Разное

Излучение электрического двигателя постоянного тока лабораторная работа. Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов

Излучение электрического двигателя постоянного тока лабораторная работа. Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта , обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания :

  1. Переменного тока , работающие напрямую от электросети.
  2. Постоянного тока , которые работают от батареек, АКБ, блоков питания или других источников постоянного тока .

По принципу работы:

  1. Синхронные , в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные , самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре.

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор , являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила . Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока


Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

1. Цель работы: Изучить особенности пуска, механическую характеристику и способы регулирования частоты вращения двигателя постоянного тока со смешанным возбуждением.

Адание.

2.1. к самостоятельной работе:

Изучить особенности конструкции, схемы включения двигателей постоянного тока ;

Изучить методику получения механических характеристик двига­теля постоянного тока ;

Ознакомиться с особенностями пуска и регулирования частоты вращения двигателя постоянного тока ;

Вычертить принципиальные схемы для измерения сопротивлений цепи якоря и обмоток возбуждения (рис.6.4) и испытания двигателя (рис.6.2);

Используя рис. 6.2 и 6.3 составить монтажную схему;

Вычертить формы таблиц 6.1... 6.4;

Подготовить устные ответы на контрольные вопросы.

2.2. к работе в лаборатории:

Ознакомиться с лабораторной установкой;

Записать в таблицу 6.1. паспортные данные двигателя;

Измерить сопротивление цепи якоря и обмоток возбуждения. Данные записать в таблицу 6.1;

Собрать схему и провести исследование двигателя, данные запи­сать в таблицы 6.2, 6.3, 6.4;

Построить естественную механическую характеристику n=f(M) и скоростные характеристики n=f(I B) и n=f(U);

Сделать выводы по результатам исследования.

Общие сведения.

Двигатели постоянного тока в отличие от двигателей переменного тока (прежде всего асинхронных) имеют большую кратность пускового момента и перегрузочную способность, обеспечивают плавное регули­рование частоты вращения рабочей машины. По этому они применя­ются для привода машин и механизмов с тяжелыми условиями пуска (например, в качестве стартеров в двигателях внутреннего сгорания), а также при необходимости регулирования частоты вращения в больших пределах (механизмы подачи станков, обкаточно-тормозные стенды, электрифицированные транспортные средства).

Конструктивно двигатель состоит из неподвижного узла (индуктора) и вращающегося узла (якоря). На магнитопроводе индук­тора расположены обмотки возбуждения. В двигателе смешанного воз­буждения их две: параллельная с выводами Ш 1 и Ш2 и последователь­ная с выводами С1 и С2 (рис.6.2). Сопротивление параллельной обмот­ки R овш составляет в зависимости от мощности двигателя от несколь­ких десятков до сотен Ом. Она выполнена проводом малого сечения с большим числом витков. Последовательная обмотка имеет малое со­противление R obc (обычно от нескольких Ом до долей Ома), т.к. со­стоит из небольшого числа витков провода большого сечения. Индук­тор служит для создания магнитного потока возбуждения при питании его обмоток постоянным током.


Обмотка якоря размещена в пазах магнитопровода и выведена на коллектор. С помощью щеток ее выводы Я I и Я 2 подключаются к ис­точнику постоянного тока. Сопротивление обмотки якоря R Я невелико (Омы или доли Ома).

Вращающий момент М двигателя постоянного тока создается при взаимодействии тока якоря Iя с магнитным потоком возбуждения Ф:

М=К × Iя × Ф, (6.1)

где К - постоянный коэффициент, зависящий от конструкции дви­гателя.

При вращении якоря его обмотка пересекает магнитный поток возбуждения и в ней индуктируется ЭДС Е, пропорциональная частоте вращения n:

Е = С × n × Ф, (6.2)

где С - постоянный коэффициент, зависящий от конструкции дви­гателя.

