; контролеры целостности файлов.

Следует заметить, что количество датчиков HIDS увеличивается, и некоторые продукты предлагают функциональные возможности, преду­сматривающие использование датчиков более чем пяти основных видов.

Анализаторы журналов. Анализатор журнала представляет со­бой именно то, что отражает само название датчика. Процесс выпол­няется на сервере и отслеживает соответствующие файлы журналов в системе. Если встречается запись журнала, соответствующая некото­рому критерию в процессе датчика HIDS, предпринимается установ­ленное действие.

Большая часть анализаторов журналов настроена на отслеживание записей журналов, которые могут означать событие, связанное с безопасностью системы. Администратор системы, как правило, мо­жет определить другие записи журнала, представляющие определен­ный интерес.

Анализаторы журналов, в частности, хорошо адаптированы для от­слеживания активности авторизованных пользователей на внутренних системах. Таким образом, если в организации уделяется внимание кон­тролю за деятельностью системных администраторов или других поль­зователей системы, можно использовать анализатор журнала для от­слеживания активности и перемещения записи об этой активности в область, недосягаемую для администратора или пользователя.

Датчики признаков. Датчики этого типа представляют собой на­боры определенных признаков событий безопасности, сопоставляе­мых с входящим трафиком или записями журнала. Различие между датчиками признаков и анализаторами журналов заключается в воз­можности анализа входящего трафика.

Анализаторы системных вызовов. Анализаторы системных вы­зовов осуществляют анализ вызовов между приложениями и опера­ционной системой для идентификации событий, связанных с безо­пасностью. Датчики HIDS данного типа размещают программную спайку между операционной системой и приложениями. Когда при­ложению требуется выполнить действие, его вызов операционной системой анализируется и сопоставляется с базой данных признаков. Эти признаки являются примерами различных типов поведения, ко­торые являют собой атакующие действия, или объектом интереса для администратора IDS.

Анализаторы поведения приложений. Анализаторы поведения приложений аналогичны анализаторам системных вызовов в том, что они применяются в виде программной спайки между приложениями и операционной системой. В анализаторах поведения датчик проверяет вызов на предмет того, разрешено ли приложению выполнять данное действие, вместо определения соответствия вызова признакам атак.

Контролеры целостности файлов. Контролеры целостности файлов отслеживают изменения в файлах. Это осуществляется по­средством использования криптографической контрольной суммы или цифровой подписи файла. Конечная цифровая подпись файла бу­дет изменена, если произойдет изменение хотя бы малой части ис­ходного файла (это могут быть атрибуты файла, такие как время и да­та создания). Алгоритмы, используемые для выполнения этого про­цесса, разрабатывались с целью максимального снижения возможно­сти для внесения изменений в файл с сохранением прежней подписи.

При изначальной конфигурации датчика каждый файл, подлежа­щий мониторингу, подвергается обработке алгоритмом для создания начальной подписи. Полученное число сохраняется в безопасном месте. Периодически для каждого файла эта подпись пересчитывает- ся и сопоставляется с оригиналом. Если подписи совпадают, это оз­начает, что файл не был изменен. Если соответствия нет, значит, в файл были внесены изменения.


Сетевые IDS. NIDS представляет собой программный процесс, работающий на специально выделенной системе. NIDS переключает сетевую карту в системе в неразборчивый режим работы, при кото­ром сетевой адаптер пропускает весь сетевой трафик (а не только трафик, направленный на данную систему) в программное обеспече­ние NIDS. После этого происходит анализ трафика с использованием набора правил и признаков атак для определения того, представляет ли этот трафик какой-либо интерес. Если это так, то генерируется со­ответствующее событие.

На данный момент большинство систем NIDS базируется на при­знаках атак. Это означает, что в системы встроен набор признаков атак, с которыми сопоставляется трафик в канале связи. Если происходит атака, признак которой отсутствует в системе обнаружения вторжений, система NIDS не

замечает эту атаку. NIDS-системы позволяют указы­вать интересуемый трафик по адресу источника, конечному адресу, порту источника или конечному порту. Это дает возможность отслежи­вания трафика, не соответствующего признакам атак.

Чаще всего при применении NIDS используются две сетевые кар­ты (рис. 33). Одна карта используется для мониторинга сети. Эта кар­та работает в «скрытом» режиме, поэтому она не имеет IP-адреса и, следовательно, не отвечает на входящие соединения.

У скрытой карты отсутствует стек протоколов, поэтому она не может отвечать на такие информационные пакеты, как пинг-запросы. Вторая сетевая карта используется для соединения с системой управ­ления IDS и для отправки сигналов тревоги. Эта карта присоединяет­ся к внутренней сети, невидимой для той сети, в отношении которой производится мониторинг.

