Windows 10

Схема регулятора температуры воздуха. Простой электронный терморегулятор своими руками своими руками

Схема регулятора температуры воздуха. Простой электронный терморегулятор своими руками своими руками

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.

Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.

Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.

Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.

Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.

Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Терморегулятор на трех элементах

Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.

Схема терморегулятор в этом случае состоит всего лишь из трех элементов:

  • силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
  • потенциометра 10 кОм;
  • NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.

Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.

Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.

Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.

Терморегуляторы для котлов отопления

При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.

С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.

Контроль температуры идет по следующей схеме:

  • при понижении градусов напряжение в реле растет;
  • при достижении определенного значения вентилятор, который соединен с реле, выключается.

Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.

Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

Автономный обогрев частного дома позволяет выбирать индивидуальные температурные режимы, что очень комфортно и экономно для жильцов. Чтобы каждый раз не при смене погоды на улице не задавать другой режим в помещении, можно использовать терморегулятор или термореле для отопления, который можно установить и на радиаторы и на котёл.

Автоматическая регулировка тепла в помещении

Для чего это нужно

  • Самым распространённым на территории Российской Федерации является , на газовых котлах. Но такая, с позволения сказать, роскошь, доступна далеко не во всех районах и местностях. Причины тому самые банальные – отсутствие ТЭЦ или центральных котельных, а так же газовых магистралей поблизости.
  • Приходилось ли вам когда-либо побывать отдалённом от густонаселённых районов жилом доме, насосной или метеостанции в зимнюю пору, когда единственным средством сообщения являются сани с дизельным двигателем? В таких ситуациях очень часто устраивают отопление своими руками при помощи электричества.

  • Для небольших помещений, например, одна комната дежурного на насосной станции, достаточно – его хватит для самой суровой зимы, но для большей площади уже потребуется отопительный котёл и система радиаторов. Чтобы сохранить нужную температуру в котле, предлагаем вашему вниманию самодельное регулирующее устройство.

Температурный датчик

  • Диоды тоже относятся к полупроводникам , и повышение температуры отрицательно сказывается и на них. При t25⁰C «прозвонка» свободного кремниевого диода покажет 700мВ, а у перманентного – около 300мВ, но если температура повышается, то соответственно будет понижаться прямое напряжение прибора. Так, при повышении температуры на 1⁰C напряжение будет понижаться на 2мВ, то есть, -2мВ/1⁰C.

  • Такая зависимость полупроводниковых приборов позволяет использовать их в качестве температурных датчиков. На таком отрицательном каскадном свойстве с фиксированным базовым током и основана вся схема работы терморегулятора (схема на фото вверху).
  • Температурный датчик смонтирован на транзисторе VT1 типа КТ835Б , нагрузка каскада – резистор R1, а режим работы по постоянному току транзистора задают резисторы R2 и R3. Чтобы напряжение на транзисторном эмиттере при комнатной температуре было 6,8В, фиксированное смещение задаётся резистором R3.

Совет. По этой причине на схеме R 3 помечен знаком * и особой точности здесь добиваться не следует, только бы не было больших перепадов. Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом.

  • Транзистор p-n-p КТ835Б подобран специально, его коллектор соединяется с металлической корпусной пластинкой, имеющей отверстие для крепления полупроводника на радиатор. Именно за это отверстие прибор крепится к пластине, к которой ещё прикреплён подводной провод.
  • Собранный датчик крепиться к трубе отопления при помощи металлических хомутов , и конструкцию не нужно изолировать какой-либо прокладкой от трубы отопления. Дело в том, что коллектор соединён одним проводом с источником питания – это значительно упрощает весь датчик и делает контакт лучше.

Компаратор

  • Компаратор, смонтированный на операционный усилитель ОР1 типа К140УД608, задаёт температуру. На инвертируемый вход R5 подаётся напряжение с эмиттера VT1, а через R6 – на неинвертируемый вход поступает напряжение с движка R7.
  • Такое напряжение определяет температуру для отключения нагрузки. Верхний и нижний диапазон для установки порога на срабатывание компаратора задаются при помощи R8 и R9. Нужный постерезис срабатывания компаратора обеспечивает R4.

Управление нагрузкой

  • На VT2 и Rel1 сделано устройство управления нагрузкой и индикатор режима работы терморегулятора находится здесь же – красный цвет при нагреве, а зелёный – достижение необходимой температуры. Параллельно обмотке Rel1 включен диод VD1 для защиты VT2 от напряжения, вызванного самоиндукцией на катушке Rel1 при отключении.