Ток в цепи якоря:

I Я =(U–Е)/(R Я +R ОВС)=(U–С×n ×Ф)/(R Я +R ОВС), (6.3)

Решая совместно выражения 6.1 и 6.3 относительно п, находят ана­литическое выражение механической характеристики двигателя n=F(М). Ее графическое изображение приведено на рисунке 6.1.

Рис. 6.1. Механическая характеристика двигателя постоянного то­ка смешанного возбуждения

Точка А соответствует работе двигателя вхолостую с частотой вращения n о. С увеличением механической нагрузки частота вращения снижается, а вращающий момент растет, достигая в точке В номиналь­ного значения М H . На участке ВС двигатель работает с перегрузкой. Ток Iя превышает номинальную величину, что приводит к быстрому нагреву обмоток якоря и ОВС, увеличивается искрение на коллекторе. Максимальный момент М mах (точка С) ограничивается условиями ра­боты коллектора и механической прочностью двигателя.

Продолжая механическую характеристику до пересечения в точке Д" с осью вращающего момента мы получили бы значение пускового момента при прямом включении двигателя в сеть. ЭДС Е равна нулю и ток в цепи якоря в соответствии с формулой 6.3 резко возраста­ет.

Для снижения пускового тока последовательно в цепь якоря вклю­чают пусковой реостат Rx (рис. 6.2) с сопротивлением:

Rx = U H / (1.3...2.5) ×I Я.Н. - (R Я - R obc), (6.4)

где U h - номинальное напряжение сети;

I Я.Н. - номинальный ток якоря.

Снижение тока якоря до (1.3...2.5)×I Я.Н. обеспечивает достаточный начальный пусковой момент Мп (точка Д). По мере разгона двигателя сопротивление Rx уменьшают до нуля, поддерживая приблизительно постоянную величину Мп (участок СД).

Реостат R В в цепи параллельной обмотки возбуждения (рис. 6.2) позволяет регулировать величину магнитного потока Ф (формула 6.1). Перед пуском двигателя его полностью выводят для получения необхо­димого пускового момента при минимальном токе якоря.

Используя формулу 6.3, определим частоту вращения двигателя

n = (U - I Я (R Я + R obc + Rx)) / (С Ф), (6.5)

в которой R Я, R obc и С являются постоянными величинами, а U, I Я и Ф можно изменять. Отсюда вытекает три возможных способа регули­рования частоты вращения двигателя:

Изменением величины подводимого напряжения;

Изменением величины тока якоря с помощью регулировочного реостата Rx, который в отличие от пускового рассчитывается на про­должительный режим работы;

Изменением величины магнитного потока возбуждения Ф, кото­рый пропорционален току в обмотках ОВШ и ОВС. В параллельной обмотке его можно регулировать реостатом R b . Сопротивление R b принимают в зависимости от требуемых пределов регулирования час­тоты вращения R В =(2...5) R obш.

В паспортной табличке двигателя указывается номинальная часто­та вращения, которая соответствует номинальной мощности на валу двигателя при номинальном напряжении сети и выведенных сопротив­лениях реостатов R X и R B .

: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой, если разобрать один из электродвигателей, то там много деталей, назначение которых не очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.


Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.


В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.




Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:


  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;

  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;

  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.


В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.


В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).


При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В - значение магнитной индукции поля; I - ток, циркулирующий в проводнике; L - длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.


Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение - мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора - специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.


Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока - это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока - поле статичное.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах - специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.

Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.


Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.


Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.


Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).


Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.


Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.




Рис. 2. Упрощенное изображения коллектора


Рис. 3. Выпрямление переменного тока с помощью коллектора


Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.


Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.


Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.


Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.


В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.


В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.



Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.



А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.


А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.


И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. про него подробнее.


Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.


Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.


Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.


Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.


А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.


На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества - хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.


В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при-воды обеспечивают регулирование скорости в широком диапазо-не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па-раллельно, если они имеют недостаточно высокий. класс по напря-жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый , то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

    изучить устройство, принцип действия, характеристики электродвигателя постоянного тока;

    приобрести практические навыки пуска, эксплуатации и остановки электродвигателя постоянного тока;

    экспериментально исследовать теоретические сведения о характеристиках электродвигателя постоянного тока.