По сути эти программы представляют собой модифицированные анализаторы, которые видят все потоки данных в сети, пытаются выявить потенциально вредный сетевой трафик и предупредить вас, когда таковой появляется. Основной метод их действия заключается в исследовании проходящего трафика и сравнении его с базой данных известных шаблонов вредоносной активности, называемых сигнатурами. Использование сигнатур очень похоже на работу антивирусных программ. Большинство видов атак на уровне TCP/IP имеют характерные особенности. Система обнаружения вторжений может выявлять атаки на основе IP-адресов, номеров портов , информационного наполнения и произвольного числа критериев. Существует другой способ обнаружения вторжений на системном уровне, состоящий в контроле целостности ключевых файлов. Кроме того, развиваются новые методы, сочетающие концепции обнаружения вторжений и межсетевого экранирования или предпринимающие дополнительные действия помимо простого обнаружения (см. врезку "Новое поколение систем обнаружения вторжений "). Однако в этой лекции основное внимание уделено двум наиболее популярным способам обнаружения вторжений в сети и системах: сетевое обнаружение вторжений и контроль целостности файлов.

Сетевая система обнаружения вторжений может защитить от атак, которые проходят через межсетевой экран во внутреннюю ЛВС . Межсетевые экраны могут быть неправильно сконфигурированы, пропуская в сеть нежелательный трафик. Даже при правильной работе межсетевые экраны обычно пропускают внутрь трафик некоторых приложений, который может быть опасным. Порты часто переправляются с межсетевого экрана внутренним серверам с трафиком, предназначенным для почтового или другого общедоступного сервера. Сетевая система обнаружения вторжений может отслеживать этот трафик и сигнализировать о потенциально опасных пакетах. Правильно сконфигурированная сетевая система обнаружения вторжений может перепроверять правила межсетевого экрана и предоставлять дополнительную защиту для серверов приложений .

Сетевые системы обнаружения вторжений полезны при защите от внешних атак, однако одним из их главных достоинств является способность выявлять внутренние атаки и подозрительную активность пользователей. Межсетевой экран защитит от многих внешних атак, но, когда атакующий находится в локальной сети, межсетевой экран вряд ли сможет помочь. Он видит только тот трафик, что проходит через него, и обычно слеп по отношению к активности в локальной сети. Считайте сетевую систему обнаружения вторжений и межсетевой экран взаимодополняющими устройствами безопасности - вроде надежного дверного замка и системы сигнализации сетевой безопасности. Одно из них защищает вашу внешнюю границу, другое -внутреннюю часть (рис. 7.1).


Рис. 7.1.

Имеется веская причина, чтобы внимательно следить за трафиком внутренней сети . Как показывает статистика ФБР, более 70 процентов компьютерных преступлений исходят из внутреннего источника. Хотя мы склонны считать, что наши коллеги не сделают ничего, чтобы нам навредить, но иногда это бывает не так. Внутренние злоумышленники - не всегда ночные хакеры . Это могут быть и обиженные системные администраторы, и неосторожные служащие. Простое действие по загрузке файла или по открытию файла, присоединенного к электронному сообщению, может внедрить в вашу систему "троянскую" программу, которая создаст дыру в межсетевом экране для всевозможных бед. С помощью сетевой системы обнаружения вторжений вы сможете пресечь подобную активность , а также другие возможные компьютерные интриги. Хорошо настроенная сетевая система обнаружения вторжений может играть роль электронной "системы сигнализации" для вашей сети.

Новое поколение систем обнаружения вторжений

Системы обнаружения вторжений на основе выявления аномальной активности

Вместо применения статических сигнатур, с помощью которых можно выявлять только явно вредоносную деятельность, системы нового поколения отслеживают нормальные уровни для различных видов активности в сети. Если наблюдается внезапный всплеск трафика FTP, то система предупредит об этом. Проблема с системами такого рода состоит в том, что они весьма склонны к ложным срабатываниям - то есть выдаче сигналов тревоги, когда в сети имеет место нормальная, допустимая деятельность. Так, в примере с FTP-трафиком загрузка особенно большого файла будет возбуждать сигнал тревоги.

Следует учитывать также, что системе обнаружения вторжений на основе выявления аномальной активности требуется время, чтобы построить точную модель сети. Вначале система генерирует так много тревожных сигналов, что пользы от нее почти никакой. Кроме того, подобные системы обнаружения вторжений можно обмануть, хорошо зная сеть. Если хакеры достаточно незаметны и используют протоколы, которые активно применяются в сети, они не привлекут внимания систем такого рода. С другой стороны, важное преимущество подобных систем - отсутствие необходимости постоянно обновлять набор сигнатур. Когда эта технология достигнет зрелости и достаточной интеллектуальности, она, вероятно, станет употребительным методом обнаружения вторжений .

Системы предотвращения вторжений

Новый тип сетевых систем обнаружения вторжений , называемый системами предотвращения вторжений , декларирован как решение всех проблем корпоративной безопасности. Основная идея состоит в том, чтобы при генерации тревожных сигналов предпринимать ответные действия, такие как написание на лету индивидуальных правил для межсетевых экранов и маршрутизаторов , блокирующих активность подозрительных IP-адресов, запрос или даже контратака систем-нарушителей.

