Windows 8

Основные преимущества Ethernet. Сетевые архитектуры

Основные преимущества Ethernet. Сетевые архитектуры

4. Аппаратура компьютерных сетей

Аппаратура сетей — узлы и средства их соединения — определяется выбранной сетевой архитектурой. В данном разделе приводятся сведения о наиболее популярных архитектурах локальных и глобальных сетей.

4.1 Компоненты сети

Кабельный сегмент сети — цепочка отрезков кабелей, электрически соединенных друг с другом.

Логический сегмент сети, или просто сегмент — группа узлов сети, имеющих непосредственный доступ друг к другу на уровне пакетов канального уровня. В интеллектуальных хабах Ethernet группы портов могут объединяться в логические сегменты для изоляции их трафика от других сегментов в целях повышения производительности и защиты.

Кабельная сеть — совокупность кабельных сегментов и узлов, связанных между собой повторителями. Для архитектуры Ethernet узлы, подключенные к кабельным сегментам, соединенным повторителями, а также узлы, соединенные простейшими хабами (многопортовыми повторителями), принадлежат к одной кабельной сети.

Интерсеть — совокупность кабельных сетей, связанных между собой мостами или маршрутизаторами.

Сеть IPX — кабельная сеть в совокупности с принятым типом фрейма, имеющая собственный IPX-номер (4-байтный идентификатор), уникальный в интерсети. В одной кабельной сети Ethernet может существовать две различные сети IPX с собственными номерами, различающиеся применяемым типом фрейма (802.2 и 802.3).

Кабельный центр — хаб (Hub) — устройство физического подключения нескольких сегментов или лучей.
Интеллектуальный хаб (Intelligent Hub) имеет специальные средства для диагностики и управления, что позволяет оперативно получать сведения об активности и исправности узлов, отключать неисправные узлы и т. д. Стоимость существенно выше, чем у обычных.
Активный хаб (Active Hub) усиливает сигналы, требует источника питания.
Peer Hub — хаб, исполненный в виде платы расширения PC, использующей только источник питания PC. Распространен в сетях ARCnet.
Пассивный хаб (Passive Hub) только согласует импедансы линий (в сетях ARCnet).
Standalone Hub — самостоятельное устройство с собственным источником питания (обычный вариант).

Концентратор - более сложный хаб, обычно с возможностью соединения сетей различных архитектур.
Четкой границы между хабами и концентраторами нет, и те и другие могут являться повторителями, мостами или маршрутизаторами.

Повторитель (Repeater) — устройство для соединения сегментов одной сети, обеспечивающее промежуточное усиление и формирования сигналов. Оперирует на физическом уровне модели OSI. Позволяет расширять сеть по расстоянию и количеству подключенных узлов.
Мост (Bridge) — средство передачи пакетов между сетями (локальными), оперирует на двух нижних уровнях модели OSI, для протоколов сетевого уровня прозрачен. Осуществляет фильтрацию пакетов, не выпуская из сети пакеты для адресатов, находящихся внутри сети, а также переадресацию — передачу пакетов в другую сеть в соответствии с таблицей маршрутизации или во все другие сети при отсутствии адресата в таблице. Таблица маршрутизации обычно составляется в процессе самообучения по адресу источника приходящего пакета. Мосты классифицируются по нескольким признакам:
По уровню протокола:

