Windows 7, XP

Протоколы SLIP, PPP. Протокол SLIP (Serial Line Internet Protocol)

Протоколы SLIP, PPP. Протокол SLIP (Serial Line Internet Protocol)

Протокол SLIP (Serial Line IP) стал первым промышленным стандартом де-факто, который позволил устройствам, соединенным последовательным низ­коскоростным интерфейсом связи, работать по протоколам TCP/IP. Этот Internet-протокол разрешает в качестве линий связи использовать обычные те­лефонные линии. Протокол был создан в начале 80-х годов и согласно RFC-1055 впервые был включен в качестве средства доступа к IP-сети в пакет фирмы 3COM - UNET. В 1984 г. протокол SLIP был встроен Риком Адамсом (Rick Adams) в операци­онную систему 4.2 Berkley Unix. Позднее SLIP был поддержан в других верси­ях Unix и реализован в программном обеспечении для ПК. Ввиду своей функциональной простоты, SLIP использовался и используется в основном на коммутируемых линиях связи, которые не характерны для от­ветственных и скоростных сетевых соединений. Тем не менее, коммутируе­мый канал отличается от некоммутируемого только более низким качеством и необходимостью выполнять процедуру вызова абонента, поэтому SLIP вполне применим и на выделенных каналах. Протокол SLIP выполняет единственную функцию - он позволяет в потоке бит, которые поступают по выделенному (или коммутируемому) каналу, рас­познать начало и конец IP-пакета. Другие протоколы сетевого уровня SLIP не поддерживает. Программное обеспечение, реализующее работу с протоколом SLIP, прини­мает символы, приходящие с устройства последовательной передачи данных (модема, последовательного порта и т. д.); рассматривает и толкует их как составляющие IP-пакета; укладывает полученные данные в полнокровный нор­мальный IP-пакет и передает этот пакет далее - соответствующей програм­ме, которая обрабатывает IP-пакеты, например модулю TCP. На обратном пути SLIP получает от программы (сетевого уровня), посылающей IP-пакеты, IP- пакет, вычленяет его содержимое, соответствующим образом переформати­рует, затем делит на символы и отправляет его через устройство последова­тельной передачи по последовательной линии в сеть - соседнему узлу Internet. Структура кадра протокола SLIP. Протокол SLIP предназначен для пе­редачи IP-пакетов через асинхронные линии связи. Поскольку асинхронная пе­редача является байт-ориентированной, то перед транспортировкой средства­ми SLIP пакет разделяется на октеты (байты), которые передаются один за другим. Как известно, в сети Ethernet IP-пакет может иметь длину до 1500 байт, что обусловливает необходимость его сегментации - разбиения на более короткие пакеты. SLIP делает это довольно примитивно. Он не анализирует поток дан­ных и не выделяет какую-либо информацию в этом потоке. Для распознавания границы IP-пакетов, протокол SLIP предусматривает использование специаль­ного символа END, значение которого в шестнадцатеричном представлении равно (С0) А. Для разделения SLIP-кадров между ними вставляется служебный байт-разделитель - символ ESC (DB) A . Применение специального символа может породить конфликт: если байт пересылаемых данных тождественен символу END, то он будет ошибочно оп­ределен как признак конца пакета. Чтобы такой байт, встретившийся внутри IP-пакета, не воспринимался как разделитель, предусмотрен механизм встав­ки байта (byte staffing). Таким образом, собственно служебной информации в протоколе SLIP до­вольно мало: на IP-пакет добавляется один байт-разделитель (между пакета­ми они не дублируются), а иногда появляется несколько дополнительных бай­тов, вставляемых по процедуре вставки байта.

Стандарт не определяет фиксированный размер SLIP-кадра, поэтому лю­бой SLIP-интерфейс имеет специальное поле, в котором пользователь должен указать эту длину. Однако в конкретных реализациях максимальный размер SLIP-кадра часто оказывается ограниченным до очень небольшого значения (от 256 до 1006 байт). Данное ограничение связано с первой реализацией про­токола SLIP в соответствующем драйвере для Berkley Unix, и его соблюдение необходимо для под держки совместимости разных реализаций SLIP (большин­ство современных реализаций поддерживают эту длину и позволяют админис­тратору самому установить его размер, а по умолчанию принимают размер 1500 байт). В каждом из SLIP-кадров полностью воспроизводится IP-заголовок разме­ром 20 байт (рис. 5.11). Из-за этого избыточность, возникающая при передаче длинных пакетов по протоколу SLIP, весьма велика.

Существенна и избыточ­ность, порождаемая самим асинхронным методом передачи на интерфейсе ПК- модем (минимум 20 % на дополнительные стартовый и столовый биты на каж­дый байт). Но с этим ничего поделать нельзя, поскольку все персональные компьютеры имеют только асинхронные порты. Для установления связи по протоколу SLIP компьютеры должны иметь ин­формацию об IP-адресах друг друга. В протоколе SLIP нет механизмов, обес­печивающих возможность обмениваться адресной информацией, так как в структуре кадра не предусмотрено поле адреса и его специальная обработка. Поэтому компьютерам, взаимодействующим по протоколу SLIP, должны быть назначены IP-адреса заранее. Каждый раз после установления SLIP-соедине­ния компьютер превращается в полноправный хост Internet со своим собствен­ным IP-адресом. Если провайдер использует динамическое присвоение 1Р-ад- ресов, то при каждом новом соединении компьютер будет получать новый IP-адрес. Следовательно, другие компьютеры в сети будут вынуждены искать его под неизвестно каким адресом. Другим недостатком протокола SLIP является отсутствие в нем индикации типа протокола, пакет которого инкапсулируется в SLIP-кадр. Поэтому через последовательную линию по протоколу SLIP можно передавать трафик лишь одного сетевого протокола. SLIP не позволяет различать пакеты по типу про­токола, например, IP или DECnet. При работе по протоколу SLIP предполага­ется использование только протокола IP, что определено его названием Serial Line IP. При работе с реальными телефонными линиями, зашумленными и поэтому искажающими информацию при пересылке, необходимы процедуры обнаруже­ния и коррекции ошибок. В протоколе SLIP такие процедуры не предусмотре­ны. Эти функции обеспечивают вышележащие протоколы: протокол IP прово­дит тестирование целостности пакета по заголовку IP, а один из двух транспортных протоколов (UDP или TCP) проверяет целостность всех данных по контрольным суммам. В стандартном SLIP не предусмотрено сжатие данных, но существуют его варианты со сжатием, например С SLIP. Большинство современных модемов, поддерживающих стандарты V.42bis и MNP5, осуществляют эту операцию ап­паратно. Низкая пропускная способность последовательных линий связи заставляет сокращать время передачи пакетов, уменьшая объем содержащейся в них слу­жебной информации. Эта задача решается с помощью протокола Compressed SLIP (CSLIP), поддерживающего сжатие заголовков IP-пакетов. Протокол CSLIP был создан в Lawrence Berkeley Labs (LBL) Ван Якобсо­ном как средство повышения эффективности последовательной передачи и уровня сервиса прикладных программ, использующих TCP/IP на медленных линиях. Протокол CSLIP, по сравнению с протоколом SLIP, использует в шесть раз меньше избыточной информации (в виде заголовков). На низких скоростях передачи данных эта разница заметна только при работе с IP-пакетами, несу­щими малые объемы информации, такие пакеты формируются, например, при работе telnet или rlogin. На больших же скоростях CSLIP дает меньший выиг­рыш и почти никакого выигрыша для пакетов с большими объемами данных, например ftp-пакетов. Появление CSLIP объясняет тот факт, что при использовании программ типа telnet, rlogin и других для пересылки одного байта данных требуется переслать 40 байт служебной информации. При сжатии заголовков 20 октетов заголовка IP и 20 октетов заголовка TCP (итого 40 байт) заменяются 3-7 октетами. CSLIP для сжатия - распаковки и проверки правильности пересылки пакета (и заголовка) использует информацию из предыдущего пакета, т.е. передача име­ет структуру цепочки. Первый пакет в цепочке - несжатый. Если какой-либо пакет теряется, то цепочка рвется, нельзя этот же пакет запросить в самом конце передачи, его нужно пересылать заново тут же, т.е. прекращать процесс передачи и начинать новую цепочку. Таким образом, эта технология при пропа­же или искажении пакетов приводит к большим потерям времени, чем обыч­ный SLIP. Это происходит из-за задержек на останов и передачу нового несжа­того пакета. Так как в протоколе SLIP процедуры обнаружения и коррекции ошибок не предусмотрены, то нежелательно совместное использование дейтаграммного протокола UDP и SLIP. Это объясняется тем, что в протоколе UDP не обяза­тельно применение контрольных сумм. Дальнейшим развитием протокола SLIP является протокол РРР (RFC 1331), в котором устранены некоторые недостатки протокола SLIP. Необходимо по­мнить что SLIP и РРР - протоколы канального уровня.

Протокол SLIP

Протокол SLIP (Serial Line IP) был первым стандартом де-факто, позволяющим устройствам, соединенным последовательной линией связи, работать по протоколам TCP/IP. Он был создан в начале 80-х годов и в 1984 году встроен Риком Адамсом (Rick Adams) в операционную систему 4.2 Berkley Unix. Позднее SLIP был поддержан в других версиях Unix и реализован в программном обеспечении для ПК.

Правда, ввиду его функциональной простоты, SLIP использовался и используется в основном на коммутируемых линиях связи, которые не характерны для ответственных и скоростных сетевых соединений. Тем не менее коммутируемый канал отличается от некоммутируемого только более низким качеством и необходимостью выполнять процедуру вызова абонента, поэтому SLIP вполне применим и на выделенных каналах.