Хотя эта новая технология постоянно развивается и совершенствуется, ей еще слишком далеко до проведения анализа и принятия решений на уровне человека. Факт остается фактом - любая система, которая на 100% зависит от машины и программного обеспечения, всегда может быть обманута посвятившим себя этому человеком (хотя некоторые проигравшие шахматные гроссмейстеры могут с этим не согласиться). Примером системы предотвращения вторжений с открытыми исходными текстами служит Inline Snort Джеда Хейла - свободный модуль для сетевой системы обнаружения вторжений Snort, обсуждаемой в данной лекции.

Соответствующий английский термин - Intrusion Detection System (IDS) . Системы обнаружения вторжений обеспечивают дополнительный уровень защиты компьютерных систем.

Системы обнаружения вторжений используются для обнаружения некоторых типов вредоносной активности, которая может нарушить безопасность компьютерной системы. К такой активности относятся сетевые атаки против уязвимых сервисов, атаки, направленные на повышение привилегий , неавторизованный доступ к важным файлам, а также действия вредоносного программного обеспечения (компьютерных вирусов , троянов и червей)

Обычно архитектура СОВ включает:

Существует несколько способов классификации СОВ в зависимости от типа и расположения сенсоров, а также методов, используемых подсистемой анализа для выявления подозрительной активности. Во многих простых СОВ все компоненты реализованы в виде одного модуля или устройства.

Виды систем обнаружения вторжений [ | ]

IDES использовала два подхода к обнаружению вторжений: в ней использовалась экспертная система для определения известных видов вторжений и компонент обнаружения, основанный на статистических методах и профилях пользователей и систем охраняемой сети. Тереза Лунт предложила использовать искусственную нейронную сеть как третий компонент для повышения эффективности обнаружения. Вслед за IDES в 1993 вышла NIDES (Next-generation Intrusion Detection Expert System - экспертная система обнаружения вторжений нового поколения).

MIDAS (Multics intrusion detection and alerting system), экспертная система, использующая P-BEST и LISP , была разработана в 1988 году на основе работы Деннинга и Неймана. В этом же году была разработана система Haystack, основанная на статистических методах.

W&S (Wisdom & Sense - мудрость и чувство), основанный на статистических методах детектор аномалий, был разработан в 1989 году в. W&S создавал правила на основе статистического анализа и затем использовал эти правила для обнаружения аномалий.

В 1990, в TIM (Time-based inductive machine) было реализовано обнаружение аномалий с использованием индуктивного обучения на основе последовательных паттернов пользователя на языке Common LISP . Программа была разработана для VAX 3500. Примерно в то же время был разработан NSM (Network Security Monitor - монитор сетевой безопасности), сравнивающий матрицы доступа для обнаружения аномалий на рабочих станциях Sun-3/50. В том же 1990 году был разработан ISOA (Information Security Officer’s Assistant), содержащий в себе множество стратегий обнаружения, включая статистику, проверку профиля и экспертную систему. ComputerWatch, разработанный в AT&T Bell Labs, использовал статистические методы и правила для проверки данных и обнаружения вторжений.

В 2001 году была разработана система ADAM IDS (Audit data analysis and mining IDS). Система использовала данные tcpdump для создания правил.

См. также [ | ]

Примечания [ | ]

  1. Anderson, James P., "Computer Security Threat Monitoring and Surveillance, " Washing, PA, James P. Anderson Co., 1980.
  2. Denning, Dorothy E., "An Intrusion Detection Model, " Proceedings of the Seventh IEEE Symposium on Security and Privacy, May 1986, pages 119-131
  3. Lunt, Teresa F., "IDES: An Intelligent System for Detecting Intruders, " Proceedings of the Symposium on Computer Security; Threats, and Countermeasures; Rome, Italy, November 22-23, 1990, pages 110-121.
  4. Lunt, Teresa F., "Detecting Intruders in Computer Systems, " 1993 Conference on Auditing and Computer Technology, SRI International

Система обнаружения вторжений (СОВ ) - программное или аппаратное средство, предназначенное для выявления фактов неавторизованного доступа в компьютерную систему или сеть либо несанкционированного управления ими в основном через Интернет . Соответствующий английский термин - Intrusion Detection System (IDS) . Системы обнаружения вторжений обеспечивают дополнительный уровень защиты компьютерных систем.

Системы обнаружения вторжений используются для обнаружения некоторых типов вредоносной активности, которая может нарушить безопасность компьютерной системы. К такой активности относятся сетевые атаки против уязвимых сервисов, атаки, направленные на повышение привилегий, неавторизованный доступ к важным файлам, а также действия вредоносного программного обеспечения (компьютерных вирусов , троянов и червей)

Обычно архитектура СОВ включает:

  • сенсорную подсистему, предназначенную для сбора событий, связанных с безопасностью защищаемой системы
  • подсистему анализа, предназначенную для выявления атак и подозрительных действий на основе данных сенсоров
  • хранилище, обеспечивающее накопление первичных событий и результатов анализа
  • консоль управления, позволяющая конфигурировать СОВ, наблюдать за состоянием защищаемой системы и СОВ, просматривать выявленные подсистемой анализа инциденты

Существует несколько способов классификации СОВ в зависимости от типа и расположения сенсоров, а также методов, используемых подсистемой анализа для выявления подозрительной активности. Во многих простых СОВ все компоненты реализованы в виде одного модуля или устройства.

