Программы

Старый разъем hdd. Как подключить IDE жесткий диск к новой материнской плате

Старый разъем hdd. Как подключить IDE жесткий диск к новой материнской плате

Ноутбук является портативным компьютером, на котором многие пользователи хранят важную информацию. В силу своего форм-фактора, ноутбук может придти в негодность, например, упасть и разбиться. Велика в таком случае вероятность, что неповрежденным останется жесткий диск портативного компьютера, с которого удастся считать данные, а при необходимости его можно будет использовать и в будущем. Подключить жесткий диск от ноутбука к стационарному компьютеру можно несколькими способами, путем установки его в корпус системного блока, либо через USB-разъем. Рассмотрим оба варианта.

Как установить жесткий диск от ноутбука в системный блок

Жесткий диск от ноутбука практически ничем не отличается от стандартного жесткого диска для компьютера. Единственное его серьезное отличие – это размеры. Для обычных системных блоков используются накопители размером в 3,5 дюйма, тогда как для ноутбуков, с целью экономии места, применяются диски размером в 2,5 дюйма. Соответственно, поскольку диск от ноутбука меньше, чем стандартный диск для системного блока, его не удастся надежно закрепить и зафиксировать внутри корпуса.

Чтобы установить жесткий диск от ноутбука в системный блок, потребуется приобрести специальные салазки для 2,5-дюймовых дисков. Их необходимо установить на место для 3,5-дюймового жесткого диска и закрепить. После этого к данным салазкам крепится 2,5-дюймовый диск.

Обратите внимание: Корпуса некоторых компьютеров могут изначально предусматривать места для установки и крепления 2,5-дюймовых жестких дисков.

Когда жесткий диск от ноутбука будет «посажен» в корпусе системного блока, необходимо его подключить. Подключение диска стандартное:

  1. Требуется подсоединить SATA-кабель от материнской платы к жесткому диску;
  2. Далее подключается дополнительное питание.

Проделав описанные выше действия, можно включать компьютер. После загрузки операционной системы жесткий диск будет отображаться в списке накопителей. Если этого не происходит, необходимо проверить в BIOS, установлена ли загрузка данного диска.

Как подключить жесткий диск от ноутбука к компьютеру через USB

Подключить жесткий диск к компьютеру можно через USB-разъем, в таком случае отпадает необходимость разбирать системный блок. При этом подключить через USB 2,5-дюймовый накопитель можно разными способами, рассмотрим три основных.

Использование переходника

В продаже можно найти специальные переходники, которые позволяют подключить 2,5-дюймовый жесткий диск к USB-разъему. На таких переходниках присутствуют разъемы в виде SATA и питания.

Обратите внимание: Если ваш компьютер имеет USB-разъемы класса 3.0, лучше приобрести переходник именно с таким протоколом, чтобы жесткий диск работал быстрее при внешнем подключении.

Использование съемного корпуса

Похожий на прошлый вариант подключения жесткого диска от ноутбука к компьютеру, но вместо переходника используется полноценный корпус. Внутри такого корпуса располагается разъем SATA и питание. Жесткий диск необходимо поместить в корпус, после чего останется использовать USB-кабель для его подключения к компьютеру.

Использование съемного корпуса позволяет не только подключить жесткий диск к компьютеру, но и обезопасить его от повреждения в случае падения.

Важно: При покупке обращайте внимание, чтобы корпус предназначен именно для жестких дисков с размером в 2,5 дюйма, поскольку также в продаже можно найти варианты для подключения полноформатных 3,5-дюймовых компьютерных дисков через USB-разъем.

Использование док-станции

Самый интересный и дорогой вариант, подходящий пользователям, которым приходится часто подключать жесткие диски к компьютеру, подразумевает использование специальной док-станции. В продаже можно найти док-станции, которые позволяют подключать сразу по несколько 2,5 или 3,5-дюймовых дисков. Некоторые док-станции позволяют одновременно подключать жесткие диски разных размеров.

Продолжаем самостоятельно собирать и апгрейдить свой ПК. И сегодня настала очередь выбора такого компонента, как жесткий диск для компьютера . Поговорим и о внутреннем HDD, который вставляется в корпус компьютера или ноутбука, и также о том, какой внешний жесткий диск выбрать, который можно было бы брать везде с собой и подключать при помощи USB.

Итак, жесткий диск компьютера (или HDD — Hard Disk Drive, винчестер, винт, хард) — это механическое устройство, на которое записывается вся информация — от операционной системы до ваших документов. Работает по тому же принципу, что и магнитная лента в старых аудио или видеокассетах — при помощи специальной магнитной головки информация записывается на специальные пластины, расположенные внутри герметично закрытого корпуса.

Давайте пройдемся по основным характеристикам хард-диска, а потом попробуем понять, как же все-таки его правильно выбрать для тех или иных задач и устройств.

Объем памяти

Итак, основной параметр — это емкость жесткого диска, то есть объем информации. который может на нем поместиться. Сейчас выпускаются диски от 128 Гб до 3 Тб, однако реально их объем немного меньше из-за особенностей переведения чисел из двоичной системы в десятиричную.

Интерфейс

Это тип разъема для соединения жесткого диска с материнской платой. До недавнего времени повсеместно был распространен интерфейс IDE (или ATA) — выглядит он в виде продолговатой розетки с множеством контактов и соединяется с системной платой при помощи плоского шлейфа.

Современные жесткие диски снабжаются одним из поколений разъема типа SATA (SATA, SATA 2 или SATA 3). При этом, SATA уже также сняли с производства и на современных устройствах можно встретить только взаимозаменяемое 2 и 3 поколение. Отличаются они скоростью передачи данных, поэтому если вставить диск SATA 3 в разъем SATA 2, то работать он будет со скоростью SATA 2.