Протокол SLIP выполняет единственную функцию - он позволяет в потоке бит, которые поступают по выделенному (или коммутируемому) каналу, распознать начало и конец IP-пакета. Помимо протокола IP, другие протоколы сетевого уровня SLIP не поддерживает.

Чтобы распознать границы IP-пакетов, протокол SLIP предусматривает использование специального символа END, значение которого в шестнадцатеричном представлении равно С0. Применение специального символа может породить конфликт: если байт пересылаемых данных тождественен символу END, то он будет ошибочно определен как признак конца пакета. Чтобы предотвратить такую ситуацию, байт данных со значением, равным значению символа END, заменяется составной двухбайтовой последовательностью, состоящей из специального символа ESC (DB) и кода DC. Если же байт данных имеет тот же код, что и символ SLIP ESC, то он заменяется двухбайтовой последовательностью, состоящей из собственно символа SLIP ESC и кода DD. После последнего байта пакета передается символ END.

Механизм формирования составных последовательностей показан на рис. 6.13. Здесь приведены стандартный IP-пакет (один байт которого тождественен символу END, а другой - символу SLIP ESC) и соответствующий ему SLIP-пакет, который больше на 4 байта.

Рис. 6.13. Инкапсуляция IP-пакетов в SLIP-пакеты

Хотя в спецификации протокола SLIP не определена максимальная длина передаваемого пакета, реальный размер IP-пакета не должен превышать 1006 байт. Данное ограничение связано с первой реализацией протокола SLIP в соответствующем драйвере для Berkley Unix, и его соблюдение необходимо для поддержки совместимости разных реализации SLIP (большинство современных реализации позволяют администратору самому установить размер пакета, а по умолчанию используют размер 1500 байт).

Для установления связи по протоколу SLIP компьютеры должны иметь информацию об IP-адресах друг друга. Однако возможна ситуация, когда, скажем, при осуществлении соединения между хостом и маршрутизатором последнему понадобится передать хосту информацию о его IP-адресе. В протоколе SLIP нет механизмов, дающих возможность обмениваться адресной информацией. Это ограничение не позволяет использовать SLIP для некоторых видов сетевых служб.

Другой недостаток SLIP - отсутствие индикации типа протокола, пакет которого инкапсулируется в SLIP-пакет. Поэтому через последовательную линию по протоколу SLIP можно передавать трафик лишь одного сетевого протокола - IP.

При работе с реальными телефонными линиями, зашумленными и поэтому искажающими пакеты при пересылке, требуются процедуры обнаружения и коррекции ошибок. В протоколе SLIP такие процедуры не предусмотрены. Эти функции обеспечивают вышележащие протоколы: протокол IP проводит тестирование целостности пакета по заголовку IP, а один из двух транспортных протоколов (UDP или TCP) проверяет целостность всех данных по контрольным суммам.

Низкая пропускная способность последовательных линий связи вынуждает сокращать время передачи пакетов, уменьшая объем содержащейся в них служебной информации. Эта задача решается с помощью протокола Compressed SLIP (CSLIP), поддерживающего сжатие заголовков пакетов. Появление CSLIP объясняется тем фактом, что при использовании программ типа Telnet, Riogin и других для пересылки одного байта данных требуется переслать 20-байтовый заголовок IP-пакета и 20-байтовый заголовок TCP-пакета (итого 40 байт). Спецификация CSLIP обеспечивает сжатие 40-байтового заголовка до 3-5 байт. На сегодняшний момент большинство реализации протокола SLIP поддерживают спецификацию CSLIP.

Введение
Собственно SLIP и PPP - это протоколы, адаптирующие IP для работы на последовательных линиях. Они представляют собой некую прокладку между IP и модемными протоколами. SLIP и PPP имеет смысл использовать вкупе со скоростными модемами на достаточно скоростных линиях.
Основная функция программного обеспечения SLIP/PPP - организовать пересылку IP -пакетов по последовательной линии, которая не предусматривает деления пересылаемой информации на какие-либо отдельные блоки и пересылает все данные единым непрерывным потоком. SLIP/PPP как раз и занимается организацией такой пересылки, чтобы на другом конце можно было этот сплошной и непрерывный поток данных разделить на составляющие его IP -пакеты, выделить их и передать дальше уже как IP -пакеты.
SLIP/PPP очень удобен для подключения домашнего компьютера к локальной сети, которая, в свою очередь, входит в Internet. Например, можно воспользоваться PPP , чтобы подключить свою домашнюю персоналку к сети вашей организации. И тогда ваш компьютер будет иметь такие же возможности работы в Internet, как и любой другой компьютер вашей организации, подключённый к Сети через Ethernet.
SLIP/PPP подходят и для подключения домашнего компьютера (или очень маленькой локальной сети) к собственно првайдеру, который может предоставить непосредственный доступ в Internet.
Однако следует понимать, что эти протоколы, вообще-то, совсем не предназначены для подключения к Internet сетей средней величины или больших сетей: они не предназначены для работы на высокоскоростных линиях, которые требуются для обслуживания большого количество пользователей.

Протоколы SLIP и CSLIP
Первым стандартом де-факто, позволяющим устройствам, соединенным последовательной линией связи, работать по протоколам TCP/IP , был протокол SLIP (Serial Line IP ), созданный в начале 80-х годов и в 1984 году встроенный Риком Адамсом (Rick Adams) в ОС 4.2 Berkley UNIX. Позднее SLIP был поддержан и в других версиях UNIX и реализован в программном обеспечении для ПК.
Популярность протокола SLIP объясняется тем, что он дал возможность подключаться к сети Internet посредством стандартного порта RS232, имеющегося в большинстве компьютеров. В настоящее время SLIP широко используется в основном на домашних компьютерах, подключенных к последовательным линиям, которые имеют пропускную способность от 1200 бит/с до 19,2 Кбит/с.

Ограничения

Соединение по протоколу SLIP (Serial Lines Internet Protocol). Каждый протокол обладает свойством инкапсулировать данные. Протокол SLIP использует специальные символы для ограничения кадра данных в последовательном канале. Для того чтобы распознать границы SLIP-кадров, передаваемых по последовательной линии связи, и отделить один кадр от другого, протокол SLIP предусматривает использование специального символа END, значение которого в шестнадцатеричном представлении равно C0. Применение специального символа может породить конфликт: если байт пересылаемых данных тождественен символу END, то он будет ошибочно определен как признак конца кадра. Чтобы предотвратить такую ситуацию, байт данных со значением, равным значению символа END, заменяется составной двухбайтовой последовательностью, состоящей из специального символа ESC (DB) и кода DC. (Применяемый в протоколе SLIP символ ESC, не равный символу ESC в кодировке ASCII, будем обозначать SLIP ESC.) Если же байт данных имеет тот же код, что и символ SLIP ESC, то он заменяется двухбайтовой последовательностью, состоящей из собственно символа SLIP ESC и кода DD. После последнего байта пакета передается символ END.
Механизм формирования составных последовательностей показан на рис.1. Здесь приведены стандартный пакет IP, один байт которого тождественен символу END, а другой - символу SLIP ESC, и соответствующий ему пакет SLIP, который больше на 4 байта.

Хотя в спецификации протокола SLIP не определена максимальная длина передаваемого SLIP-кадра, реальный его размер определяется длной IP- пакета и не должен превышать 1006 байтов. Данное ограничение связано с первой реализацией протокола SLIP в соответствующем драйвере для Berkley Unix, и его соблюдение необходимо для поддержки совместимости разных реализаций SLIP .
Популярность протокола SLIP объясняется тем, что он дал возможность подключаться к сети Internet посредством стандартного порта RS 232, имеющегося в большинстве компьютеров. Программа управления SLIP загружается и выгружается по мере надобности. Большинство программ управления SLIP имеют возможность набирать телефонный номер провайдера.
Программное обеспечение, реализующее работу с протоколом SLIP (TCP-manager), выполняет функции управления сетевым устройством, то есть является драйвером сетевого устройства, такого, как модем. Оно принимает IP -пакеты от программы (точнее процесса), посылающей их (от программы сетевого уровня), обкладывает своей служебной информацией и передаёт устройству последовательной передачи данных (модему, в последовательный порт и т.п.). На другом конце последовательной линии аналогичная программа принимает символы, приходящие с устройства последовательной передачи данных, освобождает от служебной информации и передаёт то, что получилось, а должны получаться при этом IP -пакеты, соответствующей программе (сетевого уровня), которая обрабатывает IP -пакеты.