Виды систем обнаружения вторжений

IDES использовала два подхода к обнаружению вторжений: в ней использовалась экспертная система для определения известных видов вторжений и компонент обнаружения, основанный на статистических методах и профилях пользователей и систем охраняемой сети. Тереза Лунт предложила использовать искусственную нейронную сеть как третий компонент для повышения эффективности обнаружения. Вслед за IDES в 1993 вышла NIDES (Next-generation Intrusion Detection Expert System - экспертная система обнаружения вторжений нового поколения).

MIDAS (Multics intrusion detection and alerting system), экспертная система, использующая P-BEST и LISP , была разработана в 1988 году на основе работы Деннинга и Неймана. В этом же году была разработана система Haystack, основанная на статистических методах.

W&S (Wisdom & Sense - мудрость и чувство), основанный на статистических методах детектор аномалий, был разработан в 1989 году в Лос-Аламосской Национальной лаборатории. W&S создавал правила на основе статистического анализа и затем использовал эти правила для обнаружения аномалий.

В 1990, в TIM (Time-based inductive machine) было реализовано обнаружение аномалий с использованием индуктивного обучения на основе последовательных паттернов пользователя на языке Common LISP . Программа была разработана для VAX 3500. Примерно в то же время был разработан NSM (Network Security Monitor - монитор сетевой безопасности), сравнивающий матрицы доступа для обнаружения аномалий на рабочих станциях Sun-3/50. В том же 1990 году был разработан ISOA (Information Security Officer’s Assistant), содержащий в себе множество стратегий обнаружения, включая статистику, проверку профиля и экспертную систему. ComputerWatch, разработанный в AT&T Bell Labs, использовал статистические методы и правила для проверки данных и обнаружения вторжений.

В 2001 году была разработана система ADAM IDS (Audit data analysis and mining IDS). Система использовала данные tcpdump для создания правил.

Свободно распространяемые СОВ

  • Prelude Hybrid IDS
  • Samhain HIDS
  • Suricata

Коммерческие СОВ

См. также

  • Intrusion prevention system (IPS) (англ.)
  • Network intrusion detection system (NIDS) (англ.)
  • Host-based intrusion detection system (HIDS) (англ.)
  • Protocol-based intrusion detection system (PIDS) (англ.)
  • Application protocol-based intrusion detection system (APIDS) (англ.)
  • Anomaly-based intrusion detection system (англ.)
  • Artificial immune system (англ.)
  • Autonomous Agents for Intrusion Detection (англ.)

Примечания

  1. Anderson, James P., "Computer Security Threat Monitoring and Surveillance, " Washing, PA, James P. Anderson Co., 1980.
  2. Denning, Dorothy E., "An Intrusion Detection Model, " Proceedings of the Seventh IEEE Symposium on Security and Privacy, May 1986, pages 119-131
  3. Lunt, Teresa F., "IDES: An Intelligent System for Detecting Intruders, " Proceedings of the Symposium on Computer Security; Threats, and Countermeasures; Rome, Italy, November 22-23, 1990, pages 110-121.
  4. Lunt, Teresa F., "Detecting Intruders in Computer Systems, " 1993 Conference on Auditing and Computer Technology, SRI International
  5. Sebring, Michael M., and Whitehurst, R. Alan., "Expert Systems in Intrusion Detection: A Case Study, " The 11th National Computer Security Conference, October, 1988
  6. Smaha, Stephen E., "Haystack: An Intrusion Detection System, " The Fourth Aerospace Computer Security Applications Conference, Orlando, FL, December, 1988
  7. Vaccaro, H.S., and Liepins, G.E., "Detection of Anomalous Computer Session Activity, " The 1989 IEEE Symposium on Security and Privacy, May, 1989
  8. Teng, Henry S., Chen, Kaihu, and Lu, Stephen C-Y, "Adaptive Real-time Anomaly Detection Using Inductively Generated Sequential Patterns, " 1990 IEEE Symposium on Security and Privacy
  9. Heberlein, L. Todd, Dias, Gihan V., Levitt, Karl N., Mukherjee, Biswanath, Wood, Jeff, and Wolber, David, "A Network Security Monitor, " 1990 Symposium on Research in Security and Privacy, Oakland, CA, pages 296-304
  10. Winkeler, J.R., "A UNIX Prototype for Intrusion and Anomaly Detection in Secure Networks, " The Thirteenth National Computer Security Conference, Washington, DC., pages 115-124, 1990
  11. Dowell, Cheri, and Ramstedt, Paul, "The ComputerWatch Data Reduction Tool, " Proceedings of the 13th National Computer Security Conference, Washington, D.C., 1990
  12. Snapp, Steven R, Brentano, James, Dias, Gihan V., Goan, Terrance L., Heberlein, L. Todd, Ho, Che-Lin, Levitt, Karl N., Mukherjee, Biswanath, Smaha, Stephen E., Grance, Tim, Teal, Daniel M. and Mansur, Doug, "DIDS (Distributed Intrusion Detection System) - Motivation, Architecture, and An Early Prototype, " The 14th National Computer Security Conference, October, 1991, pages 167-176.
  13. Jackson, Kathleen, DuBois, David H., and Stallings, Cathy A., "A Phased Approach to Network Intrusion Detection, " 14th National Computing Security Conference, 1991
  14. Paxson, Vern, "Bro: A System for Detecting Network Intruders in Real-Time, " Proceedings of The 7th USENIX Security Symposium, San Antonio, TX, 1998
  15. Amoroso, Edward, "Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Trace Back, Traps, and Response, " Intrusion.Net Books, Sparta, New Jersey, 1999, ISBN 0-9666700-7-8
  16. Kohlenberg, Toby (Ed.), Alder, Raven, Carter, Dr. Everett F. (Skip), Jr., Foster, James C., Jonkman Marty, Raffael, and Poor, Mike, "Snort IDS and IPS Toolkit, " Syngress, 2007, ISBN 978-1-59749-099-3
  17. Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, and Wu, Ningning, "ADAM: Detecting Intrusions by Data Mining, " Proceedings of the IEEE Workshop on Information Assurance and Security, West Point, NY, June 5-6, 2001

