Файлы DLL

Стандарты WCDMA или GSM - в чем разница между ними? Описание стандарта GSM.

Стандарты WCDMA или GSM - в чем разница между ними? Описание стандарта GSM.
В пластмассовом корпусе маленького телефона, кроме аккумулятора, держателя карточки SIM и дисплея, мы обнаружим очень немного деталей. Печатная плата, несколько распаянных на ней микросхем, встроенная приёмо-передающая антенна, клавиатура (самая обычная «резинка» с пластмассовыми клавишами), световые индикаторы. Ну, ещё крошечный фотомодуль в камерофонах – с пластмассовыми линзочками объектива и очень маленькой светочувствительной матрицей, спрятанной в корпусе модуля (сенсор намного меньше, чем в самом дешёвом цифровом фотоаппарате, размером с рисовое зерно). Завершают эту печальную картину несколько соединительных проводков… Короче, ничего особенного. На первый взгляд сотовый телефон устроен ничуть ни сложней современного радиоприёмника. Портативный аналоговый (не цифровой!) радиоприёмник кажется даже более мудрёным – в нём есть верньер, шкала настройки с механической системой перемещения движка… За что же платим такие деньги? Что такого особенного скрывает в себе сотовый телефон?

Впрочем, не будем забывать, что сотовая связь одна из последних (вместе с персональным компьютером и Интернетом) великих технологий прошлого века. Люди уже побывали на Луне, посадили на Венеру автоматический зонд, опустились на дно глубочайшей в мире Марианской впадины, создали огромные воздушные и автомобильные транспортные системы, открыли строение атома и взорвали ядерную бомбу, а маленький радиотелефон с неограниченной зоной действия оставался лишь мечтой.

Телефон, как и компьютер, прошёл несколько стадий развития. Сначала он был здоровенным чемоданом с телефонной трубкой. В чемодане располагалось множество схем и деталей, а вес «портативного» устройства приближался к десятку килограммов. Потом появились телефоны «кирипичи». Они были полегче, поменьше, но их устройство тоже было достаточно, скажем так, насыщенным. Большая многодиапазонная радиола по сравнению с этим телефоном выглядела, как бутафорский надувной автомобиль рядом с настоящим лимузином. И только в начале 90-х годов сотовый телефон стал тем маленьким устройством карманного размера, которое мы используем сегодня. И всё это благодаря усилиям разработчиков нового (на то время) стандарта сотовой связи GSM. Только введением в сотовую телефонию цифровых технологий удалось уменьшить мощность передатчиков, повысить чувствительность приёмников и достичь высокого качества связи при ничтожно малых размеров самого абонентского устройства – сотового телефона.

Сегодня мы пользуемся маленьким телефоном и даже не задумываемся – а как, собственно, он работает? Что происходит внутри сотового телефона? Почему это маленькое и уже доступное всем и каждому устройство относят к области высоких технологий? В чём, собственно, его сложность (между тем обычный проводной телефон устройство до удивления простое – проще кофемолки или электробритвы)? И… что такое GSM?

История GSM началась в 80-е годы прошлого века, когда страны Европы имели собственные, несовместимые между собой, сети сотовой связи. Собственными сетями были оснащены страны Скандинавии, Великобритания, Франция и Германия. Несовместимость стандартов мешала распространению сотовой телефонии, усложняла жизнь и операторам, и абонентам. Невозможно было, к примеру, осуществлять автоматический роуминг при перемещении из зоны действия одной сети в зону действия другой. И абонентские устройства, сами сотовые телефоны, были далеко не универсальными. Для каждого типа сотовой связи нужно было разрабатывать уникальную аппаратуру.

Для преодоления барьера несовместимости в 1982 году была создана международная группа по разработке общего стандарта сотовой связи – Groupe Special Mobile или GSM. В 1990 году европейский институт телекоммуникационных стандартов, к которому перешли полномочия группы GSM, опубликовал спецификации так называемой "фазы I", а в середине 1991 года началась коммерческая эксплуатация первой сети этого стандарта. Сегодня GSM является самой распространенной системой сотовой связи в мире, а её название расшифровывается иначе - Global System for Mobile telecommunications или «глобальная система мобильных телекоммуникаций».