Ограничения. Для установления связи по протоколу SLIP в стеке протоколов TCP/IP компьютеры должны иметь информацию об адресах IP друг друга. Однако возможна ситуация, когда, скажем, при осуществлении соединения между хостом и маршрутизатором последнему понадобится передать хосту информацию о его адресе IP. Но в протоколе SLIP нет механизмов, дающих возможность обмениваться адресной информацией. Это ограничение не позволяет использовать SLIP для некоторых видов сетевого сервиса. Например, каждый раз после установления SLIP -соединения компьютер превращается в полноправный хост Internet со своим собственным IP -адресом. Если провайдер использует динамическое присвоение IP -адресов, то при каждом новом соединении компьютер будет получать новый IP адрес. Следовательно, другие компьютеры в сети будут вынуждены искать его под неизвестно каким адресом.
Другой недостаток SLIP - отсутствие индикации типа протокола, пакет которого инкапсулируется в пакет SLIP. Поэтому через последовательную линию по протоколу SLIP можно передавать трафик лишь одного сетевого протокола.
При работе с реальными телефонными линиями, зашумленными и поэтому искажающими пересылаемые данные, требуются процедуры обнаружения и коррекции ошибок. В протоколе SLIP такие процедуры не предусмотрены. Эти функции обеспечивают:

  • Либо вышележащие протоколы, например, в стеке TCP/IP протокол IP проводит тестирование целостности пакета по заголовку IP, а один из двух транспортных протоколов (UDP или TCP) проверяет целостность всех данных по контрольным суммам. Однако в протоколе UDP не обязательно использование контрольных сумм, поэтому совместное использование UDP и SLIP нежелательно.
  • Либо нижележащие протоколы. Поскольку для установления соединения по протоколу SLIP обычно используется модем, работающий по телефонной линии и подключенный к асинхронному, последовательному порту. Два компьютера, установившие такое соединение, обмениваются данными с паузами переменной длины. К сожалению, в телефонной линии всегда присутствуют помехи, иначе называемые шумом, поэтому модемы, подключаемые к телефонной сети, отличают данные от возможных помех, пользуясь различными параметрами связи. При использовании модема и программного обеспечения для обмена данными настраиваются определенные параметры связи, такие как скорость, размер данных, контроль четности. Для успешного взаимодействия двух модемов оба они должны быть одинаково настроены.
Но, несмотря на это, для повышения эффективности работы протоколу SLIP не помешало бы иметь собственный механизм (пусть даже простейший) коррекции ошибок.

Отсутствие этих возможностей делает протокол SLIP очень простым в реализации и, следовательно, популярным.

Compressed SLIP
Низкая пропускная способность последовательных линий вынуждает сокращать время передачи пакетов, уменьшая объем содержащейся в них служебной информации. Эта задача решается с помощью протокола Compressed SLIP , поддерживающего сжатие заголовков пакетов. Этот протокол был создан в Lawrence Berkeley Labs (LBL) Ван Якобсоном, как способ повысить эффективность последовательной передачи и уровень сервиса прикладных программ, использующих TCP/IP на медленных линиях. Появление CSLIP объясняется тем, что при использовании программ типа telnet, rlogin и других для пересылки одного байта данных требуется переслать 20-байтовый заголовок пакета IP и 20-байтовый заголовок пакета TCP . Спецификация CSLIP обеспечивает сжатие 40 байтов заголовка до 3-5 байтов.
На низких скоростях передачи данных эта разница заметна только при работе с пакетами, несущими малые объёмы информации, такие пакеты порождаются, например, при работе telnet или rlogin. На больших же скоростях CSLIP даёт меньший выигрыш и почти ничего не даёт для пакетов с большими объёмами данных, например, ftp -пакетов.
CSLIP для пересылки пакета использует информацию из предыдущего пакета, т.е. передача имеет структуру цепочки. Первый пакет в цепочке - несжатый. Если какой-либо пакет теряется, то цепочка рвётся, нельзя этот же пакет запросить в самом конце, его нужно пересылать заново тут же, т.е. прекращать процесс передачи и начинать новую цепочку. Таким образом, эта технология при частых пропажах или искажениях пакетов приводит к большим потерям времени, чем обычный SLIP . Это происходит из-за задержек на остановку и передачу нового несжатого пакета.

Протокол PPP (Point-to-Point Protocol).

Библиографическая справка

В конце 1980 гг. Internet (крупная международная сеть, соединяющая множество исследовательских организаций, университетов и коммерческих концернов) начала испытывать резкий рост числа главных вычислительных машин, обеспечивающих TCP/IP . Преобладающая часть этих главных вычислительных машин была подсоединена к локальным сетям (LAN) различных типов, причем наиболее популярной была Ethernet. Большая часть других главных вычислительных машин соединялись через глобальные сети (WAN), такие как общедоступные сети передачи данных (PDN) типа Х.25 . Сравнительно небольшое число главных вычислительных машин были подключены к каналам связи с непосредственным (двухточечным) соединением (т.е. к последовательным каналами связи). Однако каналы связи с непосредственным соединением принадлежат к числу старейших методов передачи информации, и почти каждая главная вычислительная машина поддерживает непосредственные соединения. Например, асинхронные интерфейсы RS-232-С встречаются фактически повсюду.
Одной из причин малого числа каналов связи IP с непосредственным соединением было отсутствие стандартного протокола формирования пакета данных Internet. Протокол Point-to-Point Protocol (PPP) (Протокол канала связи с непосредственным соединением) предназначался для решения этой проблемы. Помимо решения проблемы формирования стандартных пакетов данных Internet IP в каналах с непосредственным соединением, РРР также должен был решить другие проблемы, в том числе присвоение и управление адресами IP , асинхронное (старт/стоп) и синхронное бит-ориентированное формирование пакета данных, мультиплексирование протокола сети, конфигурация канала связи, проверка качества канала связи, обнаружение ошибок и согласование варианта для таких способностей, как согласование адреса сетевого уровня и согласование компрессии информации. РРР решает эти вопросы путем обеспечения расширяемого Протокола Управления Каналом и семейства Протоколов Управления Сетью (Network Control Protocols) (NCP) , которые позволяют согласовывать факультативные параметры конфигурации и различные возможности. Сегодня PPP , помимо IP , обеспечивает также и другие протоколы, в том числе IPX и DECnet .
В отличие от SLIP- протокола РРР может работать через любой интерфейс DTE/DCE (например, EIA RS-232-C, EIA RS-422, EIA RS-423 и CCITT V.35). Протокол PPP достаточно неприхотлив и может работать без управляющих сигналов модемов (таких, как Request to Send, Clear to Send, Data Carrier Detect и Data Terminal Ready). Единственным абсолютным требованием, которое предъявляет РРР , является требование обеспечения дублированных схем (либо специально назначенных, либо переключаемых), которые могут работать как в синхронном, так и в асинхронном последовательном по битам режиме, прозрачном для блоков данных канального уровня РРР . РРР не предъявляет каких-либо ограничений, касающихся скорости передачи информации, кроме тех, которые определяются конкретным примененным интерфейсом DTE/DCE.

Компоненты PPP
РРР обеспечивает метод передачи дейтаграмм через последовательные каналы связи с непосредственным соединением. Он содержит три основных компонента:
Алгоритм работы.
Для того чтобы организовать связь через канал связи с непосредственным соединением, инициирующий РРР сначала отправляет пакеты для выбора конфигурации и (факультативно) проверки канала передачи данных. После того, как канал установлен и пакетом проведено необходимое согласование факультативных средств, инициирующий РРР отправляет пакеты NCP , чтобы выбрать и определить конфигурацию одного или более протоколов сетевого уровня. Как только конфигурация каждого выбранного протокола определена, дейтаграммы из каждого протокола сетевого уровня могут быть отправлены через данный канал. Канал сохраняет свою конфигурацию для связи до тех пор, пока явно выраженные пакеты или NCP не закроют этот канал, или пока не произойдет какое-нибудь внешнее событие (например, истечет срок бездействия таймера или вмешается какой-нибудь пользователь).
может согласовывать модификации стандартной структуры блока данных РРР . Однако модифицированные блоки данных всегда будут четко различимы от стандартных блоков данных. (Подробнее смотри далее).


Фаза Dead начинает и заканчивает процесс связи. В случае появления внешнего события (например, готовность аппаратного обеспечения осуществить связь) будет инициирована фаза Establish, в которой происходит согласование различных параметров соединения (обмен пакетами ). В случае невозможности согласовать некоторый параметр процесс прервется и протокол перейдет в состояние Dead. Если же все необходимые параметры согласованы, будет инициирована фаза Authenticate, в которой проводится проверка на подлинность участников сеанса (если таковая требуется). В случае неудачной аутентификации будет инициирована фаза Terminate, подготавливающая разрыв соединения. Если же фаза Authenticate прошла успешно, протокол переходит к фазе Network. В этой фазе осуществляется пересылка данных в соответствии с ранее сконфигурированными параметрами связи (в частности - типом сетевого протокола). Фаза Network начинается с того, что каждый протокол сетевого уровня (например, IP или IPX) конфигурирует различные параметры (скажем, согласует алгоритм сжатия заголовка пакета, обменивается адресной информацией) с помощью соответствующих протоколов Network Control Protocol (например, IP Control Protocol или IPX Control Protocol). Фаза Terminate (используется по окончании передачи кадров или в случае возникновения каких-либо ошибок) прерывает передачу кадров и переводит протокол РРР в состояние Dead.