Основные теоретические положения

Электродвигатель постоянного тока - электрическая машина, предназначенная для преобразования электрической энергии в механическую.

Устройство электродвигателя постоянного тока не имеет отличий от генератора постоянного тока. Это обстоятельство делает электрические машины постоянного тока обратимыми, то есть позволяет их использовать как в генераторном, так и в двигательном режимах. Конструктивно электродвигатель постоянного тока имеет неподвижные и подвижные элементы, которые показаны на рис. 1.

Неподвижная часть - статор 1 (станина) изготовлен из стального литья, состоит из главных 2 и дополнительных 3 полюсов с обмотками возбуждения 4 и 5 и щеточной траверсой со щетками. Статор выполняет функцию магнитопровода. С помощью главных полюсов создается постоянное во времени и неподвижное в пространстве магнитное поле. Дополнительные полюсы размещаются между главными полюсами и улучшают условия коммутации.

Подвижной частью электродвигателя постоянного тока является ротор 6 (якорь), который размещается на вращающемся вале. Якорь также играет роль магнитопровода. Он набран из тонких, электрически изолированных друг от друга, тонких листов электротехнической стали с повышенным содержанием кремния, что позволяет уменьшить потери мощности. В пазах якоря запрессованы обмотки 7, выводы которых соединяются с пластинами коллектора 8, размещенными на этом же вале электродвигателя (см. рис. 1).

Рассмотрим принцип работы электродвигателя постоянного тока. Подключение постоянного напряжения к зажимам электрической машины вызывает одновременное возникновение в обмотках возбуждения (статора) и в обмотках якоря тока (рис. 2). В результате взаимодействия тока якоря с магнитным потоком, создаваемым обмоткой возбуждения в статоре возникает сила f , определяемая по закону Ампера. Направление этой силы определяется правилом левой руки (рис. 2), согласно которому она ориентируется перпендикулярно как к токуi (в обмотке якоря), так и к вектору магнитной индукции В (создаваемой обмоткой возбуждения). В результате на ротор действует пара сил (рис. 2). На верхнюю часть ротора сила действует вправо, на нижнюю – влево. Эта пара сил создает вращающий момент, под действием которого якорь приводится во вращение. Величина возникающего электромагнитного момента оказывается равной

M = c м I я Ф ,

где с м - коэффициент, зависящий от конструкции обмотки якоря и числа полюсов электродвигателя;Ф - магнитный поток одной пары главных полюсов электродвигателя;I я - ток якоря двигателя. Как следует из рис. 2, поворот обмоток якоря сопровождается одновременным изменением полярности на коллекторных пластинах. Направление тока в витках обмотки якоря изменяется на противоположное, но магнитный поток обмоток возбуждения сохраняет прежнее направление, что и обусловливает неизменность направления силf , а значит, и вращательного момента.

Вращение якоря в магнитном поле приводит к появлению в его обмотке ЭДС, направление которой определяется уже по правилу правой руки. В результате для представленной на рис. 2 конфигурации полей и сил в обмотке якоря возникнет индукционный ток, направленный противоположно основному току. Поэтому возникающая ЭДС называется противоЭДС. Величина ее равна

E = с e ,

где n - частота вращения якоря электродвигателя;с e - коэффициент, зависящий от конструктивных элементов машины. Эта ЭДС ухудшает рабочие характеристики электродвигателя.

Ток в якоре создает магнитное поле, которое воздействует на магнитное поле главных полюсов (статора), что называется реакцией якоря. В режиме холостого хода машины магнитное поле создается только главными полюсами. Это поле симметрично относительно осей этих полюсов и соосно с ними. При подключении к двигателю нагрузки за счет тока в обмотке якоря создается магнитное поле – поле якоря. Ось этого поля будет перпендикулярна оси главных полюсов. Так как при вращении якоря распределение тока в проводниках якоря остается неизменным, то поле якоря остается неподвижным в пространстве. Сложение этого поля с полем главных полюсов дает результирующее поле, которое разворачивается на угол против направления вращения якоря. В итоге уменьшается вращающий момент, так как часть проводников попадает в зону полюса противоположной полярности и создает тормозной момент. При этом происходит искрение щеток и обгорание коллектора, возникает продольное размагничивающее поле.

