Программы

Линии электропередач их характеристики и классификация. Россети реализовали уникальный проект по строительству двух самых высоких в россии опор лэп

Линии электропередач их характеристики и классификация. Россети реализовали уникальный проект по строительству двух самых высоких в россии опор лэп

Содержание:

Один из столпов современной цивилизации – это электроснабжение. Ключевую роль в нем выполняют линии электропередачи – ЛЭП. Независимо от удаленности генерирующих мощностей от конечных потребителей, нужны протяженные проводники, которые их соединяют. Далее расскажем более детально о том, что из себя представляют эти проводники, именуемые как ЛЭП.

Какими бывают воздушные ЛЭП

Провода, прикрепленные к опорам, – это и есть воздушные ЛЭП. Сегодня освоены два способа передачи электроэнергии на большие расстояния. Они основаны на переменном и постоянном напряжениях. Передача электроэнергии при постоянном напряжении пока еще менее распространена в сравнении с переменным напряжением. Это объясняется тем, что постоянный ток сам по себе не генерируется, а получается из переменного тока.

По этой причине необходимы дополнительные электрические машины. А они стали появляться относительно недавно, поскольку в их основе используются мощные полупроводниковые приборы. Такие полупроводники появились лишь 20–30 лет тому назад, то есть примерно в 90-е годы ХХ века. Следовательно, до этого времени уже были построены в большом количестве ЛЭП переменного тока. Отличия линий электропередачи показаны далее на схематическом изображении.

Наибольшие потери вызывает активное сопротивление материала проводов. При этом не имеет значения, какой ток – постоянный или переменный. Для их преодоления напряжение в начале передачи повышается как можно больше. Уже преодолен уровень в один миллион вольт. Генератор Г питает ЛЭП переменного тока через трансформатор Т1. А в конце передачи напряжение понижается. ЛЭП питает нагрузку Н через трансформатор Т2. Трансформатор является самым простым и надежным инструментом преобразования напряжений.

У читателя, мало знакомого с электроснабжением, скорее всего, появится вопрос о смысле передачи электроэнергии на постоянном токе. А причины чисто экономические – передача электроэнергии на постоянном токе именно в самой ЛЭП дает большую экономию:

  1. Генератор вырабатывает трехфазное напряжение. Следовательно, три провода для электроснабжения на переменном токе нужны всегда. А на постоянном токе всю мощность трех фаз можно передать по двум проводам. А при использовании земли как проводника – по одному проводу. Следовательно, экономия лишь на материалах получается трехкратной в пользу ЛЭП на постоянном токе.
  2. Электрические сети переменного тока при объединении в одну общую систему должны иметь одинаковую фазировку (синхронизацию). Это значит, что мгновенное значение напряжения в соединяемых электросетях должно быть одинаковым. Иначе между соединяемыми фазами электросетей будет разность потенциалов. Как следствие соединения без фазировки – авария, сопоставимая с коротким замыканием. Для электросетей постоянного тока вообще не характерна. Для них имеет значение лишь действующее напряжение на момент соединения.
  3. Для электрических цепей, работающих на переменном токе, характерен импеданс, который связан с индуктивностью и емкостью. Импеданс имеется также и у ЛЭП переменного тока. Чем протяженнее линия, тем больше импеданс и потери, с ним связанные. Для электрических цепей постоянного тока понятия импеданса не существует, как и потерь, связанных с изменением направления движения электрического тока.
  4. Как уже упоминалось в п. 2, для стабильности в энергосистеме нужна синхронизация генераторов. Но чем больше система, работающая на переменном токе, и, соответственно, число электрогенераторов, тем сложнее их синхронизировать. А для энергосистем постоянного тока любое число генераторов будет нормально работать.

Из-за того, что сегодня нет достаточно мощных полупроводниковых или иных систем для преобразования напряжения, достаточно эффективного и надежного, большинство ЛЭП по-прежнему работает на переменном токе. По этой причине далее остановимся только на них.

Еще один пункт в классификации линий электропередачи – это их назначение. В связи с этим линии разделяются на

  • сверхдальние,
  • магистральные,
  • распределительные.

Их конструкция принципиально отличается из-за разных величин напряжения. Так, в сверхдальних ЛЭП, являющихся системообразующими, применяются самые высокие напряжения, которые только существуют на нынешнем этапе развития техники. Величина в 500 кВ для них является минимальной. Это объясняется значительным удалением друг от друга мощных электростанций, каждая из которых – это основа отдельной энергосистемы.

Внутри нее существует своя распределительная сеть, задача которой – обеспечение больших групп конечных потребителей. Они присоединены к распределительным подстанциям с напряжением 220 или 330 кВ на высокой стороне. Эти подстанции являются конечными потребителями для магистральных ЛЭП. Поскольку энергетический поток уже вплотную приблизился к поселениям, напряжение необходимо уменьшить.