Ссылки

  • Некоторые методы обхода IDS: часть 1 и часть 2
  • Guide to Intrusion Detection and Prevention Systems (IDPS) , NIST CSRC special publication SP 800-94, released 02/2007

В настоящее время защита, обеспечиваемая файерволом и антивирусом, уже не эффективна против сетевых атак и малварей. На первый план выходят решения класса IDS/IPS, которые могут обнаруживать и блокировать как известные, так и еще не известные угрозы.

INFO

  • О Mod_Security и GreenSQL-FW читай в статье «Последний рубеж», ][_12_2010.
  • Как научить iptables «заглядывать» внутрь пакета, читай в статье «Огненный щит», ][_12_2010.

Технологии IDS/IPS

Чтобы сделать выбор между IDS или IPS, следует понимать их принципы работы и назначение. Так, задача IDS (Intrusion Detection System) состоит в обнаружении и регистрации атак, а также оповещении при срабатывании определенного правила. В зависимости от типа, IDS умеют выявлять различные виды сетевых атак, обнаруживать попытки неавторизованного доступа или повышения привилегий, появление вредоносного ПО, отслеживать открытие нового порта и т. д. В отличие от межсетевого экрана, контролирующего только параметры сессии (IP, номер порта и состояние связей), IDS «заглядывает» внутрь пакета (до седьмого уровня OSI), анализируя передаваемые данные. Существует несколько видов систем обнаружения вторжений. Весьма популярны APIDS (Application protocol-based IDS), которые мониторят ограниченный список прикладных протоколов на предмет специфических атак. Типичными представителями этого класса являются PHPIDS , анализирующий запросы к PHP-приложениям, Mod_Security, защищающий веб-сервер (Apache), и GreenSQL-FW, блокирующий опасные SQL-команды (см. статью «Последний рубеж» в ][_12_2010).

Сетевые NIDS (Network Intrusion Detection System) более универсальны, что достигается благодаря технологии DPI (Deep Packet Inspection, глубокое инспектирование пакета). Они контролируют не одно конкретное приложение, а весь проходящий трафик, начиная с канального уровня.

Для некоторых пакетных фильтров также реализована возможность «заглянуть внутрь» и блокировать опасность. В качестве примера можно привести проекты OpenDPI и Fwsnort . Последний представляет собой программу для преобразования базы сигнатур Snort в эквивалентные правила блокировки для iptables. Но изначально файервол заточен под другие задачи, да и технология DPI «накладна» для движка, поэтому функции по обработке дополнительных данных ограничены блокировкой или маркированием строго определенных протоколов. IDS всего лишь помечает (alert) все подозрительные действия. Чтобы заблокировать атакующий хост, администратор самостоятельно перенастраивает брандмауэр во время просмотра статистики. Естественно, ни о каком реагировании в реальном времени здесь речи не идет. Именно поэтому сегодня более интересны IPS (Intrusion Prevention System, система предотвращения атак). Они основаны на IDS и могут самостоятельно перестраивать пакетный фильтр или прерывать сеанс, отсылая TCP RST. В зависимости от принципа работы, IPS может устанавливаться «в разрыв» или использовать зеркалирование трафика (SPAN), получаемого с нескольких сенсоров. Например, в разрыв устанавливается Hogwash Light BR , которая работает на втором уровне OSI. Такая система может не иметь IP-адреса, а значит, остается невидимой для взломщика.

В обычной жизни дверь не только запирают на замок, но и дополнительно защищают, оставляя возле нее охранника, ведь только в этом случае можно быть уверенным в безопасности. В IT в качестве такого секьюрити выступают хостовые IPS (см. «Новый оборонительный рубеж» в ][_08_2009), защищающие локальную систему от вирусов, руткитов и взлома. Их часто путают с антивирусами, имеющими модуль проактивной защиты. Но HIPS, как правило, не используют сигнатуры, а значит, не требуют постоянного обновления баз. Они контролируют гораздо больше системных параметров: процессы, целостность системных файлов и реестра, записи в журналах и многое другое.