  • SATA — до 1,5 Гбит/с
  • SATA 2 — до 3 Гбит/с
  • SATA 3 — до 6 Гбит/с

Касательно интерфейса есть еще один нюанс. Жесткие диски для компьютера и ноутбука с разъемом SATA совместимы между собой, то есть если, допустим, сломался ноутбук и надо из него взять какие-то важные файлы, то можно достать из него хард, подключить SATA кабелем к настольному ПК и работать, как с обычным HDD. Если же на ноуте диск стандарта IDE, то подключить его через IDE шлейф к компу не получится — они несовместимы. Для этого нужно использовать специальный переходник.

Объем кэша

Еще одна характеристика, которая являет собой объем временного хранилища данных, используемого при работе харда. Чем он больше, тем быстрее будет обрабатываться информация, особенно это касается небольших по размеру файлов. Современные диски выпускаются с кэшем 16, 32 или 64 Мб.

Скорость вращения

Скорость вращения диска также влияет на скорость работы. Чем быстрее диски вращаются, тем информация обрабатывается быстрее. Измеряется она в количестве оборотов в минуту (RPM). В современных моделях используется следующая скорость:

  • 5400/5900 — медленная, подходит для дисков, на которых будут размещаться архивные файлы большого объема
  • 7200 — самая распространенная скорость, подойдет для решения большинства задач
  • 10000 — максимальная производительность. Подойдет для установки игр или операционной системы

Форм-фактор

Размер имеет значения при выборе устройства, для которого вы приобретаете жесткий диск.

  • Для настольного ПК — 3.5 дюйма
  • Жесткий диск для ноутбука — 2.5 дюйма

Какой фирмы жесткий диск выбрать?

В настоящее время главными игроками на рынке являются Western Digital и Seagate. В отличие от других, продукция этих фирм зарекомендовала себя как наиболее надежная и качественная, моделей много, поэтому других не имеет смысла рассматривать вообще. Причем, большее доверие вызывает Western Digital из-за более объемной гарантии. Также они отличаются простотой выбора, так как все модели разделены на несколько групп по цветам их этикеток.

  • Cover Blue — самая бюджетная и от этого не очень надежная серия. подойдут для повседневной работы, но не рекомендуются для хранения важных документов.
  • Cover Green — малошумные, менее греющиеся и от этого медленные диски, подходящие для хранения данных.
  • Cover Black — максимально производительные и надежные жесткие диски с двухядерными контроллерами.
  • Cover Red — аналог черных, но отличаются еще более повышенной надежностью для хранения данных.

SSD накопитель как замена жесткому диску

Новое поколение накопителей информации называется твердотельный накопитель SSD (Solid State Drive). Его ошибочно иногда называют SSD жестким диском, хотя на самом деле никакого отношения к предыдущему поколению устройств оно не имеет, так как в нем уже нет механических частей — это чисто электронное устройство с микросхемами.

По сути, это скорее очень большая по объему и быстрая флешка. Из-за того, что в нем нет механики, SSD имеет очень высокую скорость работы и надежность. И как следствие, на данный момент очень высокую цену по сравнению с традиционным хардом. Кроме того, к преимуществам SSD перед HDD можно отнести бесшумность и меньшие потребности к энергопотреблению.

Параметры, определяющие их производительность, те же, что и HDD, только по понятным причинам отсутствует скорость вращения. Объем их от 32 до 960 Гб, интерфейс у всех самые последние — SATA 2, SATA 3 или PCI-E. Поскольку SATA не может обеспечить максимальной отдачи от использования дисков SSD, часто их снабжают разъемом PCI Express, что увеличивает скорость работы в 7 раз. Вставляется такой накопитель в слот PCI-E на материнской плате.

Скорость работы жёстких дисков и накопителей

Для сравнения скорости работы приведу скриншот, сделанный в программе тестирования скорости накопителей CrystalDiskMark. Как видно, HDD опережает только по скорости последовательной записи — это когда вы записываете на диск один файл очень большого объема. Согласитесь, делается это крайне редко, поэтому преимущества SSD налицо.

Происходит это из-за отсутствия механических частей — в нем нет крутящейся головки и вообще никакой механики — считывание информации происходит только на электронном уровне с микросхем, что значительно быстрее. Из-за отсутствия механических частей также твердотельный диск абсолютно нешумный и его невозможно повредить при падении, в отличие от HDD.

Недостатка же три — высокая стоимость, не такой большой срок службы и затруднительность восстановления с него данных при поломке. Это означает, что важные документы лучше все-таки хранить на традиционном жестком диске.

Поэтому при сборке производительного современного компьютера рекомендуется приобретать один SSD небольшого объема для установки на нем операционной системы и один жесткий диск (винт) большого объема для хранения остальной информации, например, Cover Red от Western Digital. Либо для экономии средств можно установить скоростной Cover Black небольшого объема для ОС и более медленный Cover Green большого объема для хранения документов.

Кстати, если вы все-таки решили остановить свой именно на SSD накопителе в качестве системного диска, то рекомендуется устанавливать на него систему не ниже Windows 7, так как во-первых, более старые не поддерживают этот тип тип накопителей, а во-вторых, в новых ОС оптимизирована работа с SSD для продления срока его службы.

Так как микросхемы SSD занимают меньше места (2.5″), часто в комплекте с ними идет переходник для установки в стандартный бокс для жесткого диска на корпусе ПК.

Внешний жесткий диск для ноутбука

Данный тип предназначен для мобильного перемещения файлов и отличается тем, что его не нужно размещать в корпусе компьютера или ноутбука. Он подключается при помощи одного из внешних разъемов — USB 2.0, USB 3.0, eSATA или FireWire. На сегодняшний день я бы рекомендовал приобретать USB 3.0, поскольку данный разъем не только уже повсеместно внедрен на современных материнских платах, но и совместим с предыдущим USB 2.0, а значит с ним удастся работать на любом компьютере.

Такие параметры, как объем кэша или скорость вращения здесь уже особой роли не играют, так как скорость передачи информации в данном случае будет зависеть от интерфейса подключения.