Структура кадра протокола PPP.
РРР использует принципы, терминологию и структуру блока данных процедур HDLC (High Level Data Link Control ) (ISO 3309-1979) Международной Организации по Стандартизации (ISO), модифицированных стандартом ISO 3309-1984/PDAD1. ISO 3309-1979 определяет структуру блока данных HLDC для применения в синхронных окружениях. ISO 3309-1984/PDAD1 определяет предложенные для стандарта ISO 3309-1979 модификации, которые позволяют его использование в асинхронных окружениях. Процедуры управления РРР используют дефиниции и кодирование управляющих полей, стандартизированных ISO 4335-1979 и ISO 4335-1979/Addendum 1-1979.
1 байт 1 байт 1 байт 2 байта (до 1500 байтов) 2 байта 1 байт
Flag Address Control Protocol Information CRC Flag
(7E) (FF) (03) (7Е)

Flag Длина последовательности "флаг" равна одному байту; она указывает на начало или конец блока данных. Эта последовательность состоит из бинарной последовательности 01111110. Address
Длина поля "адрес" равна 1 байту; оно содержит бинарную последовательность 11111111, представляющую собой стандартный широковещательный адрес. РРР не присваивает индивидуальных адресов станциям, то есть содержимое поля "адрес" никогда не изменяется.
Control Поле "управление" составляет 1 байт и содержит бинарную последовательность 00000011, которая требует от пользователя передачи информации непоследовательным кадром. Предусмотрены услуги без установления соединения канала связи, аналогичные услугам LLC Type 1. Protocol Длина поля "протокол" равна 2 байтам; его значение идентифицирует протокол, заключенный в информационном поле блока данных. Значения поля Protocol и соответствующие им пакеты
Значение поля Protocol Тип пакета
0021 IP
0023 ISO CLNP
0025 Xerox NS IDP
0027 DECnet Phase IV
0029 Apple Talk
002В IPX
002D Van Jacobson Compressed TCP/IP 1
002F Van Jacobson Compressed TCP/IP 2
8021 IP Control Protocol
8023 ISO CLNP Control Protocol
8025 Xerox NS IDP Control Protocol
8027 DECnet Phase IV Control Protocol
8029 Apple Talk Control Protocol
802B IPX Control Protocol
C021 Link Control Protocol
C023 User/Password Authentication Protocol

Information Длина поля "данные" - от нуля и больше; оно содержит дейтаграмму для протокола, заданного в поле протокола. Максимальная длина умолчания информационного поля равна 1500 байтам. В соответствии с априорным соглашением, разрешающие реализации РРР могут использовать другие значения максимальной длины информационного поля.
Если при синхронном типе связи в поле "данные" появляется байт со значением 7E (значение байта-флага), то ситуация обрабатывается на аппаратном уровне с помощью техники вставки битов (bit stuffing).
При асинхронном (стартстопном)типе связи ситуации, когда между байтами-флагами появляются байты со значениями 7E или 7D (значение символа Esc - escape) и значениями меньшими 20 (управляющие символы ASCII), обрабатываются при помощи составных последовательностей. Байт 7E передается как двухбайтовая последовательность 7D,5E; байт 7D - как последовательность 7D,5D; байты XX со значениями меньшими 20 - как XX, 01. CRC Поле "проверочная последовательность блока данных" (CSC) обычно составляет 16 бит (два байта). В соответствии с априорным соглашением, разрешающие реализации РРР могут использовать 32-х битовое (четырехбайтовое) поле CSC, чтобы улучшить процесс выявления ошибок.

Преимущества.
По сравнению с протоколом SLIP протокол PPP является значительно более развитым инструментом для работы на последовательных линиях и имеет следующие преимущества:
    • возможность одновременной работы по различным сетевым протоколам, а не только по IP ;
    • проверка целостности данных путем подсчета контрольной суммы;
    • поддержка динамического обмена адресами IP ;
    • возможность сжатия заголовков IP - и TCР -пакетов, разработанных Van Jacobson (механизм похож на реализованный в протоколе CSLIP ).
Перспективы
Тестовые испытания, проведенные недавно в фирме Morning Star Technologies, показали, что существенной разницы в производительности протоколов SLIP и РРР нет. Различие приемо-передающих характеристик компьютеров и модемов и даже качество реализации протоколов влияет на производительность гораздо больше, чем собственно различия между протоколами.
До недавнего времени пользователей протокола SLIP было больше, чем пользователей протокола РРР , но в основном это было связано с малым число программных продуктов, поддерживающих РРР . Однако сейчас не вызывает сомнений, что будущее за протоколом РРР . Это подтверждается массовым появлением продуктов, реализующих этот протокол.
Среди последних новостей - реализация спецификации Point-to-PointTunneling Protocol (фирма US Robotic совместно с Microsoft).

Протокол управления канала связи PPP (LCP)

LCP обеспечивает метод организации, выбора конфигурации, поддержания и окончания работы канала с непосредственным соединением. Процесс LCP проходит через 4 четко различаемые фазы:
    • Организация канала и согласование его конфигурации. Прежде чем может быть произведен обмен каких-либо дейтаграмм сетевого уровня (например, IP ), LCP сначала должен открыть связь и согласовать параметры конфигурации. Эта фаза завершается после того, как пакет подтверждения конфигурации будет отправлен и принят.
    • Определение качества канала связи. LCP обеспечивает факультативную фазу определения качества канала, которая следует за фазой организации канала и согласования его конфигурации. В этой фазе проверяется канал, чтобы определить, является ли качество канала достаточным для вызова протоколов сетевого уровня. Эта фаза является полностью факультативной. LCP может задержать передачу информации протоколов сетевого уровня до завершения этой фазы.
    • Согласование конфигурации протоколов сетевого уровня. После того, как LCP завершит фазу определения качества канала связи, конфигурация сетевых протоколов может быть по отдельности выбрана соответствующими NCP , и они могут быть в любой момент вызваны и освобождены для последующего использования. Если LCP закрывает данный канал, он информирует об этом протоколы сетевого уровня, чтобы они могли принять соответствующие меры.
    • Прекращение действия канала. LCP может в любой момент закрыть канал. Это обычно делается по запросу пользователя (человека), но может произойти и из-за какого-нибудь физического события, такого, как потеря носителя или истечение периода бездействия таймера.
Существует три класса пакетов LCP :
    • Пакеты для организации канала связи. Используются для организации и выбора конфигурации канала.
    • Пакеты для завершения действия канала. Используются для завершения действия канала связи.
    • Пакеты для поддержания работоспособности канала. Используются для поддержания и отладки канала.
Эти пакеты используются для достижения работоспособности каждой из фаз LCP .

Пользователи Интернета, работающие через поставщиков услуг Интернета, представляют очень существенный сегмент сети. Прием и передача данных ведется при помощи модема, подключенного через последовательный порт компьютера к обычной телефонной линии. Для работы с сетью через модем используется один из двух существующих протоколов для работы по последовательным линиям связи: PPP или SLIP. Для того чтобы писать сетевые приложения, необходимо хорошо представлять себе ключевые моменты и различия между ними. Необходимо также иметь представление о производном от SLIP-протоколе, который называется SLIP с компрессией (обеспечивающий сжатие данных). В данной статье рассматриваются вопросы, связанные с первым протоколом - SLIP и его модификацией CSLIP (описаны в документах RFC 1055 и RFC 1144).

Для установления соединения по протоколу SLIP обычно используется модем, работающий по телефонной линии и подключенный к асинхронному, последовательному порту. Два компьютера, установившие такое соединение, обмениваются данными с паузами переменной длины. К сожалению, в телефонной линии всегда присутствуют помехи (шум), поэтому устройства, подключаемые к телефонной сети, отличают данные от возможных помех, пользуясь различными параметрами связи.

Соединение по протоколу SLIP

В первые годы существования Интернета протокол SLIP пользовался наибольшей популярностью для входа в Интернет начинающих пользователей с их домашних или рабочих компьютеров. Чтобы использовать SLIP, вы должны иметь соответствующее программное обеспечение, способное установить соединение по этому протоколу между вашим компьютером и хостом Интернета. Программное обеспечение такого рода (оно часто называется TCP-manager) выполняет функции управления сетевым устройством, то есть является драйвером сетевого устройства, такого как модем. Вы загружаете и выгружаете программу управления SLIP по мере надобности.

Соединение по протоколу SLIP - это наиболее экономичный и простой способ подключить ваш компьютер к Интернету. SLIP можно использовать, если ваша локальная сеть не имеет прямого доступа к Интернету, или вы хотите соединить отдельный компьютер. Для работы SLIP необходимо, чтобы ваш поставщик услуг Интернета также обеспечил протокол SLIP на своем узловом компьютере (хосте Интернета).

Известно, что каждый уровень стека протоколов TCP/IP инкапсулирует (вставляет) данные в том формате, в котором они требуются для передачи окружающим уровням. При "путешествии" данных через стек протоколов TCP/IP они последовательно окружаются дополнительной информацией (инкапсулируются) для следующего на пути уровня. Для того чтобы послать IP-датаграмму через сетевой уровень, вышележащий уровень соединения должен соответствующим образом инкапсулировать данные, оформить их в кадр, как того требует стандарт сетевого уровня протокола TCP/IP. Например, уровень соединения для сети Ethernet инкапсулирует данные в кадр Ethernet. Для сети token-ring, соответственно, это будут кадры стандарта token-ring.

Стандарты передачи данных по последовательному каналу связи, SLIP и CSLIP просто определяют другой способ инкапсуляции. SLIP и CSLIP подготавливают данные для передачи по последовательному каналу (обычно это интерфейс RS-232) в Интернет. Протокол РРР также инкапсулирует данные для этой же цели. Однако РРР использует более сложный метод инкапсуляции и интерфейс с Интернетом, нежели SLIP. Однако канал передачи для них всех по-прежнему последовательный и двухточечный. Логически, SLIP и РРР находятся между последовательным портом компьютера и его программным стеком TCP/IP.

Что такое SLIP?

Протоколы семейства TCP/IP могут работать, пользуясь широким спектром разнообразных сетевых технологий. Большинство сетевых технологий требуют применения четко определенной структуры кадра данных. Институт электрической и электронной инженерии (IEEE), основанный в 1963 году и имеющий в своем составе более 300 000 членов, описал набор различных стандартов, облегчающих производителям ПО и оборудования разработку и применение совместимых друг с другом стандартов по передаче данных, в том числе и в локальных компьютерных сетях. Как и большинство создающих стандарты организаций, IEEE нумерует исходящие документы. Группа стандартов IEEE 802 посвящена локальным компьютерным сетям. Например, стандарт IEEE 802.1 посвящен методам управления сетью, IEEE 802.3 и IEEE 802.5 описывают физические уровни для сетей Ethernet и token-ring, IEEE 802.2 содержит спецификацию уровня соединения для сетей типа Ehternet, token ring и ряда других технологий.