Чтобы полностью владеть ситуацией, необходимо контролировать и сопоставлять события как на сетевом уровне, так и на уровне хоста. Для этой цели были созданы гибридные IDS, которые коллектят данные из разных источников (подобные системы часто относят к SIM - Security Information Management). Среди OpenSource-проектов интересен Prelude Hybrid IDS, собирающий данные практически со всех OpenSource IDS/IPS и понимающий формат журналов разных приложений (поддержка этой системы приостановлена несколько лет назад, но собранные пакеты еще можно найти в репозиториях Linux и *BSD).

В разнообразии предлагаемых решений может запутаться даже профи. Сегодня мы познакомимся с наиболее яркими представителями IDS/IPS-систем.

Объединенный контроль угроз

Современный интернет несет огромное количество угроз, поэтому узкоспециализированные системы уже не актуальны. Необходимо использовать комплексное многофункциональное решение, включающее все компоненты защиты: файервол, IDS/IPS, антивирус, прокси-сервер, контентный фильтр и антиспам-фильтр. Такие устройства получили название UTM (Unified Threat Management, объединенный контроль угроз). В качестве примеров UTM можно привести Trend Micro Deep Security , Kerio Control , Sonicwall Network Security , FortiGate Network Security Platforms and Appliances или специализированные дистрибутивы Linux, такие как Untangle Gateway, IPCop Firewall, pfSense (читай их обзор в статье «Сетевые регулировщики», ][_01_2010).

Suricata

Бета-версия этой IDS/IPS была представлена на суд общественности в январе 2010-го после трех лет разработок. Одна из главных целей проекта - создание и обкатка совершенно новых технологий обнаружения атак. За Suricata стоит объединение OISF, которое пользуется поддержкой серьезных партнеров, включая ребят из US Department of Homeland Security. Актуальным на сегодня является релиз под номером 1.1, вышедший в ноябре 2011 года. Код проекта распространяется под лицензией GPLv2, но финансовые партнеры имеют доступ к не GPL-версии движка, которую они могут использовать в своих продуктах. Для достижения максимального результата к работе привлекается сообщество, что позволяет достигнуть очень высокого темпа разработки. Например, по сравнению с предыдущей версией 1.0, объем кода в 1.1 вырос на 70%. Некоторые современные IDS с длинной историей, в том числе и Snort, не совсем эффективно используют многопроцессорные/многоядерные системы, что приводит к проблемам при обработке большого объема данных. Suricata изначально работает в многопоточном режиме. Тесты показывают, что она шестикратно превосходит Snort в скорости (на системе с 24 CPU и 128 ГБ ОЗУ). При сборке с параметром ‘—enable-cuda’ появляется возможность аппаратного ускорения на стороне GPU. Изначально поддерживается IPv6 (в Snort активируется ключом ‘—enable-ipv6’), для перехвата трафика используются стандартные интерфейсы: LibPcap, NFQueue, IPFRing, IPFW. Вообще, модульная компоновка позволяет быстро подключить нужный элемент для захвата, декодирования, анализа или обработки пакетов. Блокировка производится средствами штатного пакетного фильтра ОС (в Linux для активации режима IPS необходимо установить библиотеки netlink-queue и libnfnetlink). Движок автоматически определяет и парсит протоколы (IP, TCP, UDP, ICMP, HTTP, TLS, FTP, SMB, SMTP и SCTP), поэтому в правилах необязательно привязываться к номеру порта (как это делает Snort), достаточно лишь задать действие для нужного протокола. Ivan Ristic, автор Mod_security, создал специальную библиотеку HTP, применяемую в Suricata для анализа HTTP-трафика. Разработчики прежде всего стремятся добиться точности обнаружения и повышения скорости проверки правил.

Вывод результатов унифицирован, поэтому можно использовать стандартные утилиты для их анализа. Собственно, все бэк-энды, интерфейсы и анализаторы, написанные для Snort (Barnyard, Snortsnarf, Sguil и т. д.), без доработок работают и с Suricata. Это тоже большой плюс. Обмен по HTTP подробно журналируется в файле стандартного формата Apache.

Основу механизма детектирования в Suricata составляют правила (rules). Здесь разработчики не стали пока ничего изобретать, а позволили подключать рулсеты, созданные для других проектов: Sourcefire VRT (можно обновлять через Oinkmaster), и Emerging Threats Pro . В первых релизах поддержка была лишь частичной, и движок не распознавал и не загружал некоторые правила, но сейчас эта проблема решена. Реализован и собственный формат rules, внешне напоминающий снортовский. Правило состоит из трех компонентов: действие (pass, drop, reject или alert), заголовок (IP/порт источника и назначения) и описание (что искать). В настройках используются переменные (механизм flowint), позволяющие, например, создавать счетчики. При этом информацию из потока можно сохранять для последующего использования. Такой подход, применяемый для отслеживания попыток подбора пароля, более эффективен, чем используемый в Snort метод, который оперирует пороговым значением срабатывания. Планируется создание механизма IP Reputation (вроде SensorBase Cisco, см. статью «Потрогай Cisco» в ][_07_2011).