Распределение электроэнергии выполняют ЛЭП, напряжение которых 20 и 35 кВ для жилого сектора, а также 110 и 150 кВ – для мощных промышленных объектов. Следующий пункт классификации линий электропередачи – по классу напряжения. По этому признаку ЛЭП можно опознать визуально. Для каждого класса напряжения характерны соответствующие изоляторы. Их конструкция – это своего рода удостоверение линии электропередачи. Изоляторы изготавливаются увеличением числа керамических чашек соответственно увеличению напряжения. А его классы в киловольтах (включая напряжения между фазами, принятые для стран СНГ) такие:

  • 1 (380 В);
  • 35 (6, 10, 20);
  • 110…220;
  • 330…750 (500);
  • 750 (1150).

Помимо изоляторов, отличительными признаками являются провода. С увеличением напряжения все больше проявляется эффект электрического коронного разряда. Это явление отбирает энергию и уменьшает эффективность электроснабжения. Поэтому для ослабления коронного разряда с увеличением напряжения, начиная с 220 кВ, используются параллельные провода – по одному на каждые примерно 100 кВ. Некоторые из воздушных линий (ВЛ) разных классов напряжения показаны далее на изображениях:

Опоры ЛЭП и другие заметные элементы

Для того чтобы провод надежно удерживался, применяются опоры. В простейшем случае это деревянные столбы. Но такая конструкция применима лишь к линиям до 35 кВ. А с увеличением ценности древесины в этом классе напряжений все больше используются опоры из железобетона. По мере увеличения напряжения провода необходимо поднимать выше, а расстояние между фазами делать больше. В сравнении опоры выглядят так:

В общем, опоры – это отдельная тема, которая довольно-таки обширна. По этой причине в детали темы опор линий электропередачи здесь углубляться не будем. Но чтобы кратко и емко показать читателю ее основу, продемонстрируем изображение:

В заключение информации о воздушных ЛЭП упомянем те дополнительные элементы, которые встречаются на опорах и хорошо заметны. Это

  • системы защиты от молнии,
  • а также реакторы.

Кроме перечисленных элементов, в линиях электропередачи применяется еще несколько. Но оставим их за рамками статьи и перейдем к кабелям.

Кабельные линии

Воздух – это изолятор. На этом его свойстве основаны воздушные линии. Но существуют и другие более эффективные материалы-изоляторы. Их применение позволяет намного уменьшить расстояния между фазными проводниками. Но цена такого кабеля получается настолько велика, что не может быть и речи о его использовании вместо воздушных ЛЭП. По этой причине кабели прокладывают там, где есть трудности с воздушными линиями.

В восьмидесятые годы строительство ЛЭП-750 кВ приобрело массовый характер. На повестке дня стоял вопрос освоения новых, ранее не существоваших в мире классов напряжения -1150 кВ переменного и 1500 кВ постоянного тока, названных ультравысокими.

Строительство линий электропередачи ультравысокого напряжения открывало захватывающие перспективы - возможность быстро, с минимальными потерями перебрасывать электроэнергию и мощность на тысячи километров из энергоизбыточных регионов страны в энергодефицитные.

Первым в мире «широтным» линиям электропередачи предстояло связать воедино пять объединённых энергосистем Советского Союза – Сибири, Казахстана, Урала, Волги, Центра. Электропередача Сибирь – Казахстан – Урал строилась и вводилась в эксплуатацию поэтапно.

24 марта 1977 года ЦК КПСС и Совмин СССР приняли Постановление №243 "О создании Экибастузского топливно-энергетического комплекса и строительства линии электропередачи постоянного тока напряжением 1500 кВ Экибастуз-Центр". Этим постановлением было предусмотрено эффективнее развивать топливно-энергетический комплекс, реализовать энергетическую программу СССР, где Казахстану предусматривалась в ближайшие годы одна из ключевых ролей в советской энергетике. В то время Казахстан занимал третье место среди республик СССР по производству электроэнергии.

Учитывая несметные запасы угля и масштабы его добычи, было принято решение о строительстве в Экибастузе крупных тепловых электростанций в непосредственной близости от разрезов, чтобы сократить до минимума расходы на транспортировку угля. С вводом в эксплуатацию энергоблоков на строящихся ГРЭС Казахстан не только полностью обеспечивал электроэнергией народное хозяйство республики, но и имел возможность передавать электроэнергию в другие регионы бывшего Советского Союза.

Для этих целей и было принято решение строительства электролиний 500 кВ и уникальной линии электропередачи сверхвысокого напряжения 1150 киловольт переменного тока Экибастуз-Урал протяженностью 900 км с подстанциями в Экибастузе, Кокчетаве, Кустанае и участок Кустанай - Челябинск протяженностью 300 км, с временным использованием его на напряжение 500 кВ.