Совет. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности 2-2,5кВт, чтобы облегчить нагрузку.

Блок питания

  • Произвольная инструкция позволяет для настоящего терморегулятора в виду его небольшой мощности задействовать в качестве блока питания дешёвый китайский адаптер. Также можно самому собрать выпрямитель на 12В, с током потребления схемы не более 200мА. Для этой цели сгодится трансформатор мощностью до 5Вт и выходом от 15 до 17В.
  • Диодный мостик сделан на диодах 1N4007, а стабилизатор на напряжения на интегральном типа 7812. В виду небольшой мощности устанавливать стабилизатор на батарею не требуется.

Наладка терморегулятора

  • Для проверки датчика можно использовать самую обыкновенную настольную лампу с абажуром из металла. Как было отмечено выше, комнатная температура позволяет выдерживать напряжение на эмиттере VT1 около 6,8В, но если повысить её до 90⁰C, то напряжение упадёт до 5,99В. Для замеров можно использовать обычный китайский мультиметр с термопарой типа DT838.
  • Компаратор работает следующим образом: если напряжение термодатчика на инвертирующем входе выше напряжения на неинвертирущем, то на выходе оно будет равнозначным с напряжением источника питания – это будет логическая единица. Поэтому VT2 открывается и реле включается, перемещая релейные контакты в режим нагрева.
  • Температурный датчик VT1 греется по мере нагревания отопительного контура и с повышением температуры понижается напряжение на эмиттере. В тот момент, когда оно опускается немного ниже напряжения, которое задано на движке R7, получается логический ноль, что приводит к запиранию транзистора и отключению реле.
  • В это время напряжение на котёл не поступает и система начинает остывать, что также влечёт за собой остывание датчика VT1. Значит, напряжение на эмиттере повышается и как только оно переходит границу, установленную R7, реле запускается заново. Такой процесс будет повторяться постоянно.
  • Как вы понимаете, цена такого устройства невысока, зато позволяет выдерживать нужную температуру при любых погодных условиях. Это очень удобно в тех случаях, когда в помещении нет постоянных жителей, следящих за температурным режимом, или когда люди постоянно сменяют друг друга и к тому же заняты работой.

Среди многочисленного ассортимента полезных приборов, которые приносят в нашу жизнь комфорт, есть большое количество тех, которые можно сделать своими руками. К этому числу можно отнеси и терморегулятор, который включает или отключает нагревательные и холодильные оборудования в соответствии с определенной температурой, на которую он установлен. Такое устройство отлично подойдет на период холодной погоды, например для подвала, где нужно хранить овощи. Так как же сделать терморегулятор своими руками, и какие детали для этого понадобятся?

Терморегулятор своими руками: схема

Про конструкцию термостата можно сказать, что она не особа сложна, именно по этой причине большинство радиолюбителей начинают свое обучение именно с этого прибора, а так же именно на нем оттачивают свои навыки и мастерство. Схем прибора можно найти очень большое количество, но самой распространенной является схема с применением, так называемого компаратора.


Данный элемент имеет несколько входов и выходов:

  • Один вход отвечает подачу эталонного напряжения, которое отвечает необходимой температуре;
  • Второй получает напряжения от датчика температуры.

Сам компаратор принимает все поступающие показания и сравнивает их. В случае если будет генерировать сигнал на выходе, то он включит реле, которое подаст ток на обогревательный или холодильный аппарат.

Какие детали понадобятся: терморегулятор своими руками

Для датчика температуры чаще всего используют терморезистор, это элемент который регулирует электрическое сопротивление в зависимости от температурного показателя.

Так же часто применяют полупроводниковые детали:

  • Диоды;
  • Транзисторы.

На их характеристики температура должна оказывать такое же влияние. То есть при нагреве должен увеличиваться ток транзистора и при этом он должен престать работать, не смотря на входящий сигнал. Нужно учесть, что такие детали обладаю большим недостатком. Слишком сложно провести калибровку, говоря точнее, будет трудно привязать эти детали к некоторым датчикам температуры.

Однако на данный момент промышленность не стоит на месте, и вы можете увидеть приборы из серии 300, это LM335, которым все чаще рекомендуют воспользоваться специалисты и LM358n. Не смотря на очень низкую стоимость, данная деталь занимает первую позицию в маркировках и ориентируется на сочетание с бытовой техникой. Стоит упомянуть, что модификации этой детали LM 235и 135 успешно применяются в военных сферах и промышленности. Включая в свою конструкцию около 16 транзисторов, датчик способен работать в качестве стабилизатора, а его напряжение будет полностью зависеть от температурного показателя.

