Разное

Уровнем модели взаимодействия открытых систем не является. Модель взаимодействия открытых систем

Уровнем модели взаимодействия открытых систем не является. Модель взаимодействия открытых систем

Тема 6.

Прогресс в сфере компьютерных технологий и постоянное повышение быстродействия вычислительных систем обозначил целый ряд задач, при решении которых возникает необходимость интегрирования воедино вычислительных мощностей многих компьютеров. С другой стороны, все нарастающие потребности информационного обмена в человеческом обществе требуют соединения отдельных компьютеров с целью повышения скорости обмена информацией между ними. В связи с этим уже с 70-х годов возникли и начали интенсивно развиваться технологии компьютерного объединения. Многокомпьютерные системы стали называть компьютерными сетями, а технологии интеграции - сетевыми.

Компьютерная сеть – коммуникационная система (система обмена данными), созданная с помощью физического соединения двух или более компьютеров с использованием сетевой архитектуры. Сетевая архитектура определяет полный набор стандартов на аппаратное обеспечение, программное обеспечение и кабельное оборудование в соответствии с проектом компьютерной сети.

Целью создания компьютерных сетей является:

· обеспечение совместного использования аппаратных и программных ресурсов сети;

· обеспечение совместного доступа к ресурсам данных.

Например, все участники локальной сети могут совместно использовать одно общее устройство печати - сетевой принтер или, например, ресурсы жестких дисков одного выделенного компьютера - файлового сервера. Аналогично можно совместно использовать и программное обеспечение. Если в сети имеется специальный компьютер, выделенный для совместного использования участниками сети, он называется файловым сервером .

Все многообразие компьютерных сетей можно классифицировать по группе признаков:
1)Территориальная распространенность;
2) Ведомственная принадлежность;
3) Скорость передачи информации;
4) Тип среды передачи;
5) Топология;
6) Организация взаимодействия компьютеров.

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

Локальная сеть (LAN - Local Area Network) - сеть в пределах предприятия, учреждения, одной организации.

Региональная сеть (MAN - Metropolitan Area Network) - сеть в пределах города или области.

Глобальная сеть (WAN - Wide Area Network) – сеть на территории государства или группы государств.

Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.


По ведомственной принадлежности различают ведомственные и государственные сети . Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети - сети, используемые в государственных структурах.

По типу среды передачи сети разделяются на:

· проводные – с использованием кабелей: коаксиальных, на витой паре, оптоволоконных;

· беспроводные – с передачей информации по радиоканалам, в инфракрасном диапазоне.

Геометрическая организация узлов и кабельных соединений в локальной компьютерной сети определяет различные сетевые топологии .

Классические топологии («кольцо » рис. 15.1, «звезда » рис. 15.2 , «шина » рис. 15.3) в чистом виде встречаются редко.

В реальной практике используется большое число смешанных вариантов, в которых различные участки сети имеют ту или иную топологию:

По способу организации взаимодействия компьютеров сети делят на одноранговые и с выделенным сервером (иерархические сети).

Все компьютеры одноранговой сети равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Главное достоинство одноранговых сетей – это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.

В иерархической сети при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.

Сервер в иерархических сетях - это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, винчестерами большой емкости и высокоскоростной сетевой картой.

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных. К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

1. Необходимость дополнительной ОС для сервера.

2. Более высокая сложность установки и модернизации сети.

3. Необходимость выделения отдельного компьютера в качестве сервера

По технологии использования сервера различают сети с архитектурой файл -сервер и сети с архитектурой клиент -сервер . В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.

В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса.

К основным характеристикам сетей относятся:

Пропускная способность – максимальный объем данных, передаваемых сетью в единицу времени. Пропускная способность измеряется в Мбит/с.

Время реакции сети - время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах.

Модель взаимодействия открытых систем.

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на так называемой модели OSI (модель взаимодействия открытых систем - Model of Open System Interconnections). Модель OSI была создана на основе технических предложений Международного института стандартов ISO (International Standards Organization).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Для обеспечения необходимой совместимости на каждом из семи возможных уровней архитектуры компьютерной сети действуют специальные стандарты, называемые протоколами . Они определяют характер аппаратного взаимодействия компонентов сети (аппаратные протоколы ) и характер взаимодействия программ и данных (программные протоколы ). Физически функции поддержки протоколов исполняют аппаратные устройства (интерфейсы ) и программные средства (программы поддержки протоколов). Программы, выполняющие поддержку протоколов, также называют протоколами.

Каждый уровень архитектуры подразделяется на две части:

Спецификацию услуг;

Спецификацию протокола.

Спецификация услуг определяет, что делает уровень, а спецификация протокола - как он это делает, причем каждый конкретный уровень может иметь более одного протокола.

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения:

1. Физический уровень осуществляет соединения с физическим каналом, так, отсоединения от канала, управление каналом. Определяется скорость передачи данных и топология сети.

2. Канальный уровень добавляет в передаваемые массивы информации вспомогательные символы и контролирует правильность передаваемых данных. Здесь передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой уровень определяет маршрут передачи информации между сетями, обеспечивает обработку ошибок, а так же управление потоками данных. Основная задача сетевого уровня - маршрутизация данных (передача данных между сетями).

4. Транспортный уровень связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения.

5. Сеансовый уровень осуществляет управление сеансами связи между двумя взаимодействующими пользователями, определяет начало и окончание сеанса связи, время, длительность и режим сеанса связи, точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных.