Преобразование (инкапсуляция) данных для передачи по последовательным каналам связи описано в документе под названием RFC 1055, "A Nonstandard for Transmission of IP Datagrams Over Serial Lines: SLIP", Rornkey, 1988. RFC 1055 не является официальным стандартом Интернета. Он описывает стандарт де-факто. Это значит, что, хотя сообщество Интернет и не рассматривает RFC 1055 в качестве стандарта, любой желающий, чтобы его программное обеспечение обладало совместимостью с уже существующими методами передачи, должен воспользоваться рекомендациями документа в своей работе.

SLIP - это протокол инкапсуляции IP-пакетов в кадры, пригодные для передачи по последовательному каналу связи. SLIP не предоставляет возможности адресовать данные, обозначать типы кадров, корректировать или определять повреждение данных, а также сжимать пакеты. Отсутствие этих возможностей делает протокол чрезвычайно простым в реализации и, следовательно, популярным. Несмотря на популярность, фирмы и производители программного обеспечения редко используют SLIP в качестве стандартного протокола, так как он не является официальным стандартом Интернета. Как правило, в качестве такого стандарта применяется РРР. Протокол РРР - это действительно стандарт Интернета, обладающий теми же свойствами по передаче данных в последовательном двухточечном канале, что и SLIP.

Инкапсуляция данных SLIP

Каждый протокол обладает свойством инкапсулировать данные. SLIP здесь не является исключением. Он использует специальные символы для ограничения кадра данных в последовательном канале. SLIP определяет следующие два символа, служащие для этой цели: End и Esc. Символом End служит символ с кодом ASCII 192 (ОхСО), символом Esc - символ с кодом 219 (OxDB). Компьютер с протоколом SLIP передает символ End в конце каждого пакета данных. Символ Esc используется для обозначения данных, имеющих тот же номер, что и символы Esc и End внутри пакета данных. В том, что для Esc и End выбрали именно указанные коды, нет особого скрытого смысла. Просто они были выбраны, и все. Поэтому почти наверняка в потоке данных пользователя будут встречаться как символы Esc, так и End. Когда это происходит, SLIP использует Esc, чтобы сообщить приемнику, что следующий символ с кодом End на самом деле не является концом кадра. Например, когда в пакете данных попадается байт с номером ОхСО (код символа End), SLIP подставляет двухбайтную Esc-последовательность Esc OxDC. Если байт имеет код самого символа Esc, SLIP вставляет двухбайтную Esc-последовательность Esc OxDD.

Реализация SLIP на принимающей стороне совершает противоположные действия, чтобы правильно разобрать поступающий пакет данных. Если в последовательности встречается символ Esc, SLIP сразу же смотрит на следующий за Esc символ и в зависимости от его номера так или иначе интерпретирует принятую последовательность. Например, если следующий за Esc символ имеет код OxDC, SLIP заменяет два символа на один с кодом ОхСО. Если принято сочетание Esc OxDD, оно заменяется на байт с кодом OxDB. Когда SLIP видит, что пришедший байт имеет код End и перед ним нет байта с кодом Esc, это значит, что достигнут конец кадра. Далее, SLIP передает все полученные до этого данные вышележащему сетевому уровню в качестве IP-пакета.

Большинство реализаций SLIP посылают байт с кодом End также и впереди кадра данных. Строго говоря, протокол SLIP не требует этого. Однако, поступая таким образом, SLIP позволяет принимающей стороне эффективно отбросить любой мусор, принятый до передачи действительного кадра и расценивающийся как кадр. Реализация SLIP, действующая описанным образом, позволяет отбросить кадр данных нулевой длины, когда принимающая сторона получает два следующих друг за другом символа End.

Как мы уже отметили выше, вставка символа End перед началом кадра позволяет принимающей стороне избавиться от любого шума на линии связи. Однако такими мерами все способности SLIP определить и тем более исправить ошибки данных исчерпываются. SLIP возлагает задачу по определению и исправлению пакетов данных и сообщений полностью на вышележащие протоколы, то есть на сетевой и транспортный уровни TCP/IP. Протокол IP требует присутствия и проверки контрольной суммы в заголовке пакета, поэтому SLIP вполне может не обращать внимания на возможное повреждение данных - эту работу за него сделает протокол IP, который проверит пакет и отбросит его в случае повреждения. TCP-протокол таким же образом проверит контрольную сумму своего заголовка и сегмента данных и в случае повреждения поступит с пакетом надлежащим образом. Итак, мы видим, что, поскольку вышележащие протоколы и так проверяют состояние и целостность данных, нет никакой необходимости вводить дополнительный контроль данных на уровне протокола SLIP.

В предыдущем абзаце мы повторили тот факт, что IP и TCP обнаруживают и корректируют ошибки, могущие возникнуть при передаче данных к ним с нижележащих уровней, например, от протокола SLIP, который сам не обнаруживает ошибок. Поскольку в UDP не применяется контрольных сумм, никто не может гарантировать, что пакет UDP дойдет до получателя по SLIP неповрежденным, коль скоро SLIP тоже не обнаруживает ошибки. Вообразите, что вы передаете пакеты UDP по шумной телефонной линии, пользуясь SLIP. Ни один из этих протоколов не обратит внимания на возможный сбой и повреждение данных. Компьютер, получивший поврежденный пакет, с чистой совестью будет считать его нормальным, и такое поведение сможет привести к непредсказуемым последствиям. Поэтому нельзя передавать датаграммы UDP по протоколу SLIP, если только вы не используете UDP с контрольной суммой.

Недостатки SLIP

Кроме отсутствия обнаружения и коррекции ошибок, в протоколе SLIP отсутствуют еще некоторые достаточно важные для профессиональных сетевых программистов функции. Например, SLIP не в состоянии адресовать пакеты, обозначать пакеты различными типами, а также сжимать данные внутри пакета. В RFC 1055 прямо указано, что создатели SLIP разрабатывали его, когда наличие таких функций не было существенно.

Каждый раз после установления SLIP-соединения компьютер превращается в полноправный хост Интернета со своим собственным IP-адресом. Таким образом, становится возможным обслуживать и других пользователей Интернета. Поскольку ваш поставщик услуг Интернета может применять динамическое присвоение адреса (из диапазона, имеющегося у него), при каждом новом соединении ваш компьютер будет получать новый IP-адрес. Следовательно, другие компьютеры в сети будут вынуждены искать вас каждый раз под неизвестно каким адресом.

В дополнение ко всем неприятностям, отметим, что не существует метода прямо указать ваш новый IP-адрес при установлении SLIP-соединения. Каждый раз вы вынуждены вручную вводить изменившийся адрес в компьютер, поскольку один компьютер не может автоматически передать IP-адрес другому, пользуясь SLIP. Из такого положения есть только один выход: получить у поставщика услуг один, принадлежащий только вам IP-адрес компьютера. Как правило, иметь такой адрес обойдется вам дороже, чем иметь динамически присваиваемый.

На свете есть много компьютеров, в которых в одно и то же время может исполняться несколько различных сетевых протоколов. Например, компьютеры фирмы DEC могут совмещать TCP/IP и DECnet. Разумеется, работая с двумя протоколами сразу, вы захотите, чтобы они жили вместе на одном и том же проводе, соединяющем вас с внешним миром. Такая задача проста, пока вы применяете Ethernet в качестве сетевой среды. Фреймы Ethernet имеют соответствующие поля, где указывается тип передающегося пакета, однако как только вы попытаетесь перейти на SLIP, обнаружится, что у кадра SLIP такое поле отсутствует, а, следовательно, он может передать данные только для одного IP протокола.

Сети Ethernet передают информацию со скоростью до 10 миллионов бит в секунду. Соединение SLIP может работать на скоростном модеме, но даже при этом обеспечивать скорость только 19200 бит в секунду. Другими словами, Ethernet быстрее SLIP более, чем в пятьсот раз. Для увеличения производительности SLIP-соединения вы можете сжимать передаваемые по модему данные, что уменьшает необходимый трафик сети и позволяет передать больше информации за меньшее время. Предположим, требуется передать файл размером в 100 Кбайт (100х1024 байт) по модему на скорости 1200 бод. Для этого потребуется около 14 минут:
100 х 1024 = 102400 байт
102400 байт / 120 байт в секунду = 853 секунды 853 секунды / 60 секунд в минуте = 14 минут

Если передаваемые данные предварительно сжать в соотношении 1:4, объем уменьшится до 25 Кбайт. Время, нужное для передачи, сократится до четырех минут. Новые модемы используют встроенную технологию сжатия данных. Некоторые программные протоколы также используют сжатие данных при работе. Информация в заголовках пакетов TCP и IP, которая меняется редко, может быть эффективно устранена с применением простейших алгоритмов сжатия данных, когда передаются только изменяющиеся части заголовков. RFC 1055, описывающий протокол SLIP, не описывает, однако, никакого алгоритма компрессии. В следующем разделе вы познакомитесь с реализацией протокола CSLIP, обладающего возможностью сжимать заголовки TCP/IP для увеличения производительности.

Протокол SLIP со сжатием (CSLIP)

Алгоритм SLIP со сжатием заголовков данных, увеличивающий производительность сети, рассматривается в документе под названием RFC 1144, "Сжатие заголовков TCP/IP на низкоскоростных последовательных соединениях" (Compressing TCP/IP Headers for Low-Speed Serial Links, Jacobson, 1990).