Форм-фактор отличает модели настольные от портативных переносных. Большие настольные диски чаще имеют также внешнее питание от электросети и их размер составляет 3.5″. Небольшие портативные жесткие диски удобнее для переноски, питаются непосредственно от порта USB и имеют размер 2.5″. Маленькие диски при этом менее скоростные.

Последнее, что можно сказать про выбор внешнего диска, это его защищенность. Поскольку тип устройства предполагает его перемещение, то желательно смотреть более ударозащищенные корпуса — с развитой резиновой внешней оболочкой. Либо просто приобрести дополнительно к нему отдельный чехол.

Также для внешнего подключении жестких дисков, предназначенных для установки внутрь, придумали специальные боксы-переходники, снабженные несколькими типичными внешними интерфейсами для подключения по кабелю. Диск вставляется в такой бокс и подключается к компьютеру, например, в порт USB.

Кроме того, многие дорогие современные корпусы уже имеют в верхней части специальный отсек для внешнего подключения обычного жесткого диска. если вам приходится часто их переставлять, то будет удобно.

На этом все, надеюсь мои советы вам помогут определиться с тем, какой выбрать жесткий диск для компьютера или ноутбука, а напоследок посмотрите еще три видео: про выбор дисков, про то, как правильно установить его в корпус ПК и про историю развития хард-дисков. Пока!

Статья посвящается моему знакомому,
который купил для домашнего компьютера
хард Seagate Cheetah UWSCSI.

На сегодняшний день существует огромное количество различных технологий и интерфейсов жестких дисков. Количество иностранных и непонятных словечек, засоряющих великий и могучий язык продавцов компьютерной техники все время растет, и, придя в магазин за новым хардом, вы можете услышать столько всего. Например: IDE, ATA, Serial ATA, SCSI, SCSI II, Wide SCSI II, Ultra SCSI II, Ultra Wide SCSI II, Ultra2 SCSI, Ultra160 SCSI, Fibre Channel, IEEE 1394, FireWire, iLink, USB, RAID, 5400rpm, 7200rpm, 10,000rpm, 15,000rpm… Ну как? Ушки уже аплодируют? Так что эта статья должна помочь вам разобраться в том, какое же устройство из тех, что вам попытается всучить продавец, действительно стоит покупать. Надеюсь, решение вы примите правильное.

И учтите. Эта статья не только для великих, супер-пупер компьютерщиков. И даже совсем не для них. Они то все уже знают. Эта статья рассчитана на среднестатического покупателя жесткого диска, который мало что понимает во всех вышеперечисленных терминах. Предположим, вы собираете новый или модернизируете старый компьютер. Задумались о винчестере SCSI, но знаете про этот интерфейс крайне мало, а еще слышали что-то, возможно даже хорошее, про IEEE 1394, но с чем его едят, совершенно не представляете. Тогда вы попали по адресу.

Интерфейсы.

Перво-наперво надо подумать про то, диск с каким интерфейсом вы будете покупать. Твердо остановились на IDE? А как насчет SCSI, IEEE 1394 или USB? В зависимости от интерфейса жесткие диски могут различаться по скоростным характеристикам, стоимости, длине кабелей, гибкости и надежности, да мало ли еще по чему. Так что с интерфейсов мы и начнем.

IDE/ATA

IDE (Integrated Drive Electronics) - это название типа жестких дисков, имеющих интерфейс ATA (AT Attachment). Дешевая электроника IDE в сочетании с параллельной передачей данных ATA позволяет производить жесткие диски, приобретение которых не пустит вас по миру. Тем не менее, не стоит забывать, что ATA не предназначен для внешних подключений, и не любит кабелей длиной более 60см. То есть, такие ATA кабели можно купить, только вот использовать их я вам не советую.

Один канал ATA может поддерживать до двух дисков, первый - master и вторичный - slave. Очень часто, если не сказать, почти всегда, люди ставят на один канал жесткий диск как master и другое, более медленное устройство, типа CD-ROM, как slave. Но так как IDE может обращаться только к одному устройству на канале одномоментно, то таким образом снижается производительность системы в целом. Так что лучше не иметь slave-устройств в принципе. Тем более. Что сейчас все материнские платы имеют по два интегрированных канала IDE, а некоторые (типа любимой мною ABIT BX-133 RAID) и четыре. Просто подключите жесткий диск как master на первый канал, а DVD или CD-ROM как master на второй канал.

Сегодня на рынке присутствуют три основных стандарта IDE дисков: ATA/33, ATA/66 и ATA/100. В данном случае число показывает максимальную пропускную способность в мегабайтах в секунду. Только не забывайте, что для ATA/66 и ATA/100 требуется специальный ATA/66/100 80-контактный кабель, а со стандартным 40-контактным ваш ATA/66/100 диск будет работать как ATA/33. Как правило, такой кабель идет в комплекте со всеми материнскими платами, поддерживающими ATA/66/100. Эти три стандарта называют одним словом UDMA. И хотя это неверно, вам часто придется услышать, UDMA, ATA и IDE в виде взаимозаменяемых понятий.

Все IDE диски должны работать со всеми вариантами ATA. Диск ATA/100 должен отлично функционировать с контроллером ATA/33, а диск ATA/33 должен так же прекрасно работать с контроллером ATA/100. Но, понятно, что работать винчестер будет на скорости самого медленного компонента. В обоих, приведенных случаях это будет скорость ATA/33, то есть максимальная пропускная способность будет равна 33Мб/сек. Иногда можно наткнуться на некоторые несовместимости, типа, когда конкретный диск не желает работать с конкретным кабелем, или два диска от разных производителей не желают сосуществовать на одном канале контроллера. Ну, так электроника штука сложная. Чтобы удостовериться в этом, достаточно разобрать хард и посмотреть, где там внутри размещаются все эти гигабайты. Только такое лучше проделывать с "умершим" хардом, а не с тем, на котором хранится коллекция ваших любимых картинок и текстов про Винни Пуха.

На самом деле разница в производительности между ATA/33, 66 и 100 не так уж велика, так как разговор идет о пиковой пропускной способности, которая в реальной работе достигается крайне редко. Не существует дисков ATA/100 обеспечивающих передачу данных даже в 66Мб/сек, и очень мало таких. Что позволяют передачу в 33Мб/сек. Только кэш память жесткого диска может воспользоваться преимуществами повышенной пропускной способности. Но для этого размер кэша должен быть достаточно большим. А большинство IDE дисков имеет всего 512Кб кэш памяти, и только некоторые, те, что самые дорогие, могут похвастаться кэшом в 2 или даже 4 Мб.

Так что главным недостатком IDE по-прежнему остается малая скорость. Конечно. Современные IDE диски догнали по скоростным характеристикам старые модели SCSI дисков, но с новыми SCSI винчестерами ин все равно не сравниться. Можно приобрести достаточно быстрый IDE диск со скоростью вращения 7200 оборотов в минуту (rpm), но ведь можно купить и SCSI привод со скоростью 15,000rpm, который будет намного быстрее. А еще время наработки на отказ, заявляемое производителями, у IDE дисков гораздо меньше, чем у SCSI дисков. Возможно, это просто маркетинговые меры, но повсеместно бытует мнение, что SCSI устройства надежнее, чем IDE.

Тем не менее, даже диски со скоростью вращения 7200 оборотов на шпинделе, достаточно дороги. Большинство моделей присутствующих на нашем рынке имеют скорость вращения 5400rpm. Такие диски стоят дешевле на 30-40 долларов и производят меньше шума, но производительность у них меньше. Хотя для домашнего использования, это то, что нужно.

Будущее ATA, скорее всего. Лежит на пути перехода к стандарту Serial ATA. Serial ATA будет иметь кабель со всего двумя контактами (один на прием, один на передачу), и должен обеспечить IDE пропускную способность до 1.5Гбит/сек, а возможно и больше. Это вдвое перекрывает пропускную способность ATA/100, у которого контактов в 40 раз больше. Единственной отрицательной стороной Serial ATA является то, что на одном канале может быть только одно устройство, но при наличии контроллера с несколькими каналами это не проблема.

Преимущества
  • Неплохая производительность за малые деньги
  • Широкая распространенность, и, следовательно, совместимость с большинством существующего оборудования.
Недостатки
  • Не самые скоростные диски
  • Жесткое ограничение по длине кабеля
  • Только внутренние

SCSI

SCSI давно стал стандартным интерфейсом для рабочих станций и серверов. И хотя по деньгам SCSI обходится существенно дороже IDE, за эти деньги мы получаем гораздо большую пропускную способность, поддержку большего количества устройств на одном канале, гораздо большую длину кабелей (до 12 метров), поддержку внешних устройств и многозадачность. Немало, не правда ли?

Обычная (иногда говорят "узкая") шина SCSI может нести на себе до 8 устройств, а широкая (wide) до 16. Сам SCSI контроллер занимает один адрес, а остальные 15 оставляет для подключаемых устройств (соответственно на узкой шине для устройств остается 7 адресов). Старшие адреса SCSI имеют больший приоритет. Это делает установку SCSI немного муторной. Обычно лучше дать больший приоритет медленным устройствам, типа CD-ROM, а не жестким дискам.

Существует множество различных вариантов SCSI. Мы о них уже писали, и всем, кто хочет изучить этот вопрос подробно, я рекомендую статью "Интерфейсы SCSI" . Из устройств доступных сейчас на рынке можно назвать Ultra, Ultra2 и Ultra160 SCSI. Ultra SCSI позволяет передачу 20Мб/сек и имеет 8 адресов. Широкая (wide) версия Ultra SCSI поднимает пропускную способность вдвое, то есть до 40Мб/сек. Ultra2 SCSI, известный так же как LVD (Low Voltage Differential) SCSI, имеет пропускную способность 40Мб/сек, и, соответственно, wide версия его дает нам 80Мб/сек. Ultra160 SCSI продолжает традицию удвоения пропускной способности, но бывает только в варианте wide, что дает нам 16 устройств на канале и 160Мб/сек.

SCSI устройства, как правило, обладают совместимостью, что называется, сверху вниз. Правда этого ни кто не гарантирует, но в большинстве случаев, скажем для примера, устройство SCSI-2 будет отлично себя чувствовать на контроллере Ultra2Wide SCSI. Правда при этом бывает, что при наличии на одной шине быстрого и медленного устройств оба начинают работать с максимальной скоростью медленного. А на самом деле, то, как будут вести себя разные SCSI устройства, подвешенные рядом, зависит в основном от контроллера.

Со SCSI часто возникают проблемы, касающиеся установки и первой настройки, особенно у тех, кто проделывает это первый раз. Все эти терминаторы, идентификаторы могут вызвать серьезную головную боль. В то же самое время, все эти проблемы с лихвой окупаются надежностью данного интерфейса. А появление активных терминаторов (к роботам из будущего отношения не имеют) заметно упростило установку SCSI устройств. Так что радуйтесь, раньше было хуже.

Главное преимущество, главная сила SCSI выражается емким иностранным словом high-end, то есть самые быстрые, самые объемистые жесткие диски имеют интерфейс SCSI. Seagate Cheetah с 15,000 оборотов на шпинделе в варианте IDE никогда не производился и вряд ли будет. Ну а способность поддерживать до 15 устройств на одном канале говорит об отличной масштабируемости, что для определенных целей тоже крайне важно.

Мир SCSI настолько обширен, что это тема даже не для одной статьи, поэтому прежде чем поставить жирную точку в данном разделе скажу всего несколько еще слов о будущем.

А будущее SCSI уже расписано как по нотам. Уже появляются первые устройства Ultra320, и следующим шагом будет Ultra640. Сам стандарт SCSI изначально предполагал масштабируемость, и стал масштабируем настолько, что вряд ли что-то может с ним сравниться в этом.

Преимущества
  • Большая производительность
  • Большие объемы
  • Возможность подключения, как внутренних устройств, так и внешних
Недостатки
  • Дороговизна
  • Возможны проблемы при установке

Fibre Channel (оптоволоконный канал)

Fibre channel - это интерфейс, в корне отличающийся от SCSI и IDE. Вообще он ближе к Ethernet и InfiniBand, если это вам что-то говорит. А если нет, то уясните себе следующее, этот интерфейс предназначен не только для того, что бы подсоединять харды и всякую-прочую периферию к системе, а в первую очередь для организации сетей, объединения удаленных друг от друга массивов жестких дисков, и прочих операций требующих высокой пропускной способности в сочетании с большими расстояниями. Fibre channel часто используется для соединения SCSI RAID массивов с сетью рабочей группы либо сервером.

Существующие технологии позволяют пропускную способность Fibre channel в 100Мбит/сек, а теоретический предел данной технологии лежит где-то в районе 1.06Гбит/сек. При этом уже сейчас ряд компаний занят разработкой устройств с пропускной способностью до 2.12Гбит/сек, но это уже следующее поколение интерфейса Fibre channel. На сегодняшнем рынке так же присутствуют решения, когда для достижения супер-большой пропускной способности используется целый ряд каналов Fibre channel одновременно.

В отличие от SCSI, Fibre channel обладает гораздо большей гибкостью. Если SCSI ограничивается всего 12 метрами, то Fibre channel позволяет соединения протяженностью до 10км при использовании оптического кабеля и несколько меньше при использовании относительно недорогих медных соединений, хотя недорогих именно относительно;-).

Преимущества
  • Очень хорошая масштабируемость
  • Очень большие расстояния соединений (до 10км)
  • Сеть из множества рабочих станций может работать с одним RAID массивом
Недостатки
  • Дорого
  • Очень дорого
  • Чем лучше, тем дороже

IEEE 1394

IEEE 1394, он же FireWire (как его назвала Apple), он же iLink (как его назвала Sony), реально становится стандартом для передачи цифрового видео, но так же может использоваться для подключения жестких дисков, сканеров, сетевого оборудования, цифровых камер, и всего, что требует хорошей пропускной способности. В настоящее время FireWire остается достаточно дорогим решением (по крайней мере, для рядового пользователя), но стандарт все больше проникает во все сферы компьютерной периферии и постоянно дешевеет.

FireWire способен поддерживать до 63 устройств на одном канале 400Мбит/сек. А IEEE 1394b, первая попытка серьезного пересмотра FireWire, будет поддерживать пропускную способность в 800Мбит/сек на канал. FireWire обеспечивает большую производительность, но внешние устройства с этим интерфейсом нуждаются в отдельном внешнем источнике питания.

Первые жесткие диски FireWire уже начинают появляться, и уже довольно давно существуют модели, использующие транслятор IDE/FireWire. А вот для видеокамер, сканеров и принтеров этот интерфейс используется уже очень широко. Так же на базе FireWire можно стоить производительные локальные сети. Многие модели компьютеров Apple имеют один или два FireWire порта, о вот на PC этот стандарт пока такого признания не получил.

Самой приятной особенностью FireWire является возможность "горячего" подключения. То есть, можно подключать и отключать FireWire устройства, не выключая компьютер. Но если таким устройством является жесткий диск, то операционная система должна уметь монтировать новые жесткие диски "на лету".

Будущее IEEE 1394 выглядит достаточно оптимистично, учитывая молодость этого стандарта, и уже почти готовую спецификацию 1394b, позволяющую удвоить пропускную способность. А признание данного стандарта дело недалекого будущего, популярность его растет с каждым днем, а цены, соответственно, падают.

Преимущества
  • "Горячее" подключение
  • Высокая пропускная способность
  • Отсутствие разделения устройств по приоритетам
Недостатки
  • Контроллеры жестких дисков стоят пока очень дорого

USB

USB 1 (Universal Serial Bus - Универсальная Последовательная Шина) стандарт получивший за последние несколько лет крайне широкое распространение. Сложно найти компьютер на котором не было бы поддержки USB (если только старый Pentium100). Данный интерфейс имеет два скоростных режима. Первый - "высокоскоростной" - обеспечивает пропускную способность в 12Мбит/сек и длину соединительных кабелей до 5 метров. Второй - низкоскоростной - пропускная способность 1.5Мбит/сек и длина кабелей до 3 метров. Понятно, что для жестких дисков данный стандарт малопригоден из-за своей "тормознутости", а вот для всяких устройств резервного копирования, CD-R, сканеров, сетевых устройств и устройств ввода вполне подходит.

На одном канале USB может присутствовать до 127 устройств, для чего могут использоваться устройства, пропускающие через себя сигнал, либо USB концентраторы. USB имеет, так называемый, мастер-контроллер, так что любой сигнал, передаваемый, скажем, от USB харда к USB CDR должен пройти через контроллер, а уже затем отправиться к требуемому устройству. Это здорово понижает пропускную способность при использовании нескольких USB устройств. Кроме того, USB устройства не могут быть разделяемыми (в сети, например), хотя два компьютера можно соединить между собой USB сетью через USB мост.

Зато, при всех своих минусах, USB позволяет "горячее" подключение. Правда операционная система все равно потребует у вас драйвер нового устройства, но перезагружать компьютер не придется. Хотя и это спорно. Мне, например, недавно попалась сетевая карта USB (удобное средство для подключения к сети опечатанного пломбой компьютера), так подключил-то я ее "по-горячему", а после установки драйверов Windows предложила перезагрузиться. Так что, как говориться, 100% даже морг не дает.