6. Представительский уровень управляет представлением данных в необходимой для программы пользователя форме, производит компрессию и декомпрессию данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных данный уровень представления данных выполняет обратное преобразование.

7. Прикладной уровень взаимодействует с прикладными сетевые программами, обслуживающими файлы, а также выполняет вычислительные, информационно-поисковые работы, логические преобразования информации, передачу почтовых сообщений и т.п. Главная задача этого уровня - обеспечить удобный интерфейс для пользователя.

На разных уровнях обмен происходит различными единицами информации: биты, кадры, пакеты, сеансовые сообщения, пользовательские сообщения.

Основными компонентами сети являются рабочие станции , серверы , передающие среды (кабели ) и сетевое оборудование .

Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи.

Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть это любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами локальной сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры.

Сети можно создавать с любым из типов кабеля.

1. Витая пара (TP - Twisted Pair)– это кабель, выполненный в виде скрученной пары проводов. Он может быть экранированным и неэкранированным. Экранированный кабель более устойчив к электромагнитным помехам. Витая пара наилучшим образом подходит для малых учреждений. Недостатками данного кабеля является высокий коэффициент затухания сигнала и высокая чувствительность к электромагнитным помехам, поэтому максимальное расстояние между активными устройствами в ЛВС при использовании витой пары должно быть не более 100 метров.

2. Коаксиальный кабель состоит из одного цельного или витого центрального проводника, который окружен слоем диэлектрика. Проводящий слой алюминиевой фольги, металлической оплетки или их комбинации окружает диэлектрик и служит одновременно как экран против наводок. Общий изолирующий слой образует внешнюю оболочку кабеля.

Коаксиальный кабель может использоваться в двух различных системах передачи данных: без модуляции сигнала и с модуляцией. В первом случае цифровой сигнал используется в таком виде, в каком он поступает из ПК и сразу же передается по кабелю на приемную станцию. Он имеет один канал передачи со скоростью до 10 Мбит/сек и максимальный радиус действия 4000 м. Во втором случае цифровой сигнал превращают в аналоговый и направляют его на приемную станцию, где он снова превращается в цифровой. Операция превращения сигнала выполняется модемом; каждая станция должна иметь свой модем. Этот способ передачи является многоканальным (обеспечивает передачу по десяткам каналов, используя для этого всего лишь один кабель). Таким способом можно передавать звуки, видеосигналы и другие данные. Длина кабеля может достигать до 50 км.

3. Оптоволоконный кабель является более новой технологией, используемой в сетях. Носителем информации является световой луч, который модулируется сетью и принимает форму сигнала. Такая система устойчива к внешним электрическим помехам и таким образом возможна очень быстрая, секретная и безошибочная передача данных со скоростью до 200 Гбит/с. Количество каналов в таких кабелях огромно. Передача данных выполняется только в симплексном режиме, поэтому для организации обмена данными устройства необходимо соединять двумя оптическими волокнами (на практике оптоволоконный кабель всегда имеет четное, парное кол-во волокон). К недостаткам оптоволоконного кабеля можно отнести большую стоимость, а также сложность подсоединения.

4. Радиоволны в микроволновом диапазоне используются в качестве передающей среды в беспроводных локальных сетях, либо между мостами или шлюзами для связи между локальными сетями. В первом случае максимальное расстояние между станциями составляет 200 - 300 м, во втором - это расстояние прямой видимости. Скорость передачи данных - до 2 Мбит/с.

Беспроводные локальные сети считаются перспективным направлением развития ЛС. Их преимущество - простота и мобильность. Также исчезают проблемы, связанные с прокладкой и монтажом кабельных соединений - достаточно установить интерфейсные платы на рабочие станции, и сеть готова к работе.

Выделяют следующие виды сетевого оборудования .

1. Сетевые карты – это контроллеры, подключаемые в слоты расширения материнской платы компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети.

2. Терминаторы - это резисторы номиналом 50 Ом, которые производят затухание сигнала на концах сегмента сети.

3. Концентраторы (Hub ) – это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. В результате получается сеть с логической структурой общей шины. Различают концентраторы активные и пассивные. Активные концентраторы усиливают полученные сигналы и передают их. Пассивные концентраторы пропускают через себя сигнал, не усиливая и не восстанавливая его.

4. Повторители (Repeater )- устройства сети, усиливает и заново формирует форму входящего аналогового сигнала сети на расстояние другого сегмента. Повторитель действует на электрическом уровне для соединения двух сегментов. Повторители ничего распознают сетевые адреса и поэтому не могут использоваться для уменьшения трафика.

5. Коммутаторы (Switch ) - управляемые программным обеспечением центральные устройства кабельной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адреса его получателя и соответственно передается только ему.

Использование коммутаторов является более дорогим, но и более производительным решением. Коммутатор обычно значительно более сложное устройство и может обслуживать одновременно несколько запросов. Если по какой-то причине нужный порт в данный момент времени занят, то пакет помещается в буферную память коммутатора, где и дожидается своей очереди. Построенные с помощью коммутаторов сети могут охватывать несколько сотен машин и иметь протяженность в несколько километров.

6. Маршрутизаторы (Router ) - стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую, а также фильтровать широковещательные сообщения.