Протокол CSLIP сжимает только заголовки пакетов. Сами данные пакета остаются неизменными. Точнее, CSLIP сжимает исключительно заголовки TCP и IP для сегментов данных TCP. CSLIP не затрагивает ни заголовки пакетов UDP, ни заголовки IP для них. Разработано достаточно много различных реализаций протокола CSLIP, поэтому вам скорее всего, не понадобится изобретать новую.

Предпосылки к появлению CSLIP

Чтобы понять, почему сжатие заголовков пакетов столь эффективно, давайте рассмотрим некоторые типичные сетевые задачи;

Интерактивный вход в удаленный компьютер (Telnet);

Интерактивная передача файлов (FTP);

Электронная почта с использованием Simple Mail Transfer Protocol (SMTP);

Чтение и передача новостей с использованием Network News Transfer Protocol (NNTP).

Как и любая другая линия связи, последовательная линия переносит пакеты данных пользователя, снабженные заголовками. Для увеличения пропускной способности линии не мешало бы сжимать заголовки пакетов. Способы передачи пакетов по сети делятся на две большие категории: интерактивные и неинтерактивные. Мы покажем позже, что эффективность канала связи зависит от типа передачи пакетов.

Прекрасными примерами неинтерактивной передачи пакетов служат два протокола: FTP и NNTP. Разумеется, начальная стадия работы обоих процессов включает их ручную настройку и передачу параметров. Однако все, что происходит потом, - это перекачка информации с одного сетевого хоста на другой, не требующая вашего вмешательства. При запуске ftp с вашего компьютера, вы указываете имя файла для передачи, а потом сидите и ждете, пока поток байтов, составляющих этот файл, попадет с другого хоста на ваш собственный. Точно так же вы выбираете группу новостей в приложении NNTP и ждете, пока все новости с сервера передадутся на ваш компьютер. Это примеры неинтерактивной передачи пакетов.

Типичным примером интерактивной передачи информации служит Telnet. Каждое нажатие на клавиатуре пользователя обычно приводит к посылке пакета, содержащего код введенного символа, на удаленный сетевой хост. Несмотря на то, что многие реализации Telnet умеют передавать сразу всю введенную строку символов, обычно эта возможность не используется, ибо пользователь хочет получить незамедлительную реакцию удаленного компьютера на введенный символ. Кроме того, удаленный компьютер посылает пакет-подтверждение с копией введенного символа обратно пользователю. В общем, Telnet создает двунаправленный поток данных, состоящий из маленьких пакетов.

Обыкновенно IP-заголовки имеют длину в 20 байт, заголовок TCP имеет длину также в 20 байт. Отсюда следует, что сеанс Telnet создает пакеты данных длиной в 40 байт заголовков для каждого переданного символа в один байт. Для понимания принципа работы CSLIP нужно усвоить два различных, но тесно связанных понятия: эффективность линии и интерактивная реакция системы. Эффективность линии - это коэффициент, равный длине заголовка TCP/IP-пакета, деленной на длину заголовка плюс длину данных пользователя в этом пакете. Мы сейчас вычислим эффективность линии для сеанса Telnet.

Предположим, что программа Telnet передает один пакет на одно нажатие клавиши, которое, в свою очередь, состоит из одного символа длиной в байт. Пакет данных, содержащий символ длиной в байт и снабженный TCP/IP-заголовками (еще 40 байт), будет иметь длину в 41 байт. Приемник пакета должен послать обратно подтверждение о доставке, и это будет пакет длиной в 41 байт. Теперь сосчитаем эффективность линии. Она составит менее трех процентов (процесс передачи по TCP/IP дуплексный, так как пакеты данных следуют независимо друг от друга в обоих направлениях, поэтому эффективность линии считается независимо для обоих направлений. Впрочем, в нашем случае результат одинаков как для одного, так и для другого направления).

Для увеличения эффективности линии надо либо увеличить количество данных в пакете, либо уменьшить размер заголовков. Алгоритм CSLIP концентрирует внимание на уменьшении размеров заголовков пакетов. Кроме того, CSLIP соблюдает требования интерактивной реакции системы. Интерактивность реакции системы - это просто ее свойство убедить пользователя в том, что все работает. Например, когда пользователь нажимает клавишу, он, вполне понятно, хочет увидеть, как введенный символ отобразится на его мониторе. Если работа сети приводит к ощутимым задержкам при передаче пакета, пользователь расценит интерактивность сети как неудовлетворительную.

В RFC 1144 рассматривается, каким образом особенности передачи заголовков пакетов сетевых данных могут влиять на восприятие ситуации пользователем. Предположив, что каждый введенный символ приводит к появлению двух пакетов длиной в 41 байт, получим, что для обеспечения задержки эха не более чем на 200 миллисекунд, необходимо, чтобы скорость обмена составляла по меньшей мере 4000 бит в секунду. Другими словами, медленная последовательная линия заставляет пользователя думать, будто скорость работы программы мала, даже если программа вполне эффективна в действительности.

Неинтерактивная передача пакетов также может влиять на интерактивную реакцию системы. Например, чтобы передача неинтерактивных пакетов обладала эффективностью более 90 процентов при длине TCP/IP-заголовков в 40 байт, необходимо сохранять максимальную длину пакета (MTU) в диапазоне от 500 до 1000 байт. Предположим далее, что ваше соединение SLIP имеет MTU 1024 байт при скорости модема 9600 бод. При этом, один пакет в одну сторону будет передаваться приблизительно в течение секунды. Любой интерактивный сеанс будет при этом ждать окончания передачи неинтерактивного пакета.

Влияние аппаратных средств

Кроме рассмотренного нами человеческого фактора, на проектирование протокола также влияют и некоторые особенности аппаратных средств. Производители модемов используют различные способы увеличения эффективности работы этих устройств. При программировании приложений нет необходимости знать досконально, что происходит внутри модема, однако нужно обратить внимание на некоторые вещи.

Теория связи оговаривает фактическую полосу пропускания между двумя устройствами. Эффективная полоса пропускания в зависимости от используемой техники позволяет увеличить (и превысить) фактическую полосу пропускания при сжатии передаваемых данных. Сжатие данных позволяет передать их больше за одно и то же время. В некоторых случаях достигаемая при этом скорость передачи превышает теоретический предел скорости канала связи.

В дуплексном протоколе, характерном для модема, данные следуют в обоих направлениях одновременно. Однако для обоих направлений редко применяется одна и та же полоса пропускания, так как одна из сторон, участвующих в соединении, скорее всего, передает больше данных, чем другая. Именно для нее отводится большая полоса пропускания за счет противоположной стороны. Распределение полосы пропускания происходит прозрачно для пользователя и управляется самим модемом.

Чтобы определить, какая из сторон в соединении требует большей полосы, производители модемов считают, что одной из сторон всегда является человек, и именно она требует наибольшей полосы. Модем, однако, должен самостоятельно догадаться об этом. За отправную точку берется скорость в 300 бит в секунду. Большинство людей не могут печатать со скоростью, превышающей указанную. К сожалению, ситуация меняется, как только мы начинаем передавать пакеты TCP/IP с заголовками из сорока байт на каждый введенный символ. Скорость увеличивается в соотношении 40:1 и заставляет модем часто менять полосы в противоположных направлениях. IP-пакет размером в 41 байт состоит из 328 бит, что выходит за пределы, предписанные для узнавания человека модемом. При покупке модема следует обращать внимание на такие тонкости, как поддерживаемые типы сжатия данных и другие возможности по передаче данных. Покупка хорошего в этих отношениях модема позволит вам значительно увеличить производительность сетевого соединения.

Цели проектирования

Современная архитектура модемов позволяет сократить потребность в скорости передачи нажатий клавиш до 300 бит в секунду и даже меньше. Если мы рассматриваем десятибитовую последовательность на один символ (восемь бит данных плюс старт- и стоп-биты), 300 бит в секунду образуют полосу пропускания в 30 байт данных в секунду. Обычная скорость печати на клавиатуре составляет 5 символов в секунду. Таким образом, для передачи заголовков остается 25 байт (30 - 5) при условии сохранения выбранной максимальной полосы пропускания в 300 бит в секунду. Другими словами, на один передаваемый символ допустимо передать еще и пятибайтовый заголовок. Кроме того, такая передача сохраняет хорошую интерактивность системы, так как пауза между нажатием и получением эха у нас не превысит 200 миллисекунд при скорости 4096 бит в секунду.

Реализация SLIP

В RFC 1144 обсуждаются методы, служащие для сокращения необходимой длины передаваемых заголовков с 40 байт на пакет до всего лишь трех-пяти. Джекобсон показывает, что на протяжении TCP-соединения около половины информации заголовка остается неизменной. Протокол CSLIP требует, чтобы после установки TCP-соединения хостами, они хранили у себя копии последнего принятого и переданного пакетов, и в дальнейшем, храня у себя номер текущего соединения, просто передает изменения в заголовках, позволяя собирать реальный заголовок на основе имеющейся неизменной части и принятого изменения.

Как только появляется новый CSLIP-пакет, сетевое ПО по идентификатору устанавливает, к какому соединению он относится и восстанавливает его в нормальном виде. Как видим, по CSLIP не передаются настоящие заголовки пакетов, что сокращает размер пакета сразу на 20 байт.