  • MAC-Layer Bridges работают на подуровне управления доступом к среде, позволяют связывать сети одинаковой архитектуры (с одинаковыми форматами пакетов).
  • LLC-Layer Bridges работают на подуровне управления логической связью, позволяют связывать сети с различными архитектурами (Ethernet — Token Ring — Arcnet).
По алгоритму трассировки:
  • Transparent routing (прозрачный) — мост сам определяет трассу для каждого пакета, запоминая местоположение всех узлов. Используется в сетях Ethernet.
  • Source Routing — трасса пакета вводится в адресную часть самим источником пакета. Используется в Tokeng Ring.
По отношению к серверу::
  • внутренний мост (Internal Bridge) — часть программного обеспечения сервера, обеспечивающая пересылку пакетов между сегментами, подключенными к разным сетевым адаптерам.
  • внешний мост (External, Stand-alone Bridge) — отдельное устройство.
По расстоянию между соединяемыми сетями:
  • локальный мост (local Bridge) соединяет рядом расположенные локальные сети.
  • удаленный мост (Remote Bridge) соединяет географически разнесенные локальные сети через средства телекоммуникации (выделенные или коммутируемые телефонные линии и т. д.). Телекоммуникация является узким местом моста, для повышения производительности возможно параллельное использование нескольких каналов связи.
Маршрутизатор (Router) — средство обеспечения связи между узлами различных сетей, оперирует на сетевом уровне модели OSI, использует сетевые (логические) адреса. Сети могут находиться на значительном расстоянии, и путь, по которому передается пакет, может проходить через несколько маршрутизаторов. Сетевой адрес интерпретируется как иерархическое описание местоположения узла. Маршрутизаторы поддерживают протоколы сетевого уровня: IP, IPX, X.25, IDP. Мультипротокольные маршрутизаторы (более сложные и дорогие) поддерживают несколько протоколов одновременно для гетерогенных сетей. Brouter (Bridging router) — комбинация моста и маршрутизатора, оперирует как на сетевом, так и на канальном уровне.
Основные характеристики маршрутизатора:
  • тип: одно- или многопротокольный, LAN или WAN, Brouter;
  • поддерживаемые протоколы;
  • пропускная способность;
  • типы подключаемых сетей;
  • поддерживаемые интерфейсы (LAN и WAN);
  • количество портов;
  • возможность управления и мониторинга сети.
Шлюз (Gateway) — средство соединения существенно разнородных сетей, оперирующее на верхних (5-7) уровнях модели OSI. В отличие от повторителей, мостов и маршрутизаторов, прозрачных для пользователя, присутствие шлюза заметно. Шлюз выполняет преобразование форматов и размеров пакетов, преобразование протоколов, преобразование данных, мультиплексирование. Обычно реализуется на основе компьютера с большим объемом памяти. Примеры шлюзов:
  • Fax: обеспечивает доступ к удаленному факсу, преобразуя данные в факс-формат;
  • E-mail: обеспечивает почтовую связь между локальными сетями. Шлюз обычно связывает MHS, специфичный для сетевой операционной системы с почтовым сервисом по X.400;
  • Internet: обеспечивает доступ к глобальной сети Internet;
  • Mainframe: подключает локальную сеть к большим машинам. Выделение одного компьютера под шлюз позволяет любой станции эмулировать терминал (3270) без установки дополнительных интерфейсных карт.
Узел сети (Node) — компьютер с сетевым интерфейсом (выступающий в роли рабочей станции, сервера или в обеих ролях), принтер или другое разделяемое устройство с сетевым интерфейсом.
Физическая топология сети — расположение узлов и соединений: шина (Bus), кольцо (Ring), звезда (Star), сетка (Mesh), дерево (Tree) и т. д.
Логическая топология определяет потоки данных.
В логической шине информация одновременно доступна для всех узлов, подключенных к одному сегменту. Реальное считывание производит только тот узел, которому адресуется данный пакет. Реализуется на физической топологии шины, звезды, дерева или сетки. Метод доступа — вероятностный (Probabilistic), основанный на прослушивании сигнала в шине.
В логическом кольце информация передается последовательно от узла к узлу. Каждый узел принимает пакеты только от предыдущего и посылает только последующему узлу по кольцу. Узел транслирует все пакеты и обрабатывает те, которые адресованы ему. Реализуется на физической топологии кольца или звезды с внутренним кольцом в концентраторе. Метод доступа — детерминированный (Deterministic), базирующийся на сетевом адресе узла.

4.2 Сетевые архитектуры

Сетевая архитектура соответствует реализации физического и канального уровня модели OSI и определяет кабельную систему, кодирование сигналов, скорость передачи, формат сетевых кадров (фреймов), топологию и метод доступа. Каждой архитектуре соответствуют свои компоненты — кабели, разъемы, интерфейсные карты, кабельные центры и т. д.
Первое поколение архитектур обеспечивало низкие и средние скорости передачи: LocalTalk — 230 кбит/с, ARCnet — 2.5 Мбит/с, Ethernet — 10 Мбит/с и Token Ring — 16 Мбит/с. Исходно они были ориентированы на электрические кабели (Copper-based).
Второе поколение — FDDI (100 Мбит/с), ATM (155 Мбит/с и выше), Fast Ethernet (100 Мбит/с) в основном ориентировано на оптоволоконный кабель (Fiber-based).
В локальных и широкомасштабных сетях применяются различные сетевые технологии, выбор которых зависит от многих факторов. Решающими факторами являются следующие:

  • требования к пропускной способности сети и скорости отклика;
  • расположение узлов, расстояния и условия прокладки коммуникаций;
  • требования надежности и конфидециальности связи;
  • ограничения на стоимость аппаратуры и коммуникаций.
Наиболее распространенными решениями для локальных сетей являются архитектуры Ethernet и Token Ring, нередко еще используется ARCnet, для Macintosh характерно использование Apple Talk и Ether Talk.
Для широкомасштабных сетей высокоэффективным, но пока весьма дорогостоящим решением является применение FDDI, ATM, ISDN, BISDN.
Для удаленных коммуникаций применяются протоколы PPP, SLIP, обеспечивающие связь по телефонным каналам через модемы, а также сети с протоколом X.25.