7. Мосты (Bridge )- устройства сети, которое соединяют два отдельных сегмента, ограниченных своей физической длиной, и передают трафик между ними. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети, одновременно не нарушая ограничений на максимальную длину кабеля, количество подключенных устройств или количество повторителей на сетевой сегмент.

8. Шлюзы (Gateway ) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Они действует на сеансовом, представительском и прикладном уровнях модели OSI.

9. Мультиплексоры – это устройства центрального офиса, которое поддерживают несколько сотен цифровых абонентских линий. Мультиплексоры посылают и получают абонентские данные по телефонным линиям, концентрируя весь трафик в одном высокоскоростном канале для передачи в Internet или в сеть компании.

10. Межсетевые экраны (firewall, брандмауэры) - это сетевые устройства, реализующие контроль за поступающей в локальную сеть и выходящей из нее информацией и обеспечивающие защиту локальной сети посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. В других случаях таким уникальным элементом является микропроцессорные карточки, биометрические характеристики пользователя и т. п. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры.

Таким образом, межсетевой экран - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения. Обычно межсетевые экраны защищают соединяемую с Internet корпоративную сеть от проникновения извне и исключает возможность доступа к конфиденциальной информации.

В процессе передачи данных от одного компьютера к другому можно выделить ряд различных задач. Сетевая операционная система при выполнении этих задач строго следует определенному набору процедур (определенным правилам). Эти процедуры называются протоколами. Они регламентируют каждую сетевую операцию: устанавливают порядок связи между компьютерами, порядок передачи данных, порядок обработки ошибок, порядок окончания сеанса связи и т.д. Стандартные протоколы позволяют программному и аппаратному обеспечению разных производителей нормально взаимодействовать. Существует два основных набора стандартов для этих целей: эталонная модель OSI и стандарты IEEE Project 802.

Международной организацией по стандартизации (International Standards Organization - ISO) была разработана эталонная модель взаимосвязи открытых систем (Open System Interconnection - OSI).

Примечание. Система, взаимодействующая с другими системами в соответствии с принятыми стандартами, называется открытой системой.

Согласно модели OSI при рассмотрении архитектуры компьютерных сетей выделяют семь уровней взаимодействия. Каждый уровень обеспечивает определенный набор услуг для расположенного над ним уровня и выполняет для этого несколько операций, необходимых для доставки данных по сети на другой компьютер.

Прикладной уровень (7-й). На этом уровне пользователь с помощью прикладного программного обеспечения создает документ (сообщение, рисунок и т. д.). Услуги, которые обеспечивает прикладной уровень, поддерживают приложения пользователя. На этом уровне используют протоколы HTTP, FTP, SMTP.

Уровень представления данных (6-й). На компьютерах могут использоваться различные ОС (UNIX, OS/2, Windows и т.д.). Каждая из них имеет свою файловую систему, свои форматы хранения и обработки данных. Задача уровня представления данных заключается в том, чтобы при передаче данных преобразовать их в формат, который может использоваться и на другом компьютере. Этот уровень управляет также сжатием передаваемых данных.

Сеансовый уровень (5-й). Этот уровень определяет и контролирует диалог между сетевыми объектами, он позволяет двум приложениям разных компьютеров устанавливать, использовать и завершать соединение, называемое сеансом. Сеансовый уровень управляет этим диалогом, а именно: устанавливает, какая из сторон, когда, как долго должна осуществлять передачу, восстанавливает соединение после сбоев во время сеанса связи и т.д. Не все существующие приложения используют сеансовый уровень, поэтому он не всегда реализуется в виде отдельных протоколов. В таких случаях функции этого уровня объединяются с функциями смежных уровней и реализуются в одном протоколе.

Транспортный уровень (4-й). На этом уровне данные принимаются от вышестоящего (сеансового) уровня и преобразуются в такую форму, в которой их положено передавать в сети. Например, они нарезаются на пакеты стандартного размера. На этом уровне используются, например, протоколы TCP и SPX.

Сетевой уровень (3-й). Сетевой уровень определяет маршрут движения данных в сети. Он отвечает за адресацию сообщений и осуществляет перевод логических адресов в физические. На этом уровне каждый пакет данных получает точный адрес, по которому он должен быть доставлен независимо от прочих пакетов. Сетевой уровень позволяет объединять разнородные сети, использующие разные протоколы передачи данных. Примеры используемых протоколов: IP и IPX.

Уровень передачи данных (2-й). Уровень передачи данных (или канальный уровень, или уровень соединения) обеспечивает прием пакетов данных, поступающих с сетевого уровня; подготовку данных к передаче по каналам связи; генерацию стартового сигнала для передачи данных; проверку получаемых данных и исправление ошибок; генерацию сигнала для перевода канала передачи в пассивное состояние при окончании передачи. Эти функции выполняет сетевая карта или модем. Используемые протоколы: HDLC, X.25/3.

Физический уровень (1-й). Его основная задача - управление аппаратурой передачи данных. Этот уровень получает данные от канального уровня и преобразует их в электрические или оптические сигналы. На этом уровне происходит реальная передача данных. Физический уровень устанавливает длительность каждого бита и способ их преобразования в электрические или оптические импульсы, передаваемые по сетевому кабелю. Данные здесь передаются в виде определенных сигналов. Восстановление документа из них произойдет постепенно, при передаче с нижнего на верхний уровень на компьютере получателя. Используемые протоколы: Х-21.