Далее, CSLIP не передает поле IP заголовка "Общая длина пакета" (Total Length), получая его вместо этого от сетевого уровня соединения и сокращая длину еще как минимум на два байта. В заголовке IP-пакета остается только поле контрольной суммы заголовка, однако нет никакой необходимости передавать контрольную сумму отсутствующих данных. Вместо передачи контрольной суммы заголовка CSLIP вычисляет ее на месте, в отличие от SLIP, который по-прежнему вынужден передавать контрольную сумму по каналу связи. Мы убираем контрольную сумму заголовка - и получаем еще два байта экономии.

В результате остается еще 16 байт в заголовке пакета, которые могут изменяться на протяжении сеанса TCP/IP. Разумеется, они изменяются не постоянно, а лишь иногда. В RFC 1144 отмечается, что, скажем, протокол FTP изменяет только идентификаторы пакетов (ID), номер последовательности и контрольную сумму в направлении от передатчика к приемнику. Идентификатор пакета, пакет-подтверждение, контрольная сумма и, возможно, окно передачи - вот что обычно изменяется по направлению от приемника к передатчику. Передатчик CSLIP всегда хранит копию последнего посланного пакета у себя. Таким образом, он знает, какие именно изменения произошли в следующем по счету пакете для передачи. Если передатчик шлет только изменившиеся байты, средний размер заголовка пакета становится равным примерно десяти байтам. Зная, каким образом изменяются поля в заголовке, можно достичь еще большего сокращения его размера.

Идентификатор пакета изменяется, как правило, на единицу при передаче каждого нового пакета. Что это значит? Что разность двух идентификаторов можно закодировать небольшим положительным целым числом, меньшим, чем 256 (один байт). Как правило, это число равно единице. Далее, для передатчика номер последовательности текущего пакета будет числом, полученным от сложения этого номера у предыдущего пакета с длиной предыдущего пакета. Максимальная длина IP-пакета равна 64000 байт, значит, изменение номера последовательности между двумя пакетами никогда не превысит двух байт. На этом этапе, посылая вместо реальных полей только их изменения, CSLIP экономит нам еще от трех до четырех байт дополнительно.

Итак, мы сумели сократить размер TCP/IP-заголовка с 40 байт до пяти, что и являлось поставленной целью. Детали реализации в общем случае не существенны, если только вам не хочется написать собственную реализацию CSLIP...

Данный протокол является одним из старейших Internet-протоколов, используемых для подключения удаленных машин по выделенным или коммутируемым телефонным линиям через COM-порт [и модем]. Основным назначением данного протокола является дробление пакетов на более мелкие единицы перед транспортировкой и их сшивание после передачи. Он не осуществляет инкапсуляции пакетов и является наиболее простым, т.к. не анализирует поток данных и не позволяет осуществлять манипуляции с адресами. Поэтому, для SLIP-взаимодействия компьютеры должны иметь правильные IP-адреса, скорректированные заранее. По стандарту, данный протокол является IP-ориентированным, т.е. способен работать только с IP-пакетами. Однако, его простота делает возможным реализации и для других базовых транспортных протоколов. По внутренней идеологии протокол SLIP является клиент-сервер-ориентированным протоколом, т.к. клиент – машина временно подключающаяся к сети и инициализирует соединение, а сервер – постоянно в ней находится и отвечает на запросы клиента. Данный протокол является достаточно незащищенным, как по соображениям безопасности, так и по коррекции ошибок передачи данных – в оригинале, он не имеет ее вообще.

Конец работы -

Эта тема принадлежит разделу:

Курс лекций по дисциплине инфокоммуникационные системы и сети

Курс лекций по дисциплине.. инфокоммуникационные системы и сети.. тема основные понятия инфокоммуникационных сетей класс инфокоммуникационных сетей как открытые информационные системы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Возникновение понятия открытости
Развитие систем и средств вычислительной техники, расширенное их внедрение во все сферы науки, техники, сферы обслуживания и быта привели к необходимости объединения конкретных вычислительных устро

Понятие открытой системы
В настоящее время существует множество определений понятия "открытая система". Так, Ассоциация французских пользователей UNIX и открытых систем (AFUU) дает следующее определение: "От

Принципы построения
Основные требования, предъявляемые к информационной инфраструктуре, состоят в обеспечении необходимой функциональности, быстродействия, пропускной способности и безопасности. При этом исходим из то

Тема 2
МОДЕЛИ И СТРУКТУРЫ ИНФОРМАЦИОННЫХ СЕТЕЙ 2.1 Топология Способ соединения компьютеров в сети называется топологией. При выборе конкретного т

Кольцевая топология
В этом случае все рабочие станции и сервер соединены друг с другом по кольцу, по которому посылаются данные и адрес получателя. Рабочие станции получают соответствующие данные, анализируя адрес пос

Шинная топология
Такая сеть похожа на центральную линию, к которой подключены сервер и отдельные рабочие станции. Шинная топология получила широкое распространение, что, прежде всего, можно объяснить небольшими пот

Смешанные топологии
Сегодня все чаще встречаются смешанные топологии, например, можно соединить с помощью кабеля кластеры машин, находящиеся на удаленном расстоянии друг от друга. +----------------+ кабель +-

Коаксиальные передающие среды
Коаксиальный кабель является наиболее распространенной средой, используемой для передачи радиочастотных сигналов. Конструкционно он состоит из одножильного или многожильного проводника, окруженного

Передающие среды на основе витой пары проводников
В идеальном случае линия передачи представляет собой, как минимум, два проводника, разделенных диэлектрическим материалом и имеющих равномерный зазор на всем своем протяжении. К двум проводникам пр

Кабельные системы для скоростной передачи данных
С ростом спроса на более быстрые и сложные сети растет и рынок кабельной продукции. Кабели с высокочастотными характеристиками представляют приблизительно 20% рынка и их доля будет расти с повышени

Однородность импеданса
Полезно напомнить еще раз, что грядущие приложения будут, вероятнее всего, работать в дуплексном режиме. Явление неоднородности импеданса в линии передачи аналогично сопротивлению потоку воды на от

Преимущества волокна
Волоконно-оптические коммуникации имеют ряд преимуществ по сравнению с электронными системами, использующими передающие среды на металлической основе. В волоконно-оптических системах перед

Основные элементы оптического волокна
Ядро. Ядро – светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.

Метод доступа и кадры для сетей Token Ring
Адаптеры Token Ring поддерживают метод доступа Token Ring (маркерное кольцо) и обеспечивают скорости передачи 4 Мбит/с или 16 Мбит/с. Ниже перечислены основные положения этого метода: · ст

Метод доступа и кадры для сетей ARCNet
При подключении устройств в ARCNet применяют топологию шина или звезда. Адаптеры ARCNet поддерживают метод доступа Token Bus (маркерная шина) и обеспечивают производительность 2,5 Мбит/с. Этот мето

Протокол UDP (User Datagram Protocol)
Протокол UDP является одним из основных транспортных протоколов. Он работает непосредственно с IP-пакетами и осуществляет их мультиплексирование между различными программами и процессами. Основным

Протокол IP
Межсетевой протокол IP является базовым протоколом межсетевого взаимодействия при помощи которого осуществляется обмен информацией в глобальной сети. В обычной локальной сети протокол IP по возможн

Протокол TCP (Transmission Control Protocol)
Данный протокол тоже является транспортным протоколом и предназначен для доставки пакетов, называемых сегментами. Он применяется в случаях необходимости гарантированной доставки пакета. Здесь, по с

Протокол RIP (Routing Information Protocol)
Данный протокол предназначен исключительно для управления таблицей маршрутов. Его спецификация определяет то, как и когда будет обновляться таблица маршрутов. Необходимая для этого информация рассы

Протокол RARP (Reverse Adress Resolution Protocol)
При стандартной конфигурации серверов и локальных машин, обычно, IP-адреса компьютеров хранятся на локальных носителях и считываются в память во время загрузки систем. В случае, когда необходимо ин

Протокол BOOTP (BOOT strap Protocol)
Мы уже отмечали ранее, что не все сетевые компоненты (компьютеры, маршрутеризаторы, хабы и т.п.) имеют собственные локальные накопители информации, однако, каким-то образом, в них должна быть загру

Протокол ICMP (Internet Control Massage Protocol)
Хотя базовым протоколом межсетевого взаимодействия в Internet является IP, он не контролирует ошибочные состояния сетевой среды. Данную задачу решает специально разработанный протокол контроля сети

Протокол PPP (Point To Point connection)
Протокол PPP также является протоколом для соединения через последовательные порты. Как и SLIP, он "нарезает" пакеты на более мелкие куски и производит последовательную их отправку и прие

Протокол и сервис DNS (Domain Name Server)
Когда-то, достаточно давно, в Internet было сравнительно немного машин, но даже это небольшое количество трудно идентифицировалось и именовалось пользователями при помощи числовых IP-адресов. Поэто

Сервисы прикладного назначения
Протоколы и сервисы электронной почты (POP, UUCP, SMTP) Если DNS и DHCP были сервисами системного назначения и используются для систем маршрутизации и доставки пакетов (т.е. обычный пользовател

Протокол и сервис удаленного доступа Telnet
Аналогично FTP, Telnet, тоже, когда-то была всего лишь командой OC UNIX, однако, в виду ее популярности и удобства, она распространилась в виде отдельного приложения на все существующие сетевые ОС

Протокол HTTP и сервис WWW
Из всех пользовательских сервисов Internet WWW-технология (World Wide Web) или "Всемирная Паутина" распределенных информационных систем является наиболее развивающейся и прогрессирующей.