Ethernet

Ethernet — архитектура сетей с разделяемой средой и широковещательной передачей (все узлы получают пакет одновременно) и методом доступа CSMA/CD. Стандарт определен документом IEEE802.3. Физическая топология — шина для коаксиала, звезда — для витой пары, двухточечное соединение — для оптоволокна. Существуют следующие 10 Мбит/с стандарты Ethernet.
10Base5 — Thick (толстый) Ethernet. Синонимы: ThickNet, Yellow (желтый кабель), Standard Ethernet. Классический вариант, введенный в 60-х годах, использует толстый коаксиальный кабель RG-8 или RG-11 с посеребренной центральной жилой и двойной экранной оплеткой. Кабель имеет волновое сопротивление 50 Ом и малое затухание. Для подключения каждого узла на кабель устанавливается трансивер, от которого к адаптеру идет кабель-спуск длиной до 50 м. Толстый кабель сложен в монтаже, его аксессуары теперь весьма дороги (комплект, состоящий из трансивера со спуском, стоит около $150). Основное преимущество — высокая помехозащищенность и напряжение изоляции трансивера. Применяется для прокладки базовых сегментов (Backbone).
10Base2 — Thin (тонкий) Ethernet. Синонимы: ThinNet, CheaperNet (дешевая сеть). Популярный вариант, использует тонкий коаксиальный кабель RG-58, имеющий волновое сопротивление 50 Ом, среднее затухание и помехозащищенность. Широко применяется для подключения станций и прокладки базовой сети между хабами. Пока самый дешевый вариант сети.
10BaseT — Twisted-pair Ethernet — на неэкранированной витой паре 3-5 категории;
Топология — звезда, в центре которой находится хаб, обеспечивающая ряд преимуществ по сравнению с шиной:
  • к каждому узлу подходит только один гибкий кабель.
  • повреждение одного лучевого кабеля приводит к отказу соединения только одного узла.
  • несанкционированное "прослушивание" пакетов в сети затруднено.
Является перспективной альтернативой тонкому Ethernet во многих случаях.
10BaseF — несколько вариантов сети на оптоволоконном кабеле. Обычно используется как двухточечная связь на большие расстояния. Среда передачи — две нитки одномодового или многомодового оптоволокна. Оптоволоконная аппаратура при основном своем недостатке — высокой цене — имеет ряд преимуществ:
  • нечувствительность к электрическим и электромагнитным помехам;
  • гальваническая развязка узлов на любое требуемое напряжение;
  • исчисляемое километрами расстояние передачи без повторителей и тысячами километров — с промежуточными ретрансляторами;
  • высокая степень конфиденциальности каналов связи;
  • широкополосность каналов.

Конструктивно оптический трансивер — FOIRL, FIRL (Fiber-Optic Inter-Repeater Link) — представляет собой устройство чуть больше спичечного коробка, подключаемое непосредственно к DIX-разъему AUI-адаптера. Оконечные отрезки волоконного кабеля заводятся в специальные оптические разъемы, соединяя выход передатчика Tx на одном конце со входом приемника Rx на другом конце. Некоторые модели хабов уже имеют порты с оптическими разъемами.

Возможны следующие 100 Мбит/с версии Ethernet: 100BaseTX , 100BaseT4, 100BaseFX. Среда передачи для 100BaseTX (наиболее распространенный Fast Ethernet) — две неэкранированные витые пары (UTP) категорий 3, 4 или 5; для 100BaseT4 — четыре пары UTP категории 5 или экранированные витые пары STP (Shielded Twisted Pair); для 100BaseFX — оптоволоконный кабель. Несмотря на высокую цену, аппаратура на 100 мбит/с находит все более широкое применение там, где 10 мбит/с является уже узким местом.

1Base5 — StarLAN Ethernet — старый вариант на витой паре и 10Broad36 — сеть на широкополосном 75-омном коаксиальном кабеле — упомянем только для исторической справки.

Таблица 4.1. Топологические характеристики популярных разновидностей Ethernet

10Base5 10Base2 10BaseT 10BaseF 100BaseT
Топология Шина Шина Звезда Точка-точка Звезда
Максимальная длина сегмента, м 500 185 или 300 100 1000 (возможно и больше) 100
Расстояние между узлами Кратно 2,5 м больше 0,5 м Не задается Не задается Не задается
Кабель RG-8 RG-58 UTP 3,4,5 категории Оптоволокно UTP 5 категории
Максимальное количество узлов в кабельном сегменте 100 30 Определяется хабами 2 Определяется хабами
Напряжение изоляции между узлами До 5 кВ 100 В 100 В Любое 100 В

Switched Ethernet (коммутирующий) — развитие технологии Ethernet, направленное на повышение производительности сети. В этом случае управление доступом к среде практически