Разные уровни модели обмена данными в сети не взаимодействуют друг с другом напрямую. Они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, "обрастают" дополнительными данными, которые потом анализируются протоколами соответствующих уровней на другом компьютере. Это создает эффект виртуального взаимодействия уровней между собой.

Два нижних уровня модели OSI относятся к оборудованию (например, к сетевой плате) и кабелю. Для оборудования и кабелю, которые используется на этих уровнях, были разработаны специальные стандарты IEEE Project 802. Это набор стандартов для физических компонентов сети, которые используются на физическом и канальном уровнях модели OSI.

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) . Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Взаимодействие уровней модели OSI

Модель OSI можно разделить на две различных модели, как показано на рис. 1.11:

Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Каждый уровень компьютера-отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера-получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

Рис. 1.11. Схема взаимодействия компьютеров в базовой эталонной модели OSI

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети.

При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 1.12, где Заг – заголовок пакета, Кон – конец пакета.

На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Рис. 1.12. Формирование пакета каждого уровня семиуровневой модели

Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

Отдельные уровни модели OSI удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы, необходимые для выполнения этой задачи.

Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни. На рис. 1.13 приведено краткое описание функций всех уровней.

Рис. 1.13. Функции уровней модели OSI

Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

Взаимодействию прикладных процессов;

Формам представления данных;

Единообразному хранению данных;

Управлению сетевыми ресурсами;

Безопасности данных и защите информации;

Диагностике программ и технических средств.

Прикладной уровень (Application layer)

Прикладной уровень обеспечивает прикладным процессам средства доступа к области взаимодействия, является верхним (седьмым) уровнем и непосредственно примыкает к прикладным процессам.

В действительности прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Специальные элементы прикладного сервиса обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например программе необходимо переслать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами FTAM (File Transfer, Access, and Management). В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере), посылает конкретные данные в виде Дейтаграммы на прикладной уровень. Одна из основных задач этого уровня – определить, как следует обрабатывать запрос прикладной программы, другими словами, какой вид должен принять данный запрос.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень выполняет следующие функции:

1. Выполнение различных видов работ.

Передача файлов;

Управление заданиями;

Управление системой и т. д;

2. Идентификация пользователей по их паролям, адресам, электронным подписям;

3. Определение функционирующих абонентов и возможности доступа к новым прикладным процессам;

4. Определение достаточности имеющихся ресурсов;

5. Организация запросов на соединение с другими прикладными процессами;

6. Передача заявок представительскому уровню на необходимые методы описания информации;

7. Выбор процедур планируемого диалога процессов;

8. Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов;

9. Определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок);

10. Соглашение об исправлении ошибок и определении достоверности данных;

11. Согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Указанные функции определяют виды сервиса, которые прикладной уровень предоставляет прикладным процессам. Кроме этого, прикладной уровень передает прикладным процессам сервис, предоставляемый физическим, канальным, сетевым, транспортным, сеансовым и представительским уровнями.

На прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское программное обеспечение.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних трех уровней относятся:

FTP (File Transfer Protocol) протокол передачи файлов;

TFTP (Trivial File Transfer Protocol) простейший протокол пересылки файлов;

X.400 электронная почта;

Telnet работа с удаленным терминалом;

SMTP (Simple Mail Transfer Protocol) простой протокол почтового обмена;

CMIP (Common Management Information Protocol) общий протокол управления информацией;

SLIP (Serial Line IP) IP для последовательных линий. Протокол последовательной посимвольной передачи данных;

SNMP (Simple Network Management Protocol) простой протокол сетевого управления;

FTAM (File Transfer, Access, and Management) протокол передачи, доступа и управления файлами.

Уровень представления данных (Presentation layer)

Функции данного уровня – представление данных, передаваемых между прикладными процессами, в нужной форме.

Этот уровень обеспечивает то, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. В случаях необходимости уровень представления в момент передачи информации выполняет преобразование форматов данных в некоторый общий формат представления, а в момент приема, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. Такая ситуация может возникнуть в ЛВС с неоднотипными компьютерами (IBM PC и Macintosh), которым необходимо обмениваться данными. Так, в полях баз данных информация должна быть представлена в виде букв и цифр, а зачастую и в виде графического изображения. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

В основу общего представления данных положена единая для всех уровней модели система ASN.1. Эта система служит для описания структуры файлов, а также позволяет решить проблему шифрования данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня.

Представительный уровень выполняет следующие основные функции:

1. Генерация запросов на установление сеансов взаимодействия прикладных процессов.

2. Согласование представления данных между прикладными процессами.

3. Реализация форм представления данных.

4. Представление графического материала (чертежей, рисунков, схем).

5. Засекречивание данных.

6. Передача запросов на прекращение сеансов.

Протоколы уровня представления данных обычно являются составной частью протоколов трех верхних уровней модели.

Сеансовый уровень (Session layer)

Сеансовый уровень – это уровень, определяющий процедуру проведения сеансов между пользователями или прикладными процессами.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того чтобы начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Сеансовый уровень управляет передачей информации между прикладными процессами, координирует прием, передачу и выдачу одного сеанса связи. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающими на разных рабочих станциях. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений во время сеанса и завершение сеанса.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Полудуплексной (процессы будут передавать и принимать данные по очереди);

Дуплексной (процессы будут передавать данные, и принимать их одновременно).

В полудуплексном режиме сеансовый уровень выдает тому процессу, который начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень разрешает передачу только той стороне, которая обладает маркером данных.