Резюмируя, отмечу, что Suricata - это более быстрый движок, чем Snort, полностью совместимый с ним по правилам и бэк-эндам и способный проверять большие сетевые потоки. Единственный недостаток проекта - скудная документация, хотя опытному админу ничего не стоит разобраться с настройками. В репозиториях дистрибутивов уже появились пакеты для установки, а на сайте проекта доступны внятные инструкции по самостоятельной сборке из исходников. Есть и готовый дистрибутив Smooth-sec , построенный на базе Suricata.


Samhain

Выпускаемый под OpenSource-лицензией Samhain относится к хостовым IDS, защищающим отдельный компьютер. Он использует несколько методов анализа, позволяющих полностью охватить все события, происходящие в системе:

  • создание при первом запуске базы данных сигнатур важных файлов и ее сравнение в дальнейшем с «живой» системой;
  • мониторинг и анализ записей в журналах;
  • контроль входа/выхода в систему;
  • мониторинг подключений к открытым сетевым портам;
  • контроль файлов с установленным SUID и скрытых процессов.

Программа может быть запущена в невидимом режиме (задействуется модуль ядра), когда процессы ядра невозможно обнаружить в памяти. Samhain также поддерживает мониторинг нескольких узлов, работающих под управлением разных ОС, с регистрацией всех событий в одной точке. При этом установленные на удаленных узлах агенты отсылают всю собранную информацию (TCP, AES, подпись) по зашифрованному каналу на сервер (yule), который сохраняет ее в БД (MySQL, PostgreSQL, Oracle). Кроме того, сервер отвечает за проверку статуса клиентских систем, распространение обновлений и конфигурационных файлов. Реализовано несколько вариантов для оповещений и отсылки собранной информации: e-mail (почта подписывается во избежание подделки), syslog, лог-файл (подписывается), Nagios, консоль и др. Управление можно осуществлять с помощью нескольких администраторов с четко установленными ролями.

Пакет доступен в репозиториях практически всех дистрибутивов Linux, на сайте проекта есть описание, как установить Samhain под Windows.

StoneGate Intrusion Prevention System

Это решение разработано финской компанией, которая занимается созданием продуктов корпоративного класса в сфере сетевой безопасности. В нем реализованы все востребованные функции: IPS, защита от DDoS- и 0day-атак, веб-фильтрация, поддержка зашифрованного трафика и т. д. С помощью StoneGate IPS можно заблокировать вирус, spyware, определенные приложения (P2P, IM и прочее). Для веб-фильтрации используется постоянно обновляемая база сайтов, разделенных на несколько категорий. Особое внимание уделяется защите от обхода систем безопасности AET (Advanced Evasion Techniques). Технология Transparent Access Control позволяет разбить корпоративную сеть на несколько виртуальных сегментов без изменения реальной топологии и установить для каждого из них индивидуальные политики безопасности. Политики проверки трафика настраиваются при помощи шаблонов, содержащих типовые правила. Эти политики создаются в офлайн-режиме. Администратор проверяет созданные политики и загружает их на удаленные узлы IPS. Похожие события в StoneGate IPS обрабатываются по принципу, используемому в SIM/SIEM-системах, что существенно облегчает анализ. Несколько устройств легко можно объединить в кластер и интегрировать с другими решениями StoneSoft - StoneGate Firewall/VPN и StoneGate SSL VPN. Управление при этом обеспечивается из единой консоли управления (StoneGate Management Center), состоящей из трех компонентов: Management Server, Log Server и Management Client. Консоль позволяет не только настраивать работу IPS и создавать новые правила и политики, но и производить мониторинг и просматривать журналы. Она написана на Java, поэтому доступны версии для Windows и Linux.


StoneGate IPS поставляется как в виде аппаратного комплекса, так и в виде образа VMware. Последний предназначен для установки на собственном оборудовании или в виртуальной инфраструктуре. И кстати, в отличие от создателей многих подобных решений, компания-разработчик дает скачать тестовую версию образа.

IBM Security Network Intrusion Prevention System

Система предотвращения атак, разработанная IBM, использует запатентованную технологию анализа протоколов, которая обеспечивает превентивную защиту в том числе и от 0day-угроз. Как и у всех продуктов серии IBM Security, его основой является модуль анализа протоколов - PAM (Protocol Analysis Module), сочетающий в себе традиционный сигнатурный метод обнаружения атак (Proventia OpenSignature) и поведенческий анализатор. При этом PAM различает 218 протоколов уровня приложений (атаки через VoIP, RPC, HTTP и т. д.) и такие форматы данных, как DOC, XLS, PDF, ANI, JPG, чтобы предугадывать, куда может быть внедрен вредоносный код. Для анализа трафика используется более 3000 алгоритмов, 200 из них «отлавливают» DoS. Функции межсетевого экрана позволяют разрешить доступ только по определенным портам и IP, исключая необходимость привлечения дополнительного устройства. Технология Virtual Patch блокирует вирусы на этапе распространения и защищает компьютеры до установки обновления, устраняющего критическую уязвимость. При необходимости администратор сам может создать и использовать сигнатуру. Модуль контроля приложений позволяет управлять P2P, IM, ActiveX-элементами, средствами VPN и т. д. и при необходимости блокировать их. Реализован модуль DLP, отслеживающий попытки передачи конфиденциальной информации и перемещения данных в защищаемой сети, что позволяет оценивать риски и блокировать утечку. По умолчанию распознается восемь типов данных (номера кредиток, телефоны…), остальную специфическую для организации информацию админ задает самостоятельно при помощи регулярных выражений. В настоящее время большая часть уязвимостей приходится на веб-приложения, поэтому в продукт IBM входит специальный модуль Web Application Security, который защищает системы от распространенных видов атак: SQL injection, LDAP injection, XSS, JSON hijacking, PHP file-includers, CSRF и т. д.