Зависимость заключается в следующем:

  1. На каждый градус будет приходиться около 0, 01 В, если ориентироваться на Цельсий, то на показатель 273 результат на выходе составит 2, 73В.
  2. Диапазон работы ограничивается в показателе от -40 до +100 градусов. Благодаря таким показателям, пользователь полностью избавляется от регулирований методом проб и ошибок, а требуемая температура будет в любом случае обеспечена.

Так же кроме датчика температур вам потребуется компаратор, лучше всего приобрести LM 311, который выпускает тот же производитель, потенциометр для того чтобы сформировать эталонное напряжение и выходную установку чтобы включать реле. Не забудьте приобрести блок питания и специальные индикаторы.

Регулятор температуры своими руками: питание и нагрузка

Что касается подключения LM 335 то оно должно быть последовательным. Все сопротивления необходимо подобрать так, чтобы общая величина тока, который проходит через термодатчик соответствовала показателям от 0,45 мА до 5 мА. Превышения отметки допускать нельзя, так как датчик будет перегреваться, и показывать искаженные данные.


Запитка терморегулятора может происходить несколькими способами:

  • С помощью блока питания с ориентировкой на 12 В;
  • С помощью любого другого устройства, питание которого не превышает вышеуказанный показатель, но при этом ток, протекающий через катушку не должен превышать 100 мА.

Еще раз напомним о том, что показатель тока в цепи датчика не должен превышать 5 мА, по этой причине придется использовать транзистор с большой мощностью. Лучше всего подойдет КТ 814. Конечно, если вы хотите избежать применения транзистора, можно использовать реле с меньшим уровнем тока. Он сможет работать от напряжения в 220 В.

Самодельный терморегулятор: пошаговая инструкция

Если вы приобрели все необходимые составляющие для сборки, осталось рассмотреть подробную инструкцию. Рассматривать будем на примере датчика температуры рассчитанного на 12В.

Самодельный регулятор температуры собирается по следующему принципу:

  1. Подготавливаем корпус. Можно использовать старые оболочки от счетчика, например от установки «Гранит-1».
  2. Схему подбираете ту, которая вам больше понравится, но можно и сориентироваться и на плату от счетчика. Прямой ход с пометкой «+» необходим для подключения потенциометра, Инверсионный вход с отметкой «–» будет служить для подключения термодатчика. Если так случилось, что напряжение на прямом входе будет выше требуемого, на выходе установится высокая отметка и транзистор начнет подавать питание на реле, а оно в свою очередь на нагревательный элемент. Как только напряжение на выходе превысит допустимую отметку – реле отключится.
  3. Для того чтобы терморегулятор срабатывал вовремя и перепады температур были обеспечены, потребуется сделать с помощью резистора связь отрицательного типа, которая образуется между прямым входом и выходом на компараторе.
  4. Что касается трансформатора и его питания, то здесь может понадобиться индукционная катушка от старого электрического счетчика. Для того чтобы напряжение соответствовало показателю в 12 вольт, вам нужно будет сделать 540 витков. Уместить их получится только в том случае, если диаметр провода будет не более 0,4 мм.

Вот и все. В этих небольших действиях и заключается вся работа по созданию терморегулятора своими руками. Возможно, самому без определенных навыков сделать его сразу и не получится, однако с опорой на фото и видео инструкции вы сможете испытать все свои умения.

Благодаря простой конструкции, самостоятельно созданный термоконтроллер может быть использован где угодно.

Например:

  • Для теплого пола;
  • Для погреба;
  • Может заняться регулировкой температуры воздуха;
  • Для духовки;
  • Для аквариума, где будет контролировать температурный показатель воды;
  • Для того чтобы контролировать температурное значение насоса электрокотла (его включения и отключение);
  • И даже для автомобиля.

Не обязательно использовать цифровой, электронный или механический покупной термовыключатель. Купив недорогое термореле, сделать регулировку мощности на симисторе и термопаре и ваш самодельный аппарат будет работать не хуже покупного.

Как сделать терморегулятор своими руками (видео)

В нашей статье посвященной самостоятельному созданию терморегулятора были указаны все главные моменты, от необходимых деталей для конструкции до пошаговой инструкции. Не торопитесь сразу приниматься за создание, изучите литературу и советы опытных мастеров. Только с правильным подходом вы сможете получить идеальный результат с первой попытки.

Используется во многих технологических процессах, в том числе и для бытовых отопительных систем. Фактором определяющим действие терморегулятора, является наружная температура, значение которой анализируется и при достижении установленного предела, расход сокращается либо увеличивается.