Сеансовый уровень обеспечивает выполнение следующих функций:

1. Установление и завершение на сеансовом уровне соединения между взаимодействующими системами.

2. Выполнение нормального и срочного обмена данными между прикладными процессами.

3. Управление взаимодействием прикладных процессов.

4. Синхронизация сеансовых соединений.

5. Извещение прикладных процессов об исключительных ситуациях.

6. Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки.

7. Прерывание в нужных случаях прикладного процесса и его корректное возобновление.

8. Прекращение сеанса без потери данных.

9. Передача особых сообщений о ходе проведения сеанса.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью протоколов трех верхних уровней модели.

Транспортный уровень (Transport Layer)

Транспортный уровень предназначен для передачи пакетов через коммуникационную сеть. На транспортном уровне пакеты разбиваются на блоки.

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням модели (прикладному и сеансовому) передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень определяет адресацию физических устройств (систем, их частей) в сети. Этот уровень гарантирует доставку блоков информации адресатам и управляет этой доставкой. Его главной задачей является обеспечение эффективных, удобных и надежных форм передачи информации между системами. Когда в процессе обработки находится более одного пакета, транспортный уровень контролирует очередность прохождения пакетов. Если проходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

В функции транспортного уровня входят:

1. Управление передачей по сети и обеспечение целостности блоков данных.

2. Обнаружение ошибок, частичная их ликвидация и сообщение о неисправленных ошибках.

3. Восстановление передачи после отказов и неисправностей.

4. Укрупнение или разделение блоков данных.

5. Предоставление приоритетов при передаче блоков (нормальная или срочная).

6. Подтверждение передачи.

7. Ликвидация блоков при тупиковых ситуациях в сети.

Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Наиболее распространенные протоколы транспортного уровня включают в себя:

TCP (Transmission Control Protocol) протокол управления передачей стека TCP/IP;

UDP (User Datagram Protocol) пользовательский протокол дейтаграмм стека TCP/IP;

NCP (NetWare Core Protocol) базовый протокол сетей NetWare;

SPX (Sequenced Packet eXchange) упорядоченный обмен пакетами стека Novell;

TP4 (Transmission Protocol) – протокол передачи класса 4.

Сетевой уровень (Network Layer)

Сетевой уровень обеспечивает прокладку каналов, соединяющих абонентские и административные системы через коммуникационную сеть, выбор маршрута наиболее быстрого и надежного пути.

Сетевой уровень устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними. Виртуальный или логический канал – это такое функционирование компонентов сети, которое создает взаимодействующим компонентам иллюзию прокладки между ними нужного тракта. Кроме этого, сетевой уровень сообщает транспортному уровню о появляющихся ошибках. Сообщения сетевого уровня принято называть пакетами (packet). В них помещаются фрагменты данных. Сетевой уровень отвечает за их адресацию и доставку.

Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз, выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, по которым проходит пакет.

Сетевой уровень отвечает за деление пользователей на группы и маршрутизацию пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Сетевой уровень выполняет функции:

1. Создание сетевых соединений и идентификация их портов.

2. Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть.

3. Управление потоками пакетов.

4. Организация (упорядочение) последовательностей пакетов.

5. Маршрутизация и коммутация.

6. Сегментирование и объединение пакетов.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Наиболее часто на сетевом уровне используются протоколы:

IP (Internet Protocol) протокол Internet, сетевой протокол стека TCP/IP, который предоставляет адресную и маршрутную информацию;

IPX (Internetwork Packet Exchange) протокол межсетевого обмена пакетами, предназначенный для адресации и маршрутизации пакетов в сетях Novell;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов (частично этот протокол реализован на уровне 2);

CLNP (Connection Less Network Protocol) сетевой протокол без организации соединений.

Канальный уровень (Data Link)

Единицей информации канального уровня являются кадры (frame). Кадры – это логически организованная структура, в которую можно помещать данные. Задача канального уровня – передавать кадры от сетевого уровня к физическому уровню.

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Задача канального уровня – брать пакеты, поступающие с сетевого уровня и готовить их к передаче, укладывая в кадр соответствующего размера. Этот уровень обязан определить, где начинается и где заканчивается блок, а также обнаруживать ошибки передачи.

На этом же уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются и исправляются (путем требований повторной передачи данных) ошибки.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.Х делят канальный уровень на два подуровня:

LLC (Logical Link Control) управление логическим каналом осуществляет логический контроль связи. Подуровень LLC обеспечивает обслуживание сетевого уровня и связан с передачей и приемом пользовательских сообщений.

MAC (Media Assess Control) контроль доступа к среде. Подуровень MAC регулирует доступ к разделяемой физической среде (передача маркера или обнаружение коллизий или столкновений) и управляет доступом к каналу связи. Подуровень LLC находится выше подуровня МАC.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу.

При больших размерах передаваемых блоков данных канальный уровень делит их на кадры и передает кадры в виде последовательностей.

При получении кадров уровень формирует из них переданные блоки данных. Размер блока данных зависит от способа передачи, качества канала, по которому он передается.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Канальный уровень может выполнять следующие виды функций:

1. Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.

2. Организация и передача кадров.

3. Обнаружение и исправление ошибок.

4. Управление потоками данных.

5. Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Наиболее часто используемые протоколы на канальном уровне включают:

HDLC (High Level Data Link Control) протокол управления каналом передачи данных высокого уровня, для последовательных соединений;

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x;

Ethernet сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей частоты и обнаружением конфликтов;

Token ring сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера;

FDDI (Fiber Distributed Date Interface Station) сетевая технология по стандарту IEEE 802.6, использующая оптоволоконный носитель;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов;

Frame relay сеть, организованная из технологий Х25 и ISDN.

Физический уровень (Physical Layer)

Физический уровень предназначен для сопряжения с физическими средствами соединения. Физические средства соединения – это совокупность физической среды, аппаратных и программных средств, обеспечивающая передачу сигналов между системами.

Физическая среда – это материальная субстанция, через которую осуществляется передача сигналов. Физическая среда является основой, на которой строятся физические средства соединения. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц.

Физический уровень состоит из Подуровня стыковки со средой и Подуровня преобразования передачи.

Первый из них обеспечивает сопряжение потока данных с используемым физическим каналом связи. Второй осуществляет преобразования, связанные с применяемыми протоколами. Физический уровень обеспечивает физический интерфейс с каналом передачи данных, а также описывает процедуры передачи сигналов в канал и получения их из канала. На этом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

Тип кабелей и разъемов;

Разводку контактов в разъемах;

Схему кодирования сигналов для значений 0 и 1.

Физический уровень выполняет следующие функции:

1. Установление и разъединение физических соединений.

2. Передача сигналов в последовательном коде и прием.

3. Прослушивание, в нужных случаях, каналов.

4. Идентификация каналов.

5. Оповещение о появлении неисправностей и отказов.

Оповещение о появлении неисправностей и отказов связано с тем, что на физическом уровне происходит обнаружение определенного класса событий, мешающих нормальной работе сети (столкновение кадров, посланных сразу несколькими системами, обрыв канала, отключение питания, потеря механического контакта и т.д.). Виды сервиса, предоставляемого канальному уровню, определяются протоколами физического уровня. Прослушивание канала необходимо в тех случаях, когда к одному каналу подключается группа систем, но одновременно передавать сигналы разрешается только одной из них. Поэтому прослушивание канала позволяет определить, свободен ли он для передачи. В ряде случаев для более четкого определения структуры физический уровень разбивается на несколько подуровней. Например, физический уровень беспроводной сети делится на три подуровня (рис. 1.14).

Рис. 1.14. Физический уровень беспроводной локальной сети

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Физический уровень может обеспечивать как асинхронную (последовательную) так и синхронную (параллельную) передачу, которая применяется для некоторых мэйнфреймов и мини-компьютеров. На Физическом уровне должна быть определена схема кодирования для представления двоичных значений с целью их передачи по каналу связи. Во многих локальных сетях используется манчестерское кодирование.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных и другие характеристики среды и электрических сигналов.

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 – механические/электрические характеристики несбалансированного последовательного интерфейса;

EIA-RS-422/449, CCITT V.10 – механические, электрические и оптические характеристики сбалансированного последовательного интерфейса;

Ethernet – сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов;

Token ring – сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера.

Под архитектурой вычислительной сети понимается описание ее общей модели. Для решения проблемы объединения сетей различных архитектур МОС (Международная организации по сертификации, англ. – ISO) разработала модель архитектуры открытых систем .

Открытая система - система, взаимодействующая с другими системами в соответствии с принятыми стандартами.

Эталонная модель взаимодействия открытых систем (OSI -– Open Systems Interconnection )

Модель взаимодействия открытых систем состоит из семи уровней.

7-й уровень - прикладной - обеспечивает поддержку прикладных процессов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуемых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

6-й уровень - представительный - определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форматах, принятых в данной системе.

5-й уровень - сеансовый - реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет возможность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием - процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень - транспортный - обеспечивает интерфейс между процессами и сетью. Он устанавливает логические каналы между процессами и обеспечивает передачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет - группа байтов, передаваемых абонентами сети друг другу.

3-й уровень - сетевой - определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями - реализует межсетевое взаимодействие.

2-й уровень - канальный - уровень звена данных - реализует процесс передачи информации по информационному каналу. Информационный канал - логический канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом. Канальный уровень обеспечивает управление потоком данных в виде кадров, в которые упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алгоритм восстановления информации в случае обнаружения сбоев или потерь данных.

1-й уровень - физический - выполняет все необходимые процедуры в канале связи. Его основная задача - управление аппаратурой передачи данных и подключенным к ней каналом связи.

Обработка сообщений уровнями модели ВОС

Прикладной

Представительный

Сеансовый

Транспортный

Канальный

Физический

При передаче информации от прикладного процесса в сеть происходит ее обработка уровнями модели взаимодействия открытых систем. Смысл этой обработки заключается в том, что каждый уровень добавляет к информации процесса свой заголовок - служебную информацию, которая необходима для адресации сообщений и для некоторых контрольных функций. Канальный уровень кроме заголовка добавляет еще и концевик - контрольную последовательность, которая используется для проверки правильности приема сообщения из коммуникационной сети.

Физический уровень заголовка не добавляет. Сообщение, обрамленное заголовками и концевиком, уходит в коммуникационную сеть и поступает на абонентские ЭВМ вычислительной сети. Каждая абонентская ЭВМ, принявшая сообщение, дешифрирует адреса и определяет, предназначено ли ей данное сообщение.