Следует заметить, что GSM первый общепринятый цифровой стандарт сотовой связи. К моменту принятия решения о его введении в мире уже существовало несколько развитых аналоговых систем – кроме скандинавской NMT, это были английская TACS и американская AMPS. Но разработчики новой системы резонно полагали, что цифровые методы сжатия и кодирования информации значительно расширят применения сотовой связи, обеспечат лучшее качество и предоставят пользователям невиданные ранее сервисы.

В сотовой связи стандарта GSM используются радиочастоты 900, 1800 или 1900 МГц (трехдиапазонные телефоны при этом могут использоваться в сетях любого из перечисленных частотных диапазонов). В сравнении с аналоговыми стандартами GSM имеет целый ряд преимуществ. Основные из них – применение маломощных передатчиков в абонентских аппаратах и в базовых станциях. Это удешевляет саму аппаратуру, но не сказывается на качестве связи. Кроме того, передача информации в цифровом виде позволяет легко обеспечить высокую степень конфиденциальности переговоров.

Технология GSM это на самом деле целый «букет» сложнейших технологий. Первая из них – технология оцифровка и кодирование звука. Поскольку оцифровка звука требует немалых вычислительных ресурсов, в каждом сотовом телефоне, даже в самом дешевом, работает достаточно мощный специализированный компьютер, который выполняет функции аналого-цифрового и цифро-аналогового преобразователей - АЦП и ЦАП.

Далее – технология многоканального выравнивания. Дело в том, что в диапазоне 900 МГц и выше радиосигнал легко отражается от стен зданий и других препятствий. В результате телефон получат множество отличающихся по фазе сигналов, из которых выделяет нужный, а остальные игнорирует.

При передвижении абонента сотовый телефон должен автоматически переходить с частоты на частоту без прерывания сеанса связи. Это обеспечивает технология «медленного частотного скачка». При этом каждая «порция» информации (а весь поток цифровой информации разделяется на «порции» в рамках так называемого тайм-слота – временного промежутка) передается по разным частотам.

Ещё одна любопытная технология GSM – прерывистая передача. Обратите внимание, как мы говорим по телефону. Скажем слово, пауза, скажем еще одно слово, снова пауза. Так вот, когда мы молчим, телефон отключает передатчик. Как только заговорим – включает. Этот механизм позволяет свести к минимуму энергопотребление сотового телефона. Умная получается машинка!

Еще какая умная – телефон и на прием работает тоже «прерывисто». Во включенном состоянии он ожидает сигнала базовой станции, но включается только на короткое время и тут же отключается… Теперь понятен смысл мигающего светового индикатора на вашем телефоне?

Все сотовые телефоны в зависимости от мощности встроенных радиопередатчиков подразделяются на несколько классов – от 20 ватт (настоящие монстры!), до 0,8 ватт (большинство популярных моделей). Но обычно, когда базовая станция находится рядом с абонентским устройством (а "соты" GSM в больших городах располагаются достаточно густо, чтобы избежать "мертвых" зон между строениями), полная мощность передатчика телефона для поддержания устойчивой связи не нужна. Для регулировки мощности используется механизм анализа количества ошибок при передаче-приёме. На его основе мощность передатчика базовой станции и телефона понижается до уровня, когда качество связи достаточно стабильно. Этот контроль мощности вещь очень тонкая. Большинство жалоб пользователей на плохое качество связи на его "совести".

© Николай Надеждин ,

Стандарт GSM (от названия группы Groupe Special Mobile, позже переименован в Global System for Mobile Communications) (русск. СПС-900) - глобальный цифровой стандарт для мобильной сотовой связи второго поколения, с разделением канала по принципу TDMA и высокой степенью безопасности благодаря шифрованию с открытым ключом. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 80-х годов.

Стандарт GSM является цифровым и обеспечивает высокое качество и конфиденциальность связи и предоставляет абонентам большой набор услуг: автоматический роуминг, прием/передача данных,SMS-сервис, голосовая и факсимильная почта. Основные недостатки стандарта: искажение голоса при цифровой обработке и передаче его по радиоканалу, небольшой радиус действия базовой станции, GSM телефон не может работать при расстоянии от базовой станции в 35 км.

Сотовые телефоны стандарта GSM функционирует в 4-х диапазонах частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц. Существуют также, и довольно распространены, мультидиапазонные (Dual-Band, Multi-Band) телефоны, способные работать в диапазонах 900/1800 МГц, 850/1900 МГц, 900/1800/1900 МГц.

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы В*Т - 0,3, где В - ширина полосы фильтра по уровню минус 3 дБ, Т - длительность одного бита цифрового сообщения.

GSM на сегодняшний день является наиболее распространенным стандартом связи. По данным ассоциации GSMA на данный стандарт приходится 82% мирового рынка мобильной связи, 29% населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

Цифровой стандарт мобильной связи в диапазоне частот от 890 до 915 МГц (от телефона к базовой станции) и от 935 до 960 МГц (от базовой стации к телефону).

В некоторых странах диапазон частот GSM-900 был расширен до 880-915 МГц (MS -> BTS) и 925-960 МГц (MS <- BTS), благодаря чему максимальное количество каналов связи увеличилось на 50. Такая модификация была названа E-GSM (extended GSM).

Цифровой стандарт мобильной связи в диапазоне частот от 1710 до 1880 МГц:

  • Максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 - 1Вт, для сравнения у GSM-900 - 2Вт. Большее время непрерывной работы без подзарядки аккумулятора и снижение уровня радиоизлучения.
  • Высокая ёмкость сети, что важно для крупных городов.
  • Возможность использования телефонных аппаратов, работающих в стандартах GSM-900 и GSM-1800 одновременно. Такой аппарат функционирует в сети GSM-900, но, попадая в зону GSM-1800, переключается - вручную или автоматически. Но использование аппарата в двух сетях возможно только в тех случаях, когда эти сети принадлежат одной компании, или между компаниями, работающими в разных диапазонах, заключено соглашение о роуминге.

Особенность GSM-1800 состоит в том, что зона охвата для каждой базовой станции значительно меньше, чем в стандартах GSM-900, AMPS/DAMPS, NMT-450 . Необходимо большее число базовых станций. Чем выше частота излучения, тем меньше проникающая способность (характеризуется т. н. глубиной скин-слоя) радиоволн и тем меньше способность отражаться и огибать преграды.

Также смотрите:

Приборы для мобильной и беспроводной связи
Анализаторы спектра и сигналов

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!
  • мобильные устройства
  • радиоканал
  • радиосвязь
  • Добавить метки

    Если говорить о поколениях мобильной связи, то в России наиболее развито и широко представлено 2G. Основные стандарты второго поколения в РФ – GSM 900/1800 и CDMA 450. Как GSM, так и CDMA используются для голосовых звонков, текстовых сообщений и мобильного доступа в интернет. Хотя второе поколение и не может обеспечить таких же скоростей, как скажем, 3G, или 4G, но это единственный вид сотовой связи который присутствует во всех регионах Российской Федерации, даже в наиболее удаленных. Крупнейшими мобильными провайдерами на территории РФ являются МегаФон, МТС, Beeline, ВымпелКом и Теле2. В среднем покрытие территории РФ составляет 85%, однако МТС, к примеру, обеспечивает покрытие на 100% России.

    (Кликните по изображению, чтобы увидеть его в полном размере)

    Стандарт GSM в России использует частоты в 900 и 1800 МГц. Поскольку все мобильные телефоны являются дуплексными устройствами, для связи используются сразу две частоты, одна для приема, вторая для передачи данных. К слову, при методом триангуляции по вышкам сотовой связи используются именно эти две частоты. CDMA использует две частоты в диапазонах 450 и 850 МГц, с таким же дуплексным распределением. Крупнейшим CDMA провайдером является СКАЙЛИНК. Как мы уже отмечали, эти стандарты используются в основном для голосовых звонков, текстовых сообщений и мобильного доступа в интернет. Доступ в интернет реализован на технологиях GPRS и EDGE.

    Третье поколение мобильной связи или 3G, которое широко используется по всему миру также представлено и в России. Крупнейшие сети 3G в стране работают на технологии WCDMA и согласно решению ГКРЧ работают на частотах 2000-2100 МГц. Под 3G следует понимать 3G со всеми надстройками: HSUPA, HSPDA HSPA+, которые часто ошибочно имеют как . Скорости передачи данных в таких сетях несравненно выше чем в сети GSM, и варьируется в диапазоне 2-14 Мбит/сек. Это поколение мобильной связи позволяет нам пользоваться быстрым мобильным интернетом и совершать видео звонки.

    Крупнейшими операторами рынка услуг 3G в России являются МТС, МегаФон, ВымпелКом, Beeline и СКАЙЛИНК. Вместе эти компании обеспечивают работу сети 3G в более чем 120 крупнейших городах Российской Федерации. Покрытие сетей третьего поколения не так велико и сосредоточено, в основном, в густо населенных городах. 3G часто используют для организации скрытого беспроводного видео наблюдения, так как скорость передачи позволяет передавать потоковое видео, а низкое энергопотребление увеличивает время работы скрытой камеры. Это отчасти объясняет популярность .

    Сети четвертого поколения также активно развиваются. Первыми компаниями, которые начали строительство такой сети являются Yota и Freshtel, после них в развитие этого поколения связи на территории РФ включились такие гиганты как МТС и МегаФон. Также в России былы недавно организованны производственные мощности, которые разрабатывают и собирают оборудование для базовых станций четвертого поколения, а также производят все необходимое для этого периферийное оборудование. Первым городом, где была запущена сеть 4G был Новосибирск, а после четвертое поколение мобильной связи появилось и в Москве. 4G представлена двумя стандартами - LTE (791-862 МГц) и Wi-Max (2500-2600 МГц). На сегодня сеть 4G полностью развернута в таких городах как: Москва, Санкт-Петербург, Сочи, Самара, Новосибирск, Уфа и Краснодар.

    Выше были приведены наиболее распространенные стандарты сотовой связи, однако стоит отметить, что РФ также создала свою систему глобального позиционирования, под названием . Она была создана в замену американской спутниковой системе навигации GPS. ГЛОНАСС сильно отличается от GPS. Американская система работает на трех каналах и использует 3 разных частоты:1575.42, 1227.60 и 1176.45 МГц, и делится на гражданский и военный сектора, а частота 1575.42 МГц отведена для работы службы спасения. ГЛОНАСС, в свою очередь работает с двумя каналами, их частоты: 1602-1615 и 1246-1256 МГц. ГЛОНАСС наиболее популярен в приполярных районах, так как орбиты спутников ГЛОНАСС выше чем орбиты GPS и имеют лучшую видимость. Однако стоит отметить, что GPS определяет координаты точнее.

    В целом можно сказать, что Россия имеет неплохое покрытие различными стандартами и поколениями сотовой связи, а высокие темпы не могут не радовать активных пользователей мобильных гаджетов.

    Все мы пользуемся мобильными телефонами, но при этом редко кто задумывается - как же они работают? В данной статье мы постараемся разобраться, как, собственно, реализуется связь относительно вашего мобильного оператора.

    Когда вы осуществляете звонок своему собеседнику, или кто-то звонит вам, ваш телефон соединяется по радиоканалу с одной из антенн соседней базовой станции (БС, BS, Base Station) .Каждая базовая станция сотовой связи (в простонародье - вышки сотовой связи) включает в себя от одной до двенадцати приемо-передающих антенн , имеющих направления в разные стороны с целью обеспечения качественной связью абонентов в радиусе своего действия. Такие антенны специалисты на своем жаргоне называют «секторами» , представляющими собой серые прямоугольные конструкции, которые вы можете практически каждый день видеть на крышах зданий или специальных мачтах.


    Сигнал от такой антенны поступает по кабелю прямо в управляющий блок базовой станции. Базовая станция является совокупностью секторов и управляющего блока. При этом определенную часть населенного пункта или территории обслуживают сразу несколько базовых станций, подключенных к специальному блоку - контроллеру локальной зоны (сокращенно LAC, Local Area Controller или просто «контроллер»). Как правило, один контроллер объединяет до 15 базовых станций определенного района.

    Со своей стороны, контроллеры (их также может быть несколько) соединены с самым главным блоком - Центром управления мобильными услугами (MSC, Mobile services Switching Center) , который для упрощения восприятия принято называть просто «коммутатором» . Коммутатор, в свою очередь, осуществляет вход и выход на любые линии связи - как сотовой, так и проводной.