С целью уменьшения влияния реакции якоря на работу машины в него встраивают дополнительные полюса. Обмотки таких полюсов включаются последовательно с основной обмоткой якоря, но изменение направление намотки в них вызывает появление магнитного поля, направленного против магнитного поля якоря.

Для изменения направления вращения электродвигателя постоянного тока необходимо изменить полярность напряжения, подводимого к якорю или обмотке возбуждения.

В зависимости от способа включения обмотки возбуждения различают электродвигатели постоянного тока с параллельным, последовательным и смешанным возбуждением.

У двигателей с параллельным возбуждением обмотка рассчитана на полное напряжение питающей сети и включается параллельно цепи якоря (рис. 3).

Двигатель с последовательным возбуждением имеет обмотку возбуждения, которая включается последовательно с якорем, поэтому эта обмотка рассчитана на полный ток якоря (рис. 4).

Двигатели со смешанным возбуждением имеют две обмотки, одна включается параллельно, другая - последовательно с якорем (рис. 5).

Рис. 3 Рис. 4

При пуске электродвигателей постоянного тока (независимо от способа возбуждения) путем прямого включения в питающую сеть возникают значительные пусковые токи, которые могут привести к выходу их из строя. Это происходит в результате выделения значительного количества теплоты в обмотке якоря и последующего нарушения ее изоляции. Поэтому пуск двигателей постоянного тока производится специальными пусковыми приспособлениями. В большинстве случаев для этих целей применяется простейшее пусковое приспособление - пусковой реостат. Процесс пуска электродвигателя постоянного тока с пусковым реостатом показан на примере двигателя постоянного тока с параллельным возбуждением.

Исходя из уравнения, составленного в соответствии со вторым законом Кирхгофа для левой части электрической цепи (см. рис. 3), пусковой реостат полностью выведен (R пуск = 0), ток якоря

,

где U - напряжение, подводимое к электродвигателю;R я - сопротивление обмотки якоря.

В начальный момент пуска электродвигателя частота вращения якоря n = 0, поэтому противоэлектродвижущая сила, наводимая в обмотке якоря, в соответствии с полученным ранее выражением также будет равна нулю (Е = 0).

Сопротивление обмотки якоря R я - величина довольно малая. Для того чтобы ограничить возможный при этом недопустимо большой ток в цепи якоря при пуске, последовательно с якорем независимо от способа возбуждения двигателя включается пусковой реостат (пусковое сопротивлениеR пуск). В этом случае пусковой ток якоря

.

Сопротивление пускового реостата R пуск рассчитывают для работы только на время пуска и подбирают таким образом, чтобы пусковой ток якоря электродвигателя не превышал допустимого значения (I я,пуск 2I я,ном). По мере разгона электродвигателя ЭДС, наводимая в обмотке якоря, вследствие возрастания частоты его вращения n возрастает (Е =с e ). В результате этого ток якоря при прочих равных условиях уменьшается. При этом сопротивление пускового реостатаR пуск по мере разгона якоря электродвигателя необходимо постепенно уменьшать. После окончания разгона двигателя до номинального значения частоты вращения якоря ЭДС возрастает настолько, что пусковое сопротивление может быть сведено к нулю, без опасности значительного возрастания тока якоря.

Таким образом, пусковое сопротивление R пуск в цепи якоря необходимо только при пуске. В процессе нормальной работы электродвигателя оно должно быть отключено, во-первых, потому, что рассчитано на кратковременную работу во время пуска, во-вторых, при наличии пускового сопротивления в нем будут возникать тепловые потери мощности, равныеR пуск I 2 я, существенно снижающие КПД электродвигателя.

Для электродвигателя постоянного тока с параллельным возбуждением в соответствии со вторым законом Кирхгофа для якорной цепи уравнение электрического равновесия имеет вид

.