Терморегуляторы бывают различного исполнения и сегодня в продаже достаточно много промышленных версий, работающих по различному принципу и предназначенных для использования в разных областях. Также доступны и простейшие электронные схемы, собрать которые может любой, при наличии соответствующих познаний в электронике.

Описание

Терморегулятор представляет собой устройство, устанавливаемое в системах энергоснабжения и позволяющее оптимизировать затраты энергии на обогрев. Основные элементы терморегулятора:

  1. Температурные датчики – контролируют уровень температуры, формируя электрические импульсы соответствующей величины.
  2. Аналитический блок – обрабатывает электрические сигналы поступающие от датчиков и производит конвертацию значения температуры в величину, характеризующую положение исполнительного органа.
  3. Исполнительный орган – регулирует подачу, на величину указанную аналитическим блоком.

Современный терморегулятор – это микросхема на основе диодов, триодов или стабилитрона, могущих преобразовывать энергию тепла в электрическую. Как в промышленном, так и самодельном варианте, это единый блок, к которому подключается термопара, выносная или располагаемая здесь же. Терморегулятор включается последовательно в электрическую цепь питания исполняющего органа, таким образом, уменьшая или увеличивая значение питающего напряжения.

Принцип работы

Датчик температуры подает электрические импульсы, величина тока которых зависит от уровня температуры. Заложенное соотношение этих величин позволяет устройству очень точно определить температурный порог и принять решение, например, на сколько градусов должна быть открыта заслонка подачи воздуха в твердотопливный котел, либо открыта задвижка подачи горячей воды. Суть работы терморегулятора заключается в преобразовании одной величины в другую и соотнесении результата с уровнем силы тока.

Простые самодельные регуляторы, как правило, имеют механическое управление в виде резистора, передвигая который, пользователь устанавливает необходимый температурный порог срабатывания, то есть, указывая, при какой наружной температуре необходимо будет увеличить подачу. Имеющие более расширенный функционал, промышленные приборы, могут программироваться на более широкие пределы, при помощи контроллера, в зависимости от различных диапазонов температуры. У них отсутствуют механические элементы управления, что способствует долгой работе.

Как сделать своими руками

Сделанные собственноручно регуляторы получили широкое применение в бытовых условиях, тем более, что необходимые электронные детали и схемы всегда можно найти. Подогрев воды в аквариуме, включение вентилирования помещения при повышении температуры и многие другие несложные технологические операции вполне можно переложить на такую автоматику.

Схемы авторегуляторов

В настоящее время, у любителей самодельной электроники, популярностью пользуются две схемы автоматического управления:

  1. На основе регулируемого стабилитрона типа TL431 – принцип работы состоит в фиксации превышения порога напряжения в 2,5 вольт. Когда на управляющем электроде он будет пробит, стабилитрон приходит в открытое положение и через него проходит нагрузочный ток. В том случае, когда напряжение не пробивает порог в 2,5 вольт, схема приходит в закрытое положение и отключает нагрузку. Достоинство схемы в предельной простоте и высокой надежности, так как стабилитрон оснащается только одним входом, для подачи регулируемого напряжения.
  2. Тиристорная микросхема типа К561ЛА7, либо ее современный зарубежный аналог CD4011B – основным элементом является тиристор Т122 или КУ202, выполняющий роль мощного коммутирующего звена. Потребляемый схемой ток в нормальном режиме не превышает 5 мА, при температуре резистора от 60 до 70 градусов. Транзистор приходит в открытое положение при поступлении импульсов, что в свою очередь является сигналом для открытия тиристора. При отсутствии радиатора, последний приобретает пропускную способность до 200 Вт. Для увеличения этого порога, понадобится установка более мощного тиристора, либо оснащение уже имеющегося радиатором, что позволит довести коммутируемую способность до 1 кВт.

Необходимые материалы и инструменты

Сборка самостоятельно не займет много времени, однако обязательно потребуются некоторые знания в области электроники и электротехники, а также опыт работы с паяльником. Для работы необходимо следующее:

  • Паяльник импульсный или обычный с тонким нагревательным элементом.
  • Печатная плата.
  • Припой и флюс.
  • Кислота для вытравливания дорожек.
  • Электронные детали согласно выбранной схемы.