    Если отобразить написанное в виде схемы, то получится следующее:
    GSM-сети небольшого масштаба (как правило, региональные) могут использовать всего один коммутатор. Крупные же, такие как наши операторы «большой тройки» МТС, Билайн или МегаФон, обслущивающие одновременно миллионы абонентов, используют сразу несколько объединенный между собой устройств MSC.

    Давайте разберемся, зачем нужна столь сложная система и почему нельзя подключить антенны базовых станций к коммутатору напрямую? Для этого нужно рассказать про еще один термин, называемый на техническом языке handover (хэндовер) . Он характеризует собой передачу обслуживания в мобильных сетях по эстафетному принципу. Иными словами, когда вы перемещаетесь по улице пешком или в транспортном средстве и говорите при этом по телефону, то, чтобы ваш разговор при этом не прерывался, следует своевременно переключать ваш аппарат из одного сектора БС в другой, из зоны действия одной базовой станции или контроллера локальной зоны в другую и т.д. Следовательно, если бы сектора базовых станций подключались к коммутатору напрямую, ему бы пришлось самому осуществлять данную процедуру хендовера всех своих абонентов, а у коммутатора и без того хватает задач. Поэтому для уменьшения вероятности отказов оборудования, связанных с его перегрузками, схема построения сотовых сетей GSM реализуется по многоуровнему принципу.

    В итоге, если вы со своим телефоном перемещаетесь из зоны обслуживания одного сектора БС в зону действия другого, то данное перемещение осуществляет блок управления данной базовой станции, не касаясь при это более «высокостоящих» устройств - LAC и MSC. Если же хэндовер происходит между разными БС, то за него берется уже LAC и т. д.

    Коммутатор - ни что иное, как основной «мозг» сетей GSM, поэтому его работу следует рассмотреть более детально. Коммутатор сотовой сети берет на себя примерно те же задачи, что и АТС в сетях проводных операторов. Именно он понимает, куда вы осуществляете звонок или кто звонит вам, регулирует работу дополнительных услуг и, собственно, решает - можете ли вы в настоящее время осуществить свой звонок или нет.

    Теперь давайте разберемся, что же происходит, когда вы включаете свой телефон или смартфон?

    Итак, вы нажали «волшебную кнопку» и ваш телефон включился. На SIM-карте вашего сотового оператора находится специальный номер, который носит название IMSI - International Subscriber Identification Number (Международный опознавательный номер абонента) . Он является уникальным номером для кажой SIM-карты не только у вашего оператора МТС, Билайн, МегаФон и т.п., а уникальным номером для всех мобильных сетей в мире! Именно по нему операторы отличают абонентов между собой.

    В момент включения телефона ваш аппарат посылает данный код IMSI на базовую станцию, которая передает его далее на LAC, он же, в свою очередь, отсылает его на коммутатор. При этом в нашу игру вступают два дополнительных устройства, свзанных непосредственно с коммутатором - HLR (Home Location Register) и VLR (Visitor Location Register) . В переводе на русский это, соответственно, Регистр домашних абонентов и Регистр гостевых абонентов . HLR хранит в себе IMSI всех абонентов своей сети. В VLR же содержится информация о тех абонентах, которые пользуются сетью данного оператора в настоящее время.

    Номер IMSI передается в HLR с помощью системы шифрования (за этот процесс отвечает еще одно устройство AuC - Центр аутентификации) . HLR при этом проверяет, существует ли в его базе абонент с данным номером, и если факт его наличия подтверждается, система смотрит, может ли он в настоящее время пользоваться услугами связи или, скажем, имеет финансовую блокировку. Если все нормально, то данный абонент отправляется в VLR и после этого получает возможность звонить и пользоваться другими услугами связи.

    Для наглядности отобразим данную процедуру с помощью схемы:

    Таким образом, мы коротко описали принцип работы сотовых сетей GSM. На самом деле, это описание достаточно поверхностно, т.к. если углубиться в технические детали подробнее, то материал бы получился во много раз объемнее и гораздо менее понятным для большинства читателей.

    Во второй части мы продолжим знакомство с работой сетей GSM и рассмотрим, как и за что оператор списывает средства с нашего с вами счета.