С учетом выражения для ЭДС (Е =с e ), записав полученную формулу относительно частоты вращения, получаем уравнение частотной (скоростной) характеристики электродвигателяn (I я):

.

Из него следует, что при отсутствии нагрузки на валу и токе якоря I я = 0 частота вращения электродвигателя при данном значении питающего напряжения

.

Частота вращения электродвигателя n 0 является частотой вращения идеального холостого хода. Кроме параметров электродвигателя она зависит также от значения подводимого напряжения и магнитного потока. С уменьшением магнитного потока при прочих равных условиях частота вращения идеального холостого хода возрастает. Поэтому в случае обрыва цепи обмотки возбуждения, когда ток возбуждения становится равным нулю (I в = 0), магнитный поток двигателя снижается до значения, равного значению остаточного магнитного потокаФ ост. При этом двигатель “идет в разнос”, развивая частоту вращения, на много большую номинальной, что представляет определенную опасность как для двигателя, так и для обслуживающего персонала.

Частотная (скоростная) характеристика электродвигателя постоянного тока с параллельным возбуждением n (I я) при постоянном значении магнитного потокаФ =const и постоянном значении подводимого напряженияU = const имеет вид прямой (рис. 6).

Из рассмотрения этой характеристики видно, что с увеличением нагрузки на валу, т. е. с увеличением тока якоряI я частота вращения электродвигателя уменьшается на значение, пропорциональное падению напряжения на сопротивлении цепи якоряR я.

Выражая в уравнениях частотных характеристик ток якоря через электромагнитный момент двигателя М = с м I я Ф , получим уравнение механической характеристики, т. е. зависимостиn (М ) приU = const для двигателей с параллельным возбуждением:

.

Пренебрегая влиянием реакции якоря в процессе изменения нагрузки, можно принять электромагнитный момент двигателя пропорциональным току якоря. Поэтому механические характеристики двигателей постоянного тока имеют такой же вид, как и соответствующие частотные характеристики. Электродвигатель с параллельным возбуждением имеет жесткую механическую характеристику (рис. 7). Из этой характеристики видно, что его частота вращения с ростом момента нагрузки снижается незначительно, так как ток возбуждения при параллельном включении обмотки возбуждения и соответственно магнитный поток двигателя остаются практически неизменными, а сопротивление цепи якоря относительно мало.

Рабочие характеристики двигателей постоянного тока представляют собой зависимости частоты вращенияn , моментаМ , тока якоряI я и КПД () от полезной мощности на валуР 2 электродвигателя, т. е.n (Р 2),М (Р 2),I я (Р 2),(Р 2) при неизменном напряжении на его зажимахU =const .

Рабочие характеристики электродвигателя постоянного тока с параллельным возбуждением представлены на рис. 8. Из этих характеристик видно, что частота вращения n электродвигателей с параллельным возбуждением с увеличением нагрузки несколько уменьшается. Зависимость полезного момента на валу двигателя от мощностиР 2 представляет собой почти прямую линию, так как момент этого двигателя пропорционален нагрузке на валу:М = 2 / n . Искривление указанной зависимости объясняется некоторым снижением частоты вращения с увеличением нагрузки.

При Р 2 = 0 ток, потребляемый электродвигателем, равен току холостого хода. При увеличении мощности ток якоря увеличивается приблизительно по той же зависимости, что и момент нагрузки на валу, так как при условииФ =const ток якоря пропорционален моменту нагрузки. КПД электродвигателя определяют как отношение полезной мощности на валу к мощности, потребляемой из сети:

,

где Р 2 - полезная мощность на валу;Р 1 =UI - мощность, потребляемая электродвигателем из питающей сети;Р эя =I 2 я R я - электрические потери мощности в цепи якоря,Р эв =UI в, =I 2 в R в - электрические потери мощности в цепи возбуждения;Р мех - механические потери мощности;Р м - потери мощности на гистерезис и вихревые токи.