Базовая эталонная модель взаимодействия открытых систем
БЭМВОС – это концептуальная основа, определяющая характеристики и средства открытых систем. Она обеспечивает работу в одной сети систем, выпускаемых различными производителями. Разработана I

Передача данных между уровнями МВОС
Пусть, например, приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение станд

Соединения
Соединение – это ассоциация функциональных блоков, устанавливаемая для передачи данных. В соответствии с семью уровнями области взаимодействия открытых систем, существует 7 видов соединений,

Абонентская система
Это система, которая является поставщиком или потребителем информации. АС реализуется в виде одного или нескольких устройств:

Ретрансляционная система
Это система, предназначенная для передачи данных или преобразования протоколов. Необходимость объединения нескольких сетей с разными протоколами, поставило задачу создания таких ретрансляционных си

Узел коммутации каналов
Узел коммутации каналов – это ретрансляционная система, устанавливающая по вызову соединение последовательностей каналов между партнерами в течении сеанса. Основная его часть выполняет функции физи

Объединение сетей
Таким образом, ретрансляционные системы реализуют межсетевые, канальные и физические процессы. Задачей является выполнение функций, в том числе преобразований, необходимых для соединения частей сет

Административные системы
Административные системы – это системы, обеспечивающие управление сетью либо её частью. На неё возлагаются следующие функции: · сбора информации и учёта работы компонентов сети (вре

Тема 5.
МОНОКАНАЛЬНЫЕ ПОДСЕТИ И МОНОКАНАЛ. КОММУНИКАЦИОННЫЕ ПОДСЕТИ. МНОГОКАНАЛЬНЫЕ ПОДСЕТИ. ЦИКЛИЧЕСКИЕ ПОДСЕТИ. УЗЛОВЫЕ ПОДСЕТИ. Моноканал – это канал, одновременно (с точностью

Моноканальная сеть
Моноканальная сеть – это локальная сеть, ядром которой является моноканал. Моноканал в соответствии с базовой эталонной моделью взаимодействия открытых систем выполняет в сети роль физичес

Тема 6.
МЕТОДЫ МАРШРУТИЗАЦИИ ИНФОРМАЦИОННЫХ ПОТОКОВ 6.1 Маршрутизаторы Довольно часто в компьютерной литературе дается следующее обобщенное определение м

Сетевые службы. Модель распределенной обработки информации. Безопасность информации. Базовые функциональные профили. Полные функциональные профили
Сетевая служба - вид сервиса, предоставляемого сетью. Сервис - процесс обслуживания объектов. Сервис предоставляется пользователям, программам, системам, уровням, функциональ

Сетевая служба EDI
Сетевая служба EDI - сетевая служба обмена электронными данными. Технология EDI, именуемая также Сервисом электронных писем ELS, представляет собой стандартный и не зависимый от пла

Сетевая служба FTAM
Сетевая служба FTAM - сетевая служба, обеспечивающая управление файлами и доступ к ним. FTAM расположена на прикладном уровне, определена Международной Организацией Стандартов (МОС)

Сетевая служба JTM
Сетевая служба JTM - сетевая служба передачи заданий и управления их выполнением. JTM работает в соответствии со стандартами ISO и оперирует с так называемыми виртуальными заданиями

Сетевая служба NMS
Сетевая служба NMS - сетевая служба, выполняющая процессы управления сетью. NMS разработана Международной Организацией Стандартов (МОС) и располагается на прикладном уровне. Обеспеч

Сетевая служба ODA
Сетевая служба ODA - сетевая служба, обеспечивающая обработку и передачу документов. ODA располагается на прикладном уровне и определяет обмен документами (письмами, служебными запи

Модель распределенной обработки информации
Распределенная обработка данных - методика выполнения прикладных программ группой систем. Сущность DDP заключается в том, что пользователь получает возможность работать с сетевыми с

Технологии распределенных вычислений
Программное обеспечение (ПО) организации распределенных вычислений называют программным обеспечением промежуточного слоя (Middleware). Новое направление организации распределенных вычислений в сетя

Распределенная среда обработки данных
(Distributed Computing Environment (DCE*)) - технология распределенной обработки данных, предложенная фондом открытого программного обеспечения. Она не противопоставляется другим те

Безопасность информации
Безопасность данных (data security) - концепция защиты программ и данных от случайного либо умышленного изменения, уничтожения, разглашения, а также несанкционированного использования.

Базовые функциональные профили
Функциональный профиль - иерархия взаимосвязанных протоколов, предназначенная для определенного круга задач обработки и передачи данных. В документах ISO и ITU определен широкий наб

Коллапсный функциональный профиль
Коллапсный функциональный профиль - псевдо-полный функциональный профиль, в котором отсутствует один либо несколько уровней. Коллапсным называют профиль, в котором функции отсутству

Открытая сетевая архитектура
Открытая сетевая архитектура - полный функциональный профиль, разработанный фирмой British Telecom.& British Telecom на всех семи уровнях использует в ONA (Open Network Architec

Тема 8.
Методы коммутации информации. Протоколы реализации 8.1 Коммутация. Коммутация каналов Когда, сняв телефонную трубку, абонент или компьютер набира

Применяемое оборудование
Маршрутизаторы Маршрутизатор (router) можно упрощенно рассматривать как некое устройство, обеспечивающее: · физическое подключение к себе каналов определен

Время реакции
Обычно в качестве временной характеристики производительности сети используется такой показатель как время реакции. Термин «время реакции» может использоваться в очень широком смысле, поэтом

Критерии, отличающиеся единицей измерения передаваемой информации
В качестве единицы измерения передаваемой информации обычно используются пакеты (или кадры, далее эти термины будут использоваться как синонимы) или биты. Соответственно, пропускная способность изм

Критерии, отличающиеся учетом служебной информации
В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. Например, в кадре протоко

Критерии, отличающиеся количеством и расположением точек измерения
Пропускную способность можно измерять между любыми двумя узлами или точками сети, например, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рисунке 1.2. При этом получаемые

Факторы, определяющие эффективность сетей
В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. На каждом компьютере должна быть установлена сетевая плата. При выборе ти

Еthernet- кабель
Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick) или желтый кабель (yellow cable). Он использует 15-контактное стандарт

Показатели трех типовых сред для передачи
Показатели Среда передачи данных Двух жильный кабель - витая пара Коаксиальный кабель

Ошибки в кадрах, связанные с коллизиями
Ниже приведены типичные ошибки, вызванные коллизиями, для кадров протокола Ethernet: - Локальная коллизия (LocalCollision). Является результатом одновременной передачи двух или более узлов

Диагностика коллизий
Средняя интенсивность коллизий в нормально работающей сети должна быть меньше 5%. Большие всплески (более 20%) могут быть индикатором кабельных проблем. Если интенсивность коллизий больше 10%, то у

Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- Укороченные кадры (Shortframes). Это кадры, имеющие длину, меньше допустимой, то есть меньше 64 байт. Иногда этот тип кадров дифференцируют на два класса - просто короткие кадры (short), у которы

Ошибки кадров Ethernet в стандарте RMON
Стандарт RMON определяет следующие типы ошибок кадров Ethernet: etherStatsCRCAlignErrors -общее число полученных пакетов, которые имели длину (исключая преамбулу) между 64

Типичные ошибки при работе протоколов
Кроме явных ошибок в работе сети, проявляющихся в появлении кадров с некорректными значениями полей, существуют ошибочные ситуации, являющиеся следствием несогласованной установки параметров проток

Несоответствие форматов кадров Ethernet
Ethernet - одна из самых старых технологий локальных сетей, имеющая длительную историю развития, в которую внесли свой вклад различные компании и организации. В результате этого существует нескольк

Потери пакетов
Регулярные потери пакетов или кадров могут иметь очень тяжелые последствия для локальных сетей, так как протоколы нижнего уровня (канальные протоколы) рассчитаны на качественные кабельные каналы св

Несуществующий адрес и дублирование адресов
Отправка пакета по несуществующему адресу естественно не может привести к нормальному взаимодействию узлов в сети. Несуществующие адреса могут появиться в сети только в том случае, когда они хранят

Превышение значений тайм-аута и несогласованные значения тайм-аутов
Тайм-ауты - очень важные параметры многих протоколов, так как их непредвиденное превышение обычно приводит к серьезным последствиям. Например, превышение тайм-аута может привести к разрыву логическ

Сетевые операционные системы
Системные программные средства, управляющие процессами в компьютерных сетях, объединенные общей архитектурой, определенными коммуникационными протоколами и механизмами взаимодействия вычислительных

Требования к сетевым операционным системам
Различают следующие системные требования: единая системная архитектура. обеспечение требуемого высокого уровня прозрачности. высокоуровневая и высоконадежная файлов

Сети с централизованным управлением
В таких сетях сетевая операционная система, называемая также ОС сервера, обеспечивает выполнение базовых функций, таких, как поддержка файловой системы, планирование задач, управление памятью. Сете

Сети с децентрализованным управлением или одноранговые сети
В сети с децентрализованным управлением объединяются компьютеры, каждый из которых может быть и сервером, и клиентом. В такой сети любой компьютер работает под управлением обычной дисковой ОС, а дл

Прикладные программы сети
Важным требованием к большинству современных пакетов прикладных программ (ППП) является их способность работать в условиях локальных сетей, то есть выполнять функции прикладных программ сети (ППС).

Специализированные программные средства
В эпоху internet требуется огромное количество специализированных программных средств, выполняющих конкретные задачи. В качестве при­меров можно привести: · браузеры (Internet Explorer, Op

Терминальное оборудование
Терминальное оборудование ¾ основная часть абонентской системы, выполняющая прикладные процессы и, возможно, часть функций области взаимодействия. Главной задачей терминально