Ну, о будущем USB (по крайней мере, ближайшем) уже все известно. Этим будущим станет USB 2, и не когда-нибудь, а примерно в начале следующего года. USB 2 поднимет планку пропускной способности с 12 до 480Мбит/сек. Вот тогда и можно будет всерьез задуматься о жестком диске с интерфейсом USB 2. А пока в Сети идут дебаты, вытеснит USB 2 FireWire или оба стандарта найдут себя в разных областях компьютерной периферии.

Преимущества
  • Широкая распространенность
  • Низкая стоимость
  • "Горячее" подключение
Недостатки
  • Низкая эффективность для связи между устройствами
  • Низкая скорость (USB 2 это поправит)
  • Малая длина соединительных кабелей

Так выбирать то что?

На самом деле выбор уже определен вашей целью. Если вы собираете домашний компьютер для игр или для офисной работы, то IDE диск даст вам самую лучшую комбинацию цена/производительность. USB хорошо подойдет для внешнего CDR или ленточного накопителя для резервного копирования (если копировать не слишком много). Типа, дешево и сердито, зато переносит с места на место можно сколько угодно. Если вам нужен быстрый внешний диск для подключения к ноутбуку, или для регулярной переноски между несколькими компьютерами, и основным требованием помимо мобильности является производительность, то ваш выбор IEEE 1394. Если речь идет об оснащении серьезной рабочей станции или сервера, где критична надежность и производительность, то лучший выбор - SCSI, особенно в форме RAID, хотя и стоит это ух как кусаче. Ну а если вы формируете кластер автоматизированных рабочих мест, которым необходим высокоскоростной доступ к большому массиву данных, то Fibre channel обеспечит вам скорость, удаленность рабочих мест от массива информации практически не имеет значения. Другая возможность заключается в создании сети Gigabit Ethernet, а для сервера, как правило выбирают решение RAID SCSI, ну или, для некритичных серверов, IDE RAID.

Так что такое RAID?

RAID расшифровывается как Redundant Array of Inexpensive Disks, или если по-русски - Избыточный Массив Недорогих Дисков (ага видел я эти недорогие, у меня весь комп стоит дешевле, чем харды в тех RAID-х). RAID преследует две основные цели, повысить скорость и/или надежность. Существует достаточно много типов RAID, но основные это RAID 0, 1 и 0+1. RAID 0 позволяет объединить объем двух дисков в единое целое, так что операционная система будет видеть их и использовать как один физический диск. RAID 1 позволяет создавать "зеркало", то есть информация пишется сразу как на первый, так и на второй диск, и в случае, если первый, основной, хард "умрет", то все данные на втором будут в целости и сохранности. Ну, и, наконец, RAID 0+1 использует одновременно два описанных выше режима (не забывайте, что при этом требуется как минимум четыре жестких диска, два сливаются в массив, и два используются для "зеркала"). Есть еще другие варианты RAID для повышения надежности хранения информации, типа четности, для проверки целостности данных.

А размер?

У вас что проблемы с определением того, сколько места вам понадобится? 10Гб - это том минимум, который можно сегодня приобрести. Хотя кое-где еще завалялись жесткие диски меньшего размера, но пока вы дочитаете эту статью, пока соберетесь что-то купить, их уже в продаже и не будет. Если вы увлекаетесь собиранием музыки MP3, скачивает множество видеофрагментов из Интернета (тогда у вас выделенная линия:-) и вам понадобится не меньше 20 или 30Гб. Ну а если хотите заняться созданием мультипликации, обработки видео и т.д., то 50-100Гб будет в самый раз.

Все прочитанное не надо принимать близко к сердцу. Криков типа "У меня маленький винчестер, и девочки в классе надо мною смеются" тоже не надо. Пройдет время, винчестер вырастет, и все будет хорошо.

Пишите мне на [email protected] , только не надо просит халявных винчестеров. все равно не дам:-).

Интерфейсом накопителей называется набор электроники, обеспечивающий обмен информацией между контроллером устройства (кеш-буфером) и компьютером. В настоящее время в настольных ПК IBM-PC, чаще других, используются две разновидности интерфейсов ATAPI - AT Attachment Packet Interface (Integrated Drive Electronics - IDE, Enhanced Integrated Drive Electronics - EIDE) и SCSI (Small Computers System Interface).

Интерфейс IDE разрабатывался как недорогая и производительная альтернатива высокоскоростным интерфейсам ESDI и SCSI. Интерфейс, предназначен для подключения двух дисковых устройств. Отличительной особенностью дисковых устройств, работающих с интерфейсом IDE состоит в том, что собственно контроллер дискового накопителя располагается на плате самого накопителя вместе со встроенным внутренним кэш-буфером. Такая конструкция существенно упрощает устройство самой интерфейсной карты и дает возможность размещать ее не только на отдельной плате адаптера, вставляемой в разъем системной шины, но и интегрировать непосредственно на материнской плате компьютера. Интерфейс характеризуется чрезвычайной простотой, высоким быстродействием, малыми размерами и относительной дешевизной.

Схемы сопряжения адаптера с накопителями в интерфейсе IDE

Сегодня на смену интерфейсу IDE пришло детище фирмы Western Digital - Enhanced IDE, или сокращенно EIDE. Сейчас это лучший вариант для подавляющего большинства настольных систем. Жесткие диски EIDE заметно дешевле аналогичных по емкости SCSI-дисков и в однопользовательских системах не уступают им по производительности, а большинство материнских плат имеют интегрированный двухканальный контроллер для подключения четырех устройств. Что же появилось нового в Enhanced IDE по сравнению с IDE ?

Во-первых, это большая емкость дисков. Если IDE не поддерживал диски свыше 528 мегабайт, то EIDE поддерживает объемы до 8.4 гигабайта на каждый канал контроллера.

Во-вторых, к нему подключается больше устройств - четыре вместо двух. Раньше имелся только один канал контроллера, к которому можно было подключить два IDE устройства. Теперь таких каналов два. Основной канал, который обычно стоит на высокоскоростной локальной шине и вспомогательный.

В-третьих, появилась спецификация ATAPI (AT Attachment Packet Interface) дающая возможность подключения к этому интерфейсу не только жестких дисков, но и других устройств - стриммеров и дисководов CD-ROM.

В-четвертых - повысилась производительность. Накопители с интерфейсом IDE характеризовались максимальной скоростью передачи данных на уровне 3 мегабайт в секунду. Жесткие диски EIDE поддерживают несколько новых режимов обмена данными. В их число входит режим программируемого ввода-вывода PIO (Programmed Input/Output) Mode 3 и 4, которые обеспечивают скорость передачи данных 11.1 и 16.6 мегабайт в секунду соответственно. Программируемый ввод-вывод - это способ передачи данных между контроллером периферийного устройства и оперативной памятью компьютера посредством команд пересылки данных и портов ввода/вывода центрального процессора.

В пятых, поддерживается режим прямого доступа к памяти - Multiword Mode 1 DMA (Direct Memory Access) или Multiword Mode 2 DMA и Ultra DMA, которые поддерживают обмен данными в монопольном режиме (то есть когда канал ввода-вывода в течение некоторого времени обслуживает только одно устройство). DMA - это еще один путь передачи данных от контроллера периферийного устройства в оперативную память компьютера, от PIO он отличается тем, что центральный процессор ПК не задействуется и его ресурсы остаются свободными для других задач. Периферийные устройства обслуживает специальный контроллер DMA. Скорость при этом достигает 13.3 и 16.6 мегабайта в секунду, а при использовании Ultra DMA и соответствующего драйвера шины - 33 мегабайт в секунду. EIDE-контроллеры используют механизм PIO точно так же, как это делают и некоторые SCSI-адаптеры, но скоростные адаптеры SCSI работают только по методу DMA.

В шестых - расширена система команд управления устройством, передачи данных и диагностики, увеличен кеш-буфер обмена данными и существенно доработана механика.

Фирмы Seagate и Quantum вместо спецификации EIDE используют спецификацию Fast ATA для накопителей, поддерживающих режимы PIO Mode 3 и DMA Mode 1, а работающие в режимах PIO Mode 4 и DMA Mode 2 обозначают как Fast ATA-2.

Интеллектуальный многофункциональный интерфейс SCSI был разработан еще в конце 70-х годов в качестве устройства сопряжения компьютера и интеллектуального контроллера дискового накопителя. Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер. Помимо электрических и физических параметров, определяются также команды, при помощи которых, устройства, подключенные к шине осуществляют связь между собой. Интерфейс SCSI не определяет детально процессы на обеих сторонах шины и является интерфейсом в чистом виде. Интерфейс SCSI поддерживает значительно более широкую гамму периферийных устройств и стандартизован ANSI (X3.131-1986).

Сегодня применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Появившийся позднее стандарт Ultra SCSI отличается еще большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями

Сопряжение внешних устройств в интерфейсе SCSI

сверху - вниз, то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI. Это наиболее гибкий и стандартизованный тип интерфейсов, применяющийся для подключения 7 и более периферийных устройств, снабженных контроллером интерфейса SCSI. Интерфейс SCSI остается достаточно дорогим и самым высокопроизводительным из семейства интерфейсов периферийных устройств персональных компьютеров, а для подключения накопителя с интерфейсом SCSI необходимо дополнительно устанавливать адаптер, т.к. немногие материнские платы имеют интегрированный адаптер SCSI.

ATA (англ. Advanced Technology Attachment , Присоединение по продвинутой технологии) - параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 90-е годы XX века был стандартом на платформе IBM PC; в настоящее время вытеснен своим последователем - SATA. Разные версии ATA известны под синонимами IDE , EIDE , UDMA , ATAPI ; с появлением SATA также получил название PATA (Parallel ATA) .

шлейфы ATA с кабельной выборкой: 40-проводной сверху, 80-проводной снизу

Предварительное название интерфейса было PC/AT Attachment («Соединение с PC/AT»), так как он предназначался для подсоединения к 16-битной шине ISA, известной тогда как шина AT . В окончательной версии название переделали в «AT Attachment» для избежания проблем с торговыми марками.

Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (Integrated Drive Electronics , «Электроника, встроенная в привод» ). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST412. Это позволило улучшить характеристики накопителей (за счёт меньшего расстояния до контроллера), упростить управление им (так как контроллер канала IDE абстрагировался от деталей работы привода) и удешевить производство (контроллер привода мог быть рассчитан только на «свой» привод, а не на все возможные; контроллер канала же вообще становился стандартным). Следует отметить, что контроллер канала IDE правильнее называть хост-адаптером , поскольку он перешёл от прямого управления приводом к обмену данными с ним по протоколу.

В стандарте АТА определён интерфейс между контроллером и накопителем, а также передаваемые по нему команды.

Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство. Принцип адресации CHS заложен в названии. Сперва блок головок устанавливается позиционером на требуемую дорожку (Cylinder), после этого выбирается требуемая головка (Head), а затем считывается информация из требуемого сектора (Sector).

Стандарт EIDE (Enhanced IDE , т. е. «расширенный IDE» ), появившийся вслед за IDE, позволял использование приводов ёмкостью, превышающей 528 МБ (504 МиБ), вплоть до 8,4 ГБ. Хотя эти аббревиатуры возникли как торговые, а не официальные названия стандарта, термины IDE и EIDE часто употребляются вместо термина ATA . После введения в 2003 году стандарта Serial ATA («Последовательный ATA» ), традиционный ATA стали именовать Parallel ATA , имея в виду способ передачи данных по 40-жильному кабелю.

Поначалу этот интерфейс использовался с жёсткими дисками, но затем стандарт был расширен для работы и с другими устройствами, в основном - использующими сменные носители. К числу таких устройств относятся приводы CD-ROM и DVD-ROM, ленточные накопители, а также дискеты большой ёмкости, такие, как ZIP и магнитооптические диски (LS-120/240). Кроме того, из файла конфигурации ядра FreeBSD можно сделать вывод, что на шину ATAPI подключали даже FDD. Этот расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), в связи с чем полное наименование стандарта выглядит как ATA/ATAPI .

Первоначальные расширения ATA для работы с приводами CD-ROM не обладали полной совместимостью и являлись фирменными. В результате, для подключения CD-ROM было необходимо устанавливать отдельную плату расширения, специфичную для конкретного производителя, например для Panasonic (существовало не менее 5 специфичных вариантов ATA, предназначенных для подключения CD-ROM). Некоторые варианты звуковых карт, например Sound Blaster, оснащались именно такими портами.

Другим важным этапом в развитии ATA стал переход от PIO (Programmed input/output , Программный ввод/вывод ) к DMA (Direct memory access , Прямой доступ к памяти ). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера (CPU), что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использующие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использующие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском. В данной технологии потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия CPU, который выдаёт лишь команды на выполнение того или иного действия. При этом жёсткий диск выдаёт сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер выдаёт сигнал DMACK и жёсткий диск начинает выдавать данные в 1-й регистр (DATA), с которого контроллер считывает данные в память без участия процессора. Операция DMA возможна, если режим поддерживается одновременно BIOS, контроллером и операционной системой, в противном случае возможен лишь режим PIO.

В дальнейшем развитии стандарта (АТА-3) был введён дополнительный режим UltraDMA 2 (UDMA 33 ). Этот режим имеет временные характеристики DMA Mode 2, однако данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на чётность CRC, что повышает надёжность передачи информации.

В истории развития ATA был ряд барьеров, связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации и технике программирования, были преодолены. К их числу относятся ограничения на максимальным размер диска в 504 МиБ, ~8 ГиБ, ~32 ГиБ, и 128 ГиБ. Существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода/вывода в операционных системах, не соответствующих стандартам ATA.

Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 2 28 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 ГБ (128 ГиБ). В стандартных PC BIOS поддерживал до 7,88 ГиБ (8,46 ГБ), допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS (Cyllinder-Head-Sector) в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 504 МиБ (528 МБ). Для преодоления этого ограничения была введена схема адресации LBA (Logical Block Address), что позволило адресовать до 7,88 ГиБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГиБ, а затем и все 128 ГиБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа организована путём записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).

Адресация регистров организована при помощи трёх адресных линий DA0-DA2. 1-й регистр с адресом 0 является 16-разрядный, и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.

Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 128 ПтБ (144 петабайт).

Эти ограничения на размер могут проявляться в том, что система думает, что объём диска меньше его реального значения, или вовсе отказывается загружаться и виснет на стадии инициализации жёстких дисков. В некоторых случаях проблему удаётся решить обновлением BIOS. Другим возможным решением является использование специальных программ, таких, как Ontrack DiskManager, загружающих в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска, при которой разделы диска оказываются недоступны, в случае загрузки, например, с обычной DOS-овской загрузочной дискеты. Впрочем, многие современные операционные системы могут работать с дисками большего размера, даже если BIOS компьютера этот размер корректно не определяет.

Разводка Parallel ATA

Контакт

Назначение

Контакт

Назначение

GPIO_DMA66_Detect

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате (в более старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.

Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4 ) появилась его 80-проводная версия. Все дополнительные проводники - это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь является проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.

Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников заземления к небольшому числу контактов заземления, в то время, как в 40-проводном кабеле проводники присоединяются каждый к своему контакту. У 80-проводных кабелей разъёмы обычно имеют различную расцветку (синий, серый и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).

Стандарт ATA всегда устанавливал максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью уничтожает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.

Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master ), а другое ведомым (англ. slave ). Обычно ведущее устройство идёт перед ведомым в списке дисков, перечисляемых BIOS’ом компьютера или операционной системы. В старых BIOS’ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.

Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (т. е. «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM’а на отдельный канал).

Настройка, именуемая cable select (т. е., «выбор, определяемый кабелем» , кабельная выборка ), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select , он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой . У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъёмов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (то есть на нём логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) - как ведомый.

Во времена использования 40-проводных кабелей, широко распространилась практика осуществлять установку cable select путём простого перерезания проводника 28 между двумя разъёмами, подключаемыми к диску. При этом ведомый привод оказывался на конце кабеля, а ведущий в середине. Такое размещение в поздних версиях спецификации было даже стандартизировано. К сожалению, когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно - как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.

80-проводные кабели, введённые для UDMA4, лишены указанных недостатков. Теперь ведущее устройство всегда находится в конце шлейфа, так что, если подключено только одно устройство, не получается этого ненужного куска кабеля. Кабельная выборка же у них «заводская» - сделанная в самом разъёме просто путём исключения данного контакта. Поскольку для 80-проводных шлейфов в любом случае требовались собственные разъёмы, повсеместное внедрение этого не составило больших проблем. Стандарт также требует использования разъёмов разных цветов, для более простой идентификации их как производителем, так и сборщиком. Синий разъём предназначен для подключения к контроллеру, чёрный - к ведущему устройству, серый - к ведомому.

Термины «ведущий» и «ведомый» были заимствованы из промышленной электроники (где указанный принцип широко используется при взаимодействии узлов и устройств), но в данном случае являются некорректными, и потому не используются в текущей версии стандарта ATA. Более правильно называть ведущий и ведомый диски соответственно device 0 (устройство 0 ) и device 1 (устройство 1 ). Существует распространённый миф, что ведущий диск руководит доступом дисков к каналу. На самом деле управление доступом дисков и очерёдностью выполнения команд осуществляют контроллер (которым, в свою очередь, управляет драйвер операционной системы). То есть фактически оба устройства являются ведомыми по отношению к контроллеру.