Важным является также возможность регулирования частоты вращения электродвигателей постоянного тока. Анализ выражений для частотных характеристик показывает, что частоту вращения электродвигателей постоянного тока можно регулировать несколькими способами: включением добавочного сопротивленияR доб в цепь якоря, изменением магнитного потокаФ и изменением напряженияU, подводимого к двигателю.

Одним из наиболее распространенных является способ регулирования частоты вращения включением в цепь якоря электродвигателя добавочного сопротивления. С увеличением сопротивления в цепи якоря при прочих равных условиях происходит снижение частоты вращения. При этом чем больше сопротивление в цепи якоря, тем меньше частота вращения электродвигателя.

При неизменном напряжении питающей сети и неизменном магнитном потоке в процессе изменения значения сопротивления якорной цепи можно получить семейство механических характеристик, например, для электродвигателя с параллельным возбуждением (рис. 9).

Преимущество рассмотренного способа регулирования заключается в его относительной простоте и возможности получить плавное изменение частоты вращения в широких пределах (от нуля до номинального значения частоты n ном). К недостаткам этого способа следует отнести то, что имеют место значительные потери мощности в добавочном сопротивлении, увеличивающиеся с уменьшением частоты вращения, а также необходимость использования дополнительной регулирующей аппаратуры. Кроме того, этот способ не позволяет регулировать частоту вращения электродвигателя вверх от ее номинального значения.

Изменения частоты вращения электродвигателя постоянного тока можно достигнуть и в результате изменения значения магнитного потока возбуждения. При изменении магнитного потока в соответствии с уравнением частотной характеристики для двигателей постоянного тока с параллельным возбуждением при постоянном значении напряжения питающей сети и неизменном значении сопротивления якорной цепи можно получить семейство механических характеристик, представленных на рис. 10.

Как видно из этих характеристик, с уменьшением магнитного потока частота вращения идеального холостого хода электродвигателяn 0 возрастает. Так как при частоте вращения, равной нулю, ток якоря электродвигателя, т. е. пусковой ток, не зависит от магнитного потока, то частотные характеристики семейства не будут параллельны друг другу, причем жесткость характеристик уменьшается с уменьшением магнитного потока (увеличение магнитного потока двигателя обычно не производится, так как при этом ток обмотки возбуждения превышает допустимое, т. е. номинальное, его значение). Таким образом, изменение магнитного потока позволяет регулировать частоту вращения электродвигателя только вверх от номинального ее значения, что является недостатком данного способа регулирования.

К недостаткам этого способа следует отнести также относительно небольшой диапазон регулирования вследствие наличия ограничений по механической прочности и коммутации электродвигателя. Преимуществом данного способа регулирования является его простота. Для двигателей с параллельным возбуждением это достигается изменением сопротивления регулировочного реостата R р в цепи возбуждения.

У двигателей постоянного тока с последовательным возбуждением изменение магнитного потока достигается шунтированием обмотки возбуждения сопротивлением, имеющим соответствующее значение, либо замыканием накоротко определенного количества витков обмотки возбуждения.

Широкое применение, особенно в электроприводах, построенных по системе генератор - двигатель, получил способ регулирования частоты вращения путем изменения напряжения на зажимах якоря двигателя. При постоянных магнитном потоке и сопротивлении якорной цепи в результате изменения напряжения на якоре можно получить семейство частотных характеристик.

В качестве примера на рис. 11 представлено такое семейство механических характеристик для электродвигателя с параллельным возбуждением.

С изменением подводимого напряжения частота вращения идеального холостого хода n 0 в соответствии с приведенным ранее выражением изменяется пропорционально напряжению. Так как сопротивление цепи якоря остается неизменным, то жесткость семейства механических характеристик не отличается от жесткости естественной механической характеристики приU =U ном.

Преимуществом рассмотренного способа регулирования является широкий диапазон изменения частоты вращения без увеличения потерь мощности. К недостаткам данного способа следует отнести то, что при этом необходим источник регулируемого питающего напряжения, а это приводит к увеличению массы, габаритов и стоимости установки.