Предусмотрено несколько вариантов действий при обнаружении атаки - блокировка хоста, отправка предупреждения, запись трафика атаки (в файл, совместимый с tcpdump), помещение узла в карантин, выполнение настраиваемого пользователем действия и некоторые другие. Политики прописываются вплоть до каждого порта, IP-адреса или зоны VLAN. Режим High Availability гарантирует, что в случае выхода из строя одного из нескольких устройств IPS, имеющихся в сети, трафик пойдет через другое, а установленные соединения не прервутся. Все подсистемы внутри железки - RAID, блок питания, вентилятор охлаждения - дублированы. Настройка, производящаяся при помощи веб-консоли, максимально проста (курсы обучения длятся всего один день). При наличии нескольких устройств обычно приобретается IBM Security SiteProtector, который обеспечивает централизованное управление, выполняет анализ логов и создает отчеты.

McAfee Network Security Platform 7

IntruShield IPS, выпускавшийся компанией McAfee, в свое время был одним из популярных IPS-решений. Теперь на его основе разработан McAfee Network Security Platform 7 (NSP). В дополнение ко всем функциями классического NIPS новый продукт получил инструменты для анализа пакетов, передаваемых по внутренней корпоративной сети, что помогает обнаруживать зловредный трафик, инициируемый зараженными компами. В McAfee используется технология Global Threat Intelligence, которая собирает информацию с сотен тысяч датчиков, установленных по всему миру, и оценивает репутацию всех проходящих уникальных файлов, IP- и URL-адресов и протоколов. Благодаря этому NSP может обнаруживать трафик ботнета, выявлять 0day-угрозы и DDoS-атаки, а такой широкий охват позволяет свести к нулю вероятность ложного срабатывания.

Не каждая IDS/IPS может работать в среде виртуальных машин, ведь весь обмен происходит по внутренним интерфейсам. Но NSP не испытывает проблем с этим, он умеет анализировать трафик между VM, а также между VM и физическим хостом. Для наблюдения за узлами используется агентский модуль от компании Reflex Systems, который собирает информацию о трафике в VM и передает ее в физическую среду для анализа.

Движок различает более 1100 приложений, работающих на седьмом уровне OSI. Он просматривает трафик при помощи механизма контент-анализа и предоставляет простые инструменты управления.

Кроме NIPS, McAfee выпускает и хостовую IPS - Host Intrusion Prevention for Desktop, которая обеспечивает комплексную защиту ПК, используя такие методы детектирования угроз, как анализ поведения и сигнатур, контроль состояния соединений с помощью межсетевого экрана, оценка репутации для блокирования атак.

Где развернуть IDS/IPS?

Чтобы максимально эффективно использовать IDS/IPS, нужно придерживаться следующих рекомендаций:

  • Систему необходимо разворачивать на входе защищаемой сети или подсети и обычно за межсетевым экраном (нет смысла контролировать трафик, который будет блокирован) - так мы снизим нагрузку. В некоторых случаях датчики устанавливают и внутри сегмента.
  • Перед активацией функции IPS следует некоторое время погонять систему в режиме, не блокирующем IDS. В дальнейшем потребуется периодически корректировать правила.
  • Большинство настроек IPS установлены с расчетом на типичные сети. В определных случаях они могут оказаться неэффективными, поэтому необходимо обязательно указать IP внутренних подсетей и используемые приложения (порты). Это поможет железке лучше понять, с чем она имеет дело.
  • Если IPS-система устанавливается «в разрыв», необходимо контролировать ее работоспособность, иначе выход устройства из строя может запросто парализовать всю сеть.

Заключение

Победителей определять не будем. Выбор в каждом конкретном случае зависит от бюджета, топологии сети, требуемых функций защиты, желания админа возиться с настройками и, конечно же, рисков. Коммерческие решения получают поддержку и снабжаются сертификатами, что позволяет использовать эти решения в организациях, занимающихся в том числе обработкой персональных данных Распространяемый по OpenSource-лицензии Snort прекрасно документирован, имеет достаточно большую базу и хороший послужной список, чтобы быть востребованным у сисадминов. Совместимый с ним Suricata вполне может защитить сеть с большим трафиком и, главное, абсолютно бесплатен.