При этом в абонентской ЭВМ происходит обратный процесс - чтение и отсечение заголовков уровнями модели взаимодействия открытых систем. Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринимаются и не изменяются - они "прозрачны " для нижних уровней. Так, перемещаясь по уровням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Преимущества семиуровневой модели.

Если между уровнями определены однозначно интерфейсы, то изменение одного из уровней не влечет за собой необходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС (OSI) в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, мультиплексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей - драйверов.

Модель взаимодействия для ЛВС

Для того чтобы учесть требования физической передающей среды, используемой в ЛВС, была произведена некоторая модернизация семиуровневой модели взаимодействия открытых систем для локальных вычислительных сетей. Канальный уровень был разбит на два подуровня. Подуровень LLC (Logical Link Control) обеспечивает управление логическим звеном, т.е. выполняет функции собственно канального уровня. Подуровень MAC (Media Access Control) обеспечивает управление доступом к среде.

Несколько странным может показаться введение отдельного параграфа в конце второго тома для обсуждения неоднократно упоминавшейся ранее модели взаимодействия открытых систем OSI. Но, во-первых, автор давно обещал это сделать, во-вторых, этого требует специфика рассматриваемого в данной главе прото­кола Х.25, а в-третьих, книга подходит к концу, и другого случая может и не быть.

Многоуровневый комплект протоколов, известный как мо­дель взаимодействия открытых систем (OSI - Open Systems Inter­connection), разработан в 1984 году Международной организацией по стандартизации ISO совместно с Сектором стандартизации электросвязи 1TU-T, называвшимся в те времена Международным консультативным комитетом по телеграфии и телефонии (МККТТ), для обеспечения обмена данными между компьютер­ными сетями. Структура модели OSI представлена на рис. 9.1.

Применительно к системам электросвязи модель OSI служит для того, чтобы четко определить структуру множества функций, поддерживающих информационный обмен между пользователя­ми услугами системы электросвязи, которая, в общем случае, со­держит в себе сеть связи. Подход, использованный в модели OSI, предусматривает разделение этих функций на семь «слоев» (layers) или «уровней», расположенных один над другим. С точки зрения любого уровня все нижележащие уровни предоставляют ему «ус­лугу транспортировки информации», имеющую определенные ха­рактеристики. То, как реализуются нижележащие уровни, для вы­шележащих уровней не имеет значения. С другой стороны, для нижних уровней безразличны как смысл поступающей от верхних уровней информации, так и то, с какой целью она передается.

Такой подход предусматривает стандартизацию интерфейсов между смежными уровнями, благодаря чему реализация любого уровня становится независимой от того, каким образом реализу­ются остальные уровни.


Протокол Х.25 ___ _________ 257

Рис. 9.1. Структура модели OSI

Уровень 1 (или физический уровень) обеспечивает прозрачную передачу потока битов по каналу, организованному между смеж­ными узлами сети с использованием той или иной передающей среды, и формирует интерфейс с этой средой. Характеристики пе­редачи (в частности, коэффициент битовых ошибок BER) опреде­ляются свойствами этого канала и от функций уровня 1 не зависят.

Уровень 2 (или уровень звена данных) формирует двусторон­ний канал связи (то есть прямое звено связи между смежными уз­лами сети), используя для этого два предоставляемых уровнем 1 цифровых канала с противоположными направлениями передачи. Важнейшие функции уровня 2 - обнаружение и исправление оши­бок, которые могут возникнуть на уровне 1, что делает независи­мым качество услуг этого уровня от качества получаемых «снизу» услуг передачи битов.

Уровень 3 (или сетевой уровень) формирует так называемые сетевые услуги, маршрутизацию и коммутацию соединений, обес­печивающие перенос через сеть информации, которой обмениваются


258 Глава 9 ___________________________________

пользователи открытых систем, размещенных в разных (и, в общем случае, несмежных) узлах сети.

Уровень 4 (или транспортный уровень) осуществляет «сквоз­ную» (от одного конечного пользователя до другого) оптимизацию использования ресурсов (то есть сетевых услуг) с учетом типа и ха­рактера связи, избавляя своего пользователя от необходимости принимать во внимание какие бы то ни было детали, связанные с переносом информации. Этот уровень всегда оперирует со всей связью в целом, дополняя, если это требуется, функции уровня 3 в части обеспечения нужного конечным пользователям качества ус­луг.

Уровень 5 (или уровень сеанса) обеспечивает координацию («внутри» каждой связи) взаимодействия между прикладными про­цессами. Примеры возможных режимов взаимодействия, которые поддерживаются уровнем 5: дуплексный, полудуплексный или симплексный диалог.

Уровень 6 (или уровень представления) производит преобра­зование из одной формы в другую синтаксиса транспортируемых данных. Это может быть, например, преобразование ASCII в EBCDIC и обратно.

Уровень 7 (или прикладной уровень) содержит функции, свя­занные с природой прикладных процессов и необходимые для удовлетворения тех требований, которые существенны с точки зре­ния взаимодействия прикладных процессов в системах А и В (рис. 9.1), или, говоря иначе, с точки зрения доступа этих процессов к среде OSI. Так как это самый верхний уровень модели OSI, он не име­ет верхней границы.

Таким образом, функции уровней 1-3 обеспечивают транс­портировку информации из одного пункта территории в другой (возможно, более чем через одно звено, то есть с коммутацией) и потому связаны с отдельными элементами сети связи и с ее внут­ренней структурой. Функции уровней 4-7 относятся только к «сквоз­ной» связи между конечными пользователями и определены таким образом, что они не зависят от внутренней структуры сети.