Схема терморегулятора

Пошаговое руководство

  1. Электронные элементы необходимо разместить на плате с таким расчетом, чтобы их легко было монтировать, не задевая паяльником соседние, возле деталей активно выделяющих тепло, расстояние делают несколько большим.
  2. Дорожки между элементами протравливаются согласно рисунку, если такого нет, то предварительно выполняется эскиз на бумаге.
  3. Обязательно проверяется работоспособность каждого элемента и только после этого выполняется посадка на плату с последующим припаиванием к дорожкам.
  4. Необходимо проверять полярность диодов, триодов и других деталей в соответствии со схемой.
  5. Для пайки радиодеталей не рекомендуется использовать кислоту, поскольку она может закоротить близкорасположенные соседние дорожки, для изоляции, в пространство между ними добавляется канифоль.
  6. После сборки, выполняется регулировка устройства, путем подбора оптимального резистора для максимально точного порога открывания и закрывания тиристора.

Область применения самодельных терморегуляторов

В быту, применение терморегулятора встречается чаще всего у дачников, эксплуатирующих самодельные инкубаторы и как показывает практика, они не менее эффективны, чем заводские модели. По сути, использовать такое устройство можно везде, где необходимо произвести какие-то действия зависящие от показаний температуры. Аналогично можно оснастить автоматикой систему опрыскивания газона или полива, выдвижения светозащитных конструкций или просто звуковую, либо световую сигнализацию, предупреждающую о чем-либо.


Ремонт своими руками

Собранные собственноручно, эти приборы служат достаточно долго, однако существует несколько стандартных ситуаций, когда может потребоваться ремонт:

  • Выход из строя регулировочного резистора – случается наиболее часто, поскольку изнашиваются медные дорожки, внутри элемента, по которым скользит электрод, решается заменой детали.
  • Перегрев тиристора или триода – неправильно была подобрана мощность или прибор находится в плохо вентилируемой зоне помещения. Чтобы в дальнейшем избежать подобного, тиристоры оборудуются радиаторами, либо же следует переместить терморегулятор в зону с нейтральным микроклиматом, что особенно актуально для влажных помещений.
  • Некорректная регулировка температуры – возможно повреждение терморезистора, коррозия или грязь на измерительных электродах.

Преимущества и недостатки

Несомненно, использование автоматического регулирования, уже само по себе является преимуществом, так как потребитель энергии получает такие возможности:

  • Экономия энергоресурсов.
  • Постоянная комфортная температура в помещении.
  • Не требуется участие человека.

Автоматическое управление нашло особенно большое применение в системах отопления многоквартирных домов. Оборудуемые терморегуляторами вводные задвижки автоматически управляют подачей теплоносителя, благодаря чему жители получают значительно меньшие счета.

Недостатком такого прибора можно считать его стоимость, что впрочем, не относится к тем, что изготовлены своими руками. Дорогостоящими являются только устройства промышленного исполнения, предназначенные для регулирования подачи жидких и газообразных сред, так как исполнительный механизм включает в себя специальный двигатель и другую запорную арматуру.

Хотя сам прибор достаточно нетребователен к условиям эксплуатации, точность реагирования зависит от качества первичного сигнала и особенно это касается автоматики работающей в условиях повышенной влажности или контактирующей с агрессивными средами. Термодатчики в таких случаях, не должны контактировать с теплоносителем напрямую.

Выводы закладываются в гильзу из латуни, и герметично запаиваются эпоксидным клеем. Оставить на поверхности можно торец терморезистора, что будет способствовать большей чувствительности.

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Электронный терморегулятор своими руками, схема устройства

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

  • Трансформатор понижающий на 12 вольт
  • Диоды; IN4007, или другие с похожими характеристиками 6 шт.
  • Конденсаторы электролитические; 1000 мк, 2000 мк, 47 мк
  • Микросхема стабилизатор; 7805 или другая на 5 вольт
  • Транзистор; КТ 814А, или другой p-n-p c током коллектора не меньше 0,3 А
  • Регулируемый стабилитрон; TL431 или советский КР142ЕН19А
  • Резисторы; 4,7 Ком, 160 Ком, 150 Ом, 910 Ом
  • Резистор переменный; 150 Ком
  • Терморезистор в качестве датчика; около 50 Ком с отрицательным ТКС
  • Светодиод; любой с наименьшим током потребления
  • Реле электромагнитное; любое на 12 вольт с током потребления 100 мА или меньше
  • Кнопка или тумблер; для ручного управления

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814. Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая. Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра. Конечно, можно использовать готовый с выходным напряжением 12 вольт или адаптер.

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки амперметр можно померить силу тока, отдаваемую в нагрузку:

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится . Нужно оба датчика устройства соединить вместе при помощи изоленты:

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит. Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.