Технико-экономическое обоснование электропередачи 1150 осуществлялось отделением дальних передач института "Энергосетьпроект". Разработка проектно-сметной документации производилась этим же институтом.

Генеральным подрядчиком по строительству электропередачи были по ВН-1150 кВ - трест "Спецсетьстрой". По строительству объектов ПС 1150 кВ Экибастузская - трест "Экибастузэнергострой". По строительству подстанций в Кокчетаве, Кустанае и Челябинске - трест "Южуралэнергострой".

Разработкой оборудования для уникальной электропередачи занимались десятки научных центров и институтов. К примеру, автотрансформаторы АОДЦТ-66700 разрабатывал и изготавливал НПО "Запорожтрансформатор". Реакторы шунтирующие РОДЦ-300000/1150 - Московский завод "Электросила", воздушные выключатели ВНВ-1150 разработал НПО "Уралэлектротяжмаш". Полый провод для ошиновки оборудования ОРУ-1150 изготовил Московский электротехнический завод АН СССР в содружестве с институтами, энергетиками и работниками других отраслей промышленности. Для электропередачи были созданы новые классы контактных и изоляционных материалов, аппаратуры релейной защиты, автоматики и связи, рассчитанной на безотказную и длительную работу узлов и агрегатов при сверхвысоких нагрузках.

Строительство ВЛ-1150 кВ осуществлялось несколькими передвижными мехколоннами и опережало строительство подстанций. Строительство первой из четырех подстанций началось генподрядчиком СУЭПК, начальник Ю.А. Казанцев Для повышения индустриализации и сокращения сроков строительства проектными институтами были приняты усовершенствованные конструкции со сборкой отдельных узлов на сборочных площадках.

Имеющаяся на то время практика подстанционного строительства на объектах ПС-1150 кВ была неприемлема, так как маслонаполненное электротехническое оборудование, монтируемое на площадке, весило более 500 тонн. Металлоконструкции линейных и ячейковых порталов весили до 30 тонн и монтировались на высоте 40 и более метров при значительных габаритах.

Подрядчиками для их монтажа применялась на тот период передовая мобильная грузоподъемная техника, краны "Като", "Днепр", "Январец", ДЭК-50, автовышки "Магирус-Бронто-33", АГП-22 и др.

Используя вышеназванную технику в стесненных условиях площадки, строителям и монтажникам приходилось проявлять смекалку для организации безаварийной работы механизмов.

При большой концентрации механизмов на площадках строительства была удачно применена кольцевая схема временного электроснабжения, исключающая отключение и повреждение линий при передвижении механизмов.

Для координации вышеназванных мероприятий в Экибастузе работала группа рабочего проектирования Одесского филиала института "Оргэнергострой" (возглавлял ее В.Х. Ким), которая разрабатывала проекты производства работ на технологические процессы монтажа строительных конструкций и оборудования.

Большой объем работ по монтажу металлоконструкций ОРУ-500 кВ и ОРУ-1150 кВ был выполнен участком под руководством А.В. Музыка треста "Электросредазмонтаж". Монтаж всего маслонаполненного оборудования и его ревизию выполнил
участок во главе с М.Е. Семеновым этого же треста.

Строительные и монтажные работы по укладке кабельных лотков и каналов, монтажу стоек УСО, устройство дорог и переездов выполнило СУЭПК (начальник участка В.И. Веселов).

По своему техническому оснащению первенец казахстанской энергетики сверхвысокого напряжения ПС-1150 кВ являлась уникальным сооружением, которому не было аналогов в мире. Само оборудование на ПС-1150 кВ считалось технически сложным для эксплуатации и требовало от эксплуатирующего персонала особых знаний и особого отношения к своей работе. Именно такими качествами обладали Ю.Н. Пакулин, начальник подстанции, Л.Р. Беседин, заместитель начальника ПС, Г.И. Пилюгин, мастер по ремонту воздушных выключателей. Оперативно-диспетчерский персонал - Н.И. Токманцеца, И.П. Долгов, Е.Н. обко, А.В. Аксиньин. Ведущие инженеры группы релейной защиты и автоматики А.Н. Юхно, И.Т. Финк, К. Ергалиев - электрослесарь по ревизии и наладке маслонаполненного оборудования и др. Бесперебойной работой подрядных организаций, занятых в круглосуточном режиме, руководил штаб стройки во главе с главным инженером треста "Экибастузэнергострой" М. Барковским.

В предпусковой период в течение продолжительного времени на площадке ПС-1150 кВ практически жила группа ведущих специалистов объединения во главе с главным инженером ПО "Дальние электропередачи" О.А. Никитиным. После четырехлетней напряженной работы многих подрядных, пусконаладочных и шефских заводских организаций, участвующих в создании уникальной подстанции, в последних числах июля 1985 года впервые в мировой практике было подано напряжение на уникальное оборудование подстанции Экибастузская 1150 кВ, предназначенное для передачи электроэнергии по линии Экибастуз-Урал до подстанции в Кокчетаве. Началось промышленное испытание первой очереди крупнейшего энергомоста.

Впервые в мировой практике промышленного потребления получена электроэнергия переменного тока сверхвысокого напряжения 1150 кВ.

В честь такого события был проведен митинг на территории ПС-1150 кВ с участием общественности города.

На снимке запечатлен момент передачи символичного ключа от строителей эксплуатационникам. Фото Б.КИРИЧЕК, участника строительства электропередачи переменного тока 1150 кВ Экибастуз-Урал.

Так в 1987 году был сдан участок этой линии от Экибастуза до Чебаркуля протяжённостью 432 километра на уровне напряжения 1150 кВ. Ни одна другая линия в мире не способна работать под столь высоким напряжением. Участок должен был выдавать мощность от двух построенных Экибастузских ГРЭС на подстанцию 1150 кВ в Чебаркуле. Диспетчерское наименование: Костанайская-Челябинская. Пропускная способность линии достигала 5500 МВт.

Проложенная от Экибастуза через Кокчетаев и Кустанай вплоть до Челябинска, ЛЭП-1150 соединила энергосистемы Казахстана и России. Средняя высота опор линии составляет 45 метров. Вес проводников приблизительно 50 тонн.

Уникальная высоковольтная линия электропередачи «Сибирь-Центр» проектного напряжения 1150 кВ обошлась стране в 1,3 трлн. рублей. Одновременно с ней шло строительство линии электропередачи постоянного тока 1500 кВ Экибастуз – Центр.

На территории Казахстана ЛЭП-1150 кВ Экибастуз-Кокчетав-Кустанай работала на номинальном напряжении 1150 кВ с 1988 по 1991 годы.

Завершение строительства «широтных» ЛЭП 1150 и 1500 кВ планировалось в 1995 году, однако из-за распада СССР проект остался неоконченным. Большая часть линии оказалась «за границей», так как приблизительно 1400 из 1900 км линии «Барнаул-Экибастуз-Кокчетав-Кустанай-Челябинск» находится в Казахстане.

«Линию построили, но использовать ее, окупив затраченные деньги, так и не пришлось. Сначала во время распада СССР перестали работать обе электростанции в Экибастузе, их продали американцам фактически как металлолом. Потом и линию демонтировали на участке, проходящем по Казахстану. А участок от Петропавловска до Чебаркуля эксплуатируется на напряжении 500 киловольт и практически незагружен. Но опоры-рюмки стоят».

Заместитель управляющего Челябэнерго Владимир Михайлович Козлов


В 2012 Олег Дерипаска заявил о намерении En+ возродить проект строительства энергомоста Сибирь - Казахстан - Урал на основе сверхвысоковольтной ЛЭП.

Электричество в наше время это основной вид энергии используемый повсюду. Повсеместное использование её стало возможным благодаря электрическим сетям , которые объединяют источники и потребителей электроэнергии. Линии электропередачи или сокращённо ЛЭП выполняют функцию транспортировки электричества. Они прокладываются либо над поверхностью земли и именуются «воздушными», либо заглубляются в землю и или под воду и именуются «кабельными».

Воздушные линии электропередачи, несмотря на их сложную инфраструктуру получаются более дешёвыми по сравнению с кабельными линиями. Сам по себе высоковольтный кабель является дорогим и сложным изделием. По этой причине этими кабелями прокладываются только некоторые участки на трассе воздушной ЛЭП в тех местах, где невозможно установить опоры с проводами, например через морские проливы, широкие реки и т.п. Кабелями прокладываются электрические сети в населённых пунктах, где сооружение опор также невозможно из-за городской инфраструктуры.

ЛЭП, несмотря на большую протяжённость это всё те же электрические цепи, для которых закон Ома применим так же, как и для остальных. Поэтому экономичность ЛЭП напрямую связана с увеличением напряжения в ней. Сила тока уменьшается, а вместе с ней и потери становятся меньше. По этой причине, чем дальше от электростанции расположены потребители, тем более высоковольтной должна быть ЛЭП. Современные сверхдальние ЛЭП передают электрическую энергию с напряжениями в миллионы вольт.

Но увеличение напряжения с целью уменьшения потерь имеет ограничения. Причиной их является коронный разряд. Это явление проявляется, вызывая ощутимые потери энергии, начиная с напряжений выше 100 киловольт. Жужжание и потрескивание высоковольтных проводов является следствием коронного разряда на них. По этой причине, с целью уменьшения потерь на коронный разряд, начиная с 220 киловольт, применяется два провода и более для каждой фазы воздушной ЛЭП.

Протяжённость линий электропередачи и рабочее напряжение их являются взаимосвязанными.

  • С напряжениями от 500 киловольт работают сверхдальние ЛЭП.
  • 220 и 330 киловольт это напряжения для магистральных линий электропередачи.
  • 150, 110, и 35 киловольт это напряжения распределительных ЛЭП.
  • Напряжения 20 киловольт и менее характерны для местных электросетей, по которым снабжаются электроэнергией конечные потребители.

Опоры для проводов

Кроме проводов в состав линий электропередачи в качестве главных конструктивных элементов входят опоры. Их назначение это удерживание проводов. В каждой ЛЭП есть несколько разновидностей опор, что показано на изображении ниже:

Анкерные опоры воспринимают большие нагрузки и поэтому имеют прочную жёсткую конструкцию, которая может быть весьма разнообразной. Все опоры соприкасаются со слабым или сырым грунтом через бетонный фундамент. В прочном грунте делаются скважины, в которые непосредственно погружаются опоры ЛЭП. Примеры конструкций металлических анкерных опор показаны на изображении далее:

Опоры также могут быть изготовлены с применением бетона или древесины. Деревянные опоры хотя и менее долговечные, но в полтора раза более дешёвые в сравнении с металлическими и бетонными конструкциями. Особенно оправдано их применение в регионах с сильными морозами и большими запасами древесины. Наиболее широкое распространение деревянные опоры получили в электросетях с напряжением до 1000 Вольт. Конструкция таких опор показана на изображении далее:

Провода линий электропередачи

Провода современных ЛЭП в основном изготовлены из алюминиевой проволоки. Для местных линий электропередачи применяются провода из чистого алюминия. Ограничением является длина пролёта между опорами в 100 – 120 метров. Для более протяжённых пролётов применяются провода из алюминия и стали. Такой провод имеет внутри стальной трос, охваченный алюминиевыми жилами. Трос воспринимает механическую нагрузку, алюминий – электрическую.

Полностью стальные провода применяются только на непротяжённых участках, где необходима максимальная прочность при минимальном весе провода. Все линии электропередачи с напряжением выше 35 киловольт снабжены стальным тросом для защиты от удара молний. Провода из меди и бронзы в настоящее время применяются только в ЛЭП специального назначения. Медная и алюминиевая проволока используется для изготовления полых трубчатых проводов. Это делается для уменьшения потерь в коронном разряде и для уменьшения радиопомех. Изображения проводов различной конструкции показаны далее:

Провод для линий электропередачи выбирается с учётом условий работы и возникающих при этом механических нагрузок. В тёплое время года это ветер, который раскачивает провода и увеличивает нагрузку на разрыв. Зимой к ветру добавляется гололёд. Слой льда на проводах своим весом существенно увеличивает нагрузку на них. Тем более что понижение температуры приводит к уменьшению длины проводов и усиливает внутренне напряжение в их материале.

Изоляторы и арматура

Для безопасного соединения проводов с опорами используются изоляторы. Материалом для них служит либо электротехнический фарфор, либо закалённое стекло, либо полимер, как показано на изображении ниже:

Стеклянные изоляторы при одних и тех же условиях получаются меньше и легче, чем фарфоровые. Конструктивно изоляторы разделяют на штыревые и подвесные. Штыревая конструкция для ЛЭП с напряжением выше 35 киловольт не применяется. Механические нагрузки, воспринимаемые подвесными изоляторами больше, нежели у штыревых изоляторов. По этой причине подвесная конструкция может применяться и на более низких напряжениях вместо штыревых изоляторов.

Подвесной изолятор состоит из отдельных чашек, соединённых в гирлянду. Число чашек зависит от напряжения ЛЭП. Для соединения чашек в гирлянду и всех остальных креплений проводов и изоляторов применяется специальная арматура. Надёжность, прочность и долговечность в условиях открытой среды определяют такие материалы для изготовления арматуры как сталь и чугун. При необходимости получения повышенной стойкости к коррозии выполняется покрытие деталей цинком.

К арматуре относятся различные зажимы, распорки, гасители вибрации, сцепные соединители, промежуточные звенья изоляторов, коромысла. Общее представление об арматуре даёт изображение ниже:

Защитные приспособления

Ещё одним компонентом устройства линий электропередачи являются конструкции защищающие оборудование, присоединённое к ЛЭП от атмосферных и коммутационных перенапряжений. От ударов молний защитой являются трос, протянутый выше всех проводов линии электропередачи и молниеотводы, которые обычно устанавливаются вблизи подстанций. Защитные промежутки располагаются на опорах ЛЭП. Пример такого промежутка показан на изображении слева. Вблизи подстанций устанавливаются трубчатые разрядники, в которых внутри есть искровой промежуток. Если он пробивается и при этом возникает дуга питаемая током короткого замыкания, выделяется газ, который гасит эту дугу.

Все технические и организационные нюансы по устройству линий электропередачи регулируются Правилами устройства электроустановок (ПУЭ). Какие – либо отступления от этих правил категорически запрещаются и могут рассматриваться как преступление той или иной тяжести в зависимости от последствий оного.

Казалось бы, что может быть обычнее высоковольтных линий электропередач ? Огромные металлические башни опор ЛЭП не вызывают у нас никаких сильных эмоций, разве что иногда немного портят вид из окна.

Однако в мире есть люди, для которых опоры ЛЭП стали предметом художественного интереса. Это фотографы, которые объектом для своих работ выбрали опоры ЛЭП. Глядя на их фотографии, невольно удивляешься, неужели именно это мы каждый день видим за окном? Да, в основном на их фотографиях самые обычные опоры ЛЭП!

Эти люди никогда не прекращают поиск достойного объекта для съемки. Как у альпинистов есть желание покорить самую высокую вершину мира, у таких фотографов есть свой Эверест. Они стремятся найти и запечатлеть самые знаменитые опоры линий электропередач в мире.

Что может сделать опору ЛЭП знаменитой? Конечно же, ее габариты! Самые высокие опоры, как правило, ставят в труднодоступных местах. Для того что бы проложить линии электропередач через горные или водные преграды, приходится проектировать более мощные опоры. Так, минимальная высота опор на таких участках от 100 метров (средняя высота обычных опор около 30 м), а расстояние между ними зачастую достигает километра! Эти опоры становятся объектом фотографирования для многих любителей ЛЭП-фотографии, а если учесть интересные пейзажи вокруг опор, то некоторую художественную ценность такой фотографии может увидеть самый обычный человек.

Так, одним из самых замечательных мест для подобных съемок является река Днепр, между городами Днепропетровск и Запорожье, что находится в Украине. Красивые природные пейзажи, на фоне которых расположены разнообразные по форме опоры ЛЭП. Высота этих опор достигает 180 метров, а расстояние между некоторыми из них доходит до 1,5 километров. Вес таких опор превышает 100 тонн!

Какая же опора ЛЭП самая высокая в мире? До конца 2011 года это была опора, которая находится в Китае. Ее высота достигает 370 метров. Но в конце 2011 года завершилось строительство опоры в Индонезии. Высота опоры, которую назвали «Балийским перекрестком», 376 метров. Ее основание имеет размер футбольного поля, а в самой высокой точке ее ширина равна 70 метрам. По расчетам специалистов, она обеспечит передачу до 3 тысяч мегаватт энергии.

С помощью этого сооружения провода смогут протянуть через пролив, который разделяет острова Ява и Бали. Над проливом дуют сильные ветра, поэтому провода необходимо разводить на большое расстояние друг от друга, этим обусловлена необычайная ширина опоры. До постройки «Балийского перекрестка» подача энергии на остров Бали осуществлялась через провода, протянутые по дну пролива, но из-за сильного течения там постоянно случались аварии.

Даже в самом центре города можно найти объект для создания замечательной фотографии. А если вспомнить, где находится ближайшая электростанция, и нет ли поблизости реки, то можно получить еще и фотографии опор-рекордсменок. Кто знает, может, вскоре, возвращаясь с острова Бали, мы будем привозить с собой не только фотографии чудных пейзажей и замечательных пляжей, но и фотографии самой большой опоры ЛЭП в мире?

Россия

В России получили развитие два ряда номинальных напряжений, в которые входят как линии сверхвысокого, так и линии ультра высокого напряжения. Первая шкала 110-150-330-750 кВ, вторая 110-220-500-1150 кВ.

Каждая из последующих ступеней в этих шкалах превышает предыдущую примерно в 2 раза, что позволяет поднять пропускную способность электропередачи примерно в 4 раза.
Эти шкалы напряжения имеют свои зоны применения. Первая шкала получила распространение в Северо-Западных областях России, Карелии, на Кольском полуострове и Северном Кавказе. Связи объединенной системы Северо-Запада с Кольской энергосистемой выполнены на напряжении 330 кВ, ОЭС Северо-Запада с ОЭС Центра - на напряжении 750 кВ.
Вторая шкала напряжений применяется в Центре России и регионах, расположенных к востоку от Москвы. В Центральной зоне упомянутые две шкалы иногда накладываются (линии 500 и 750 кВ). В то же время к востоку от Москвы, включая Сибирь и Дальний Восток, используется только вторая шкала напряжений. Такое разделение двух шкал по различным территориям имеет свои преимущества с точки зрения эксплуатации сетевого хозяйства.

США

Первые электропередачи напряжением 110 кВ были построены в США еще в 1910 г., 220 кВ - в 1922 г. 3aтем появился ряд других номинальных напряжений, что обусловлено большим количеством фирм, производивших электротехническое оборудование. В 50-е годы были освоены линии 345 кВ, в 1965 г. была включена первая линия 500 кВ, в 1969 г. - линия 765 кВ, а в 1970 г. вошла в работу линия электропередачи постоянного тока ±400 кВ длиной 1400 км (Тихоокеанская передача), проходящая вдоль западного побережья США. Несмотря на пестроту номинальных напряжений в этой стране, можно выделить две шкалы, которые имеют свои зоны применения. Первая шкала включает напряжения 138-345-765 кВ и используется на Юго-Западе, в Центре и на Севере страны, вторая - напряжения 115-230-500 кВ и используется преимущественно на Западе и Юго-Востоке США.
В США существует ряд объединенных энергосистем, куда входят отдельные энергокомпании, которых насчитывается более грех тысяч. Некоторые из этих объединений управляются из единого диспетчерского пункта, другие просто осуществляют параллельную работу при координации распределения нагрузки и регулирования частоты. Роль межсистемных связей и системообразующих линий выполняют линии 345-765 кВ. Ведутся работы по созданию оборудования для линий электропередачи 1600 кВ.
На севере энергосистемы США имеют мощные связи с Канадой, включая несколько линий 765 кВ в восточной части границы, несколько линий 500 кВ в западной ее части, три вставки постоянного тока.
В 90-х годах прошлого столетия была сооружена многоподстанционная электропередача постоянного тока Канада-США (1486 км, ±400 кВ, 2000 МВт) от ГЭС Ла Гранд в провинции Квебек (Канада) до г. Бостон (США). Эта передача имеет пять преобразовательных подстанций, три из которых расположены на территории Канады и две на территории США. Кроме этой линии электропередачи в США имеются еще три линии электропередачи и восемь вставок постоянного тока.
На юге энергосистемы США связаны линиями 230-345 кВ с энергосистемой Мексики. Энергосистемы Канады, США и Мексики работают параллельно.

Западная Европа

В Западной Европе существует энергообъединение UCPTE, включающее 12 стран, к которому теперь подключены и страны Восточной Европы. Страны Северной Европы создали энергообъединение Nordel System, включающее Швецию, Норвегию, Финляндию и Данию. Энергосистема Англин работает параллельно с UCPTE через подводную линию электропередачи постоянного тока. Подобные линии электропередачи связывают также энергосистемы Швеции, Дании и Германии с энергосистемами Швеции и Финляндии. Россия связана с Nordel System через вставку постоянного тока в г. Выборг с мощностью 1420 МВт. Предполагается сооружение подводной линии постоянного тока Великобритания - Норвегия протяженностью 724 км с пропускной способностью 800 МВт.
Основными системообразующими линиями переменного тока в странах Западной Европы, входящих в UCPTE, являются линии напряжением 380-420 кВ. Линии 230 кВ и линии 110-150 кВ выполняют функции распределительных сетей. Напряжения 500 и 750 кВ в Западной Европе не используются, однако во Франции в связи с ростом нагрузок разработан проект сооружения линий напряжением 750 кВ. При этом предполагается использовать вновь сооруженные линии 380 кВ с двумя проводами в фазе на двухцепных опорах для подвески одной цепи 750 кВ с теми же проводами.

Канада

В восточной части страны достаточно широко развита сеть напряжением 735 кВ, в западной - 500 кВ. Развитие сети 735 кВ вызвано необходимостью выдачи мощности одной из крупнейших в мире ГЭС на р. Черчилл мощностью 5,2 ГВт, а также каскада ГЭС на р. Св. Лаврентия. Для выдачи мощности ГЭС на р. Нельсон сооружена линия электропередачи постоянного тока Нельсон Ривер - Виннипег - двухцепная передача длиной 800 км: первая цепь на ртутных вентилях (±450 кВ, 1620 МВт), вторая цепь на высоковольтных тиристорных вентилях (±500 кВ, 2000 МВт). Кроме того, имеется вставка постоянного тока Ил Ривер 320 МВт, предназначенная для связи энергосистем Канады и США. На западном побережье
Канады проложена подводная передача от материка до о. Ванкувер, имеющая два кабеля переменного тока (138 кВ, 120 МВт) и два кабеля постоянного тока (+260+280 кВ, 370 МВт). Имеется также вставка постоянного тока Шатегей (1000 МВт), связывающая сеть 735 кВ в Канаде и сеть 765 кВ в США.
Развитые сети 500 кВ в западной части Канады объединяют крупные электростанции и узлы нагрузки в промышленных районах западных провинций. Непосредственной связи энергосистемы восточной и западной частей Канады не имеют, поскольку они разделены горными хребтами. Связь осуществляется через энергосистемы США. Существуют межсистемные связи 500 кВ между энергосистемами Канады и США в западной части этих стран.
Таким образом, на севере США и юге Канады существуют два крупных энергообъединения: энергосистемы северо-восточной части США н юго-восточной части Канады и энергосистемы северо-западной части США и юго-западной части Канады.

Мексика, Центральная и Южная Америка

Энергосистема Мексики имеет несоизмеримо меньшую мощность, чем энергосистема США. Основная сеть в Мексике формируется на напряжениях 220 и 400 кВ.
Страны Центральной Америки (Панама, Коста-Рика, Гондурас, Никарагуа) образуют энергетически обособленный район с небольшой суммарной мощностью электростанций (3-4 ГВт). Имеются межгосударственные связи 230 кВ. В настоящее время создается Центрально-Американское энергетическое объединение на базе сооружения линий 230-500 кВ.
Среди стран Южной Америки наиболее мощным энергетическим потенциалом обладают Бразилия (54 %), Аргентина (20 %) и Венесуэла (10 %). Остальное приходится на другие страны континента. В то же время крупнейшей в Южной Америке является энергосистема Аргентины. Наивысшее напряжение сетей в Аргентине 500 кВ, суммарная протяженность линий этого класса напряжений составляет около 10 тыс. км.
Наивысшее напряжение электрических сетей в Бразилии 765 кВ. Имеются также сеть линий 500 кВ, отдельные линии 400 кВ и сеть 345 кВ. В Бразилии эксплуатируется линия электропередачи постоянного тока от крупнейшей в мире ГЭС Итайпу в район г. Сан-Паулу. Эта электропередача имеет две цени напряжением ±600 кВ, ее протяженность свыше 800 км, суммарная передаваемая мощность 6300 МВт.
Наивысшее напряжение сетей в Венесуэле - 400 кВ. В остальных странах этого континента - 220 кВ. Существует ряд межсистемных связей 220 кВ.
Широкому объединению электроэнергетических систем Южной Америки препятствуют различные номинальные частоты отдельных стран: 50 и 60 Гц. Имеются две вставки постоянного тока. Одна из них мощностью 50 МВт между сетями Парагвая и Бразилии, другая мощностью 2000 МВт между сетями Бразилии и Аргентины.

Африка

При большой площади континента суммарная мощность электростанций относительно невелика. Из них примерно половина сосредоточена в ЮАР и свыше 10 % в Египте, остальные в других странах континента. При относительно скромных энергетических мощностях в энергосистемах Африки применяются достаточно высокие напряжения, что объясняется удаленностью источников энергии от центров потребления. В Египте применяется напряжение 500 кВ, в ЮАР - 400 кВ, Нигерии, Замбии и Зимбабве - 330 кВ, в других странах 220-230 кВ. На континенте сооружены две мощные линии электропередачи постоянного тока ГЭС: Инга - Шаба, связывающая два наиболее развитых, но обособленных района Заира, и ГЭС Кабора Басса (Мозамбик) - Аполо (ЮАР).

Азия (исключая СНГ)

По этому региону из-за отсутствия достаточно полной информации могут быть приведены только самые общие сведения. Наивысшее напряжение системообразующих линий в Индии, Турции, Ираке, Иране - 400 кВ, в Китае, Пакистане, Японии - 500 кВ. В Индии и Китае большое внимание уделяется электропередачам и вставкам постоянного тока. В этих странах уже сооружено несколько линий электропередачи н вставок постоянного тока и предполагается увеличение их количества и выполнение всех межсистемных связей на постоянном токе.
Среди энергосистем Азии передовые позиции занимают электроэнергетические системы Японии и Южной Корен. Основой системообразующей сети Японии являются линии напряжением 275 и 500 кВ. Практически все линии 500 кВ имеют двухцепное исполнение. Для передачи электроэнергии в район Токио от крупной АЭС построена линия электропередачи напряжением 1100 кВ длиной 250 км. Эта линия сооружена на двухцепных опорах высотой до 120 м, что определяется требованиями экологии. В настоящее время ведется сооружение кольцевой линии 1100 кВ на о. Хонсю.
Сложность в создании единой энергосистемы этой страны представляет наличие разных номинальных частот (50 и 60 Гц) в северной и южной частях Японии. Граница между этими частями проходит по о. Хонсю. Для связи между ними сооружены две вставки постоянного тока по 300 МВт. Кроме того, два острова - Хоккайдо и Хонсю - связывает воздушно-кабельная электропередача постоянного тока (600 МВт, ±250 кВ).
Системообразующая сеть Южной Кореи имеет напряжение 345 кВ. В связи с небольшими размерами территории этого государства линии электропередачи имеют небольшую длину. Общая длина линий 345 кВ, проходящих в меридиональном направлении, составляет немногим более 300 км. Примерно такова же суммарная длина линий, проходящих в широтном направлении. Трассы этих линий, как правило, проходят по территориям, не затронутым хозяйственной деятельностью, что в условиях Южной Кореи представляет большую сложность. В связи е ростом нагрузки сооружается линия 765 кВ, что также требует преодоления трудностей с прокладкой трассы.