Поскольку в силу тех или иных специфических особенностей разных уровней в них могут формироваться и обрабатываться ин­формационные блоки различных размеров, в большинстве уров­ней предусматриваются, в числе прочих, функции сегментации блоков данных и/или их объединения.


Протокол Х.25 259

Любой функциональный уровень, например, уровень N (или N-уровень), содержит некоторое множество функций, которые вы­полняет соответствующая аппаратно-программная, т.е. физическая, подсистема (ее удобно называть подсистемой ранга N или N-подсистемой). N-подсистема содержит в себе активные элемен­ты, которые реализуют определенные для нее функциональные воз­можности (либо все их множество, либо каждый элемент выполня­ет вполне определенную часть этого множества). В англоязычной литературе такого рода активный элемент принято называть entity, a в литературе на русском языке чаще всего используется термин логический объект.

Итак, логическим объектом уровня N (или логическим N-объ­ектом, или, если из контекста ясно, о чем идет речь, то просто N-объектом) называется множество функций, привлекаемых N-уровнем к обслуживанию конкретной связи между (N+1)-под­системами.

Процесс обмена информацией между двумя физическими сис­темами через сеть можно интерпретировать как процесс взаимодей­ствия двух открытых систем, размещенных в разных географических точках. Взаимодействие это связано с тем, что пользователям той и другой системы нужно обмениваться данными, необходимыми для выполнения тех или иных задач. Обе взаимодействующие системы имеют многоуровневую архитектуру, причем функции любого од­ного и того же уровня в той и другой системе идентичны (или, по меньшей мере, согласованы).

В подобных условиях уместно говорить о том, что на каждой фазе взаимодействия между двумя системами имеет место взаи­модействие между подсистемами одного ранга, размещенными в системе А и в системе В. При этом подсистема ранга (N+1) в сис­теме, которая инициирует данную фазу (например, в системе А), должна завязать диалог с подсистемой того же ранга (N+1) в сис­теме, привлекаемой к участию в данной фазе (например, в систе­ме В). (N+1)-подсистема, размещенная в системе В, должна, в свою очередь, поддержать продолжение диалога. Иными словами, долж­на быть организована информационная связь между подсистема­ми одного ранга, размещенными в разных системах (peer-to-peer communication).

При организации и в процессе такой связи подсистема ранга (N+1), находящаяся в системе А, обращается к услугам подсисте­мы ранга N в той же системе А. Логический (N+l)- объект системы


260 Глава 9 __________________________________

А передает к N-объекту своей системы запрос, конечная цель которого состоит в том, чтобы вызвать ответную реакцию логиче­ского (N+ 1)-объекта системы В. На пути к этой цели N-объект сис­темы А обращается к услугам (N-1)-объекта своей системы, тот, в свою очередь, - к услугам (N-2)-объекта и т.д., вплоть до логическо­го объекта уровня 1, который обеспечивает использование физиче­ской среды для передачи битов, несущих запрос от системы А к сис­теме В. Логический объект уровня 1 системы В, приняв эти биты, формирует соответствующую индикацию для логического объекта уровня 2 своей системы, тот сообщает об этом логическому объекту уровня 3 и т.д. «вверх» до тех пор, пока индикация приема запроса не достигнет логического (N+ 1)-объекта системы В.

Далее, в общем случае, происходит обратный процесс. От­клик логического (N+1)-объекта системы В передается к системе А с привлечением услуг N-объекта, затем - (N-1)-объекта и т.д. в системе В, а прием уровнем 1 системы А битов, которые доставили отклик, интерпретируется логическими объектами системы А как подтверждение системой В приема отправленного к ней запроса. Это подтверждение проходит в системе А уже понятным читателю путем «вверх», пока не достигнет отправившего запрос логическо­го (N+l)-o6beKTa.

Сказанное иллюстрирует рис. 9.2, на котором запрос, индика­ция, отклик и подтверждение фигурируют как имена сервисных примитивов.

Взаимодействие между логическими (N)-объектами двух взаимодействующих открытых систем происходит в соответствии с (М)-протоколом. Информация, обмен которой поддерживает (N)-протокол, оформляется в так называемые протокольные блоки дан­ных (N)-PDU (protocol data units).

Для передачи (N)-PDU логический (N) -объект обращается к услугам расположенного ниже (N-1)-уровня и передает к нему свои PDU в составе сервисных блоков данных (N- 1)-SDU (service data units), используя сервисные (N-1)-примитивы. Логический (N-1)-объект одной системы взаимодействует с логическим (N- 1)-объектом дру­гой системы в соответствии с (N-1) -протоколом, вводя содержимое (N-l)-SDU в протокольные блоки данных (N-l)-PDU, то есть до­полняя каждый (N-l)-SDU управляющей информацией протокола (N-l)-PCI (protocol control information). Далее, для передачи (N-1)-PDU происходит обращение к услугам (N-2)-уровня и т.д.

Сказанное иллюстрирует рис. 9.3.


Протокол Х.25 261

Рис. 9.3. Протокольные и сервисные блоки данных

Конец работы -

Эта тема принадлежит разделу:

Протоколы

Глава.. примеры сообщений освобождения сигнального пути.. сообщение le disconnect генерируется когда реше ние освободить сигнальный путь принимает станция в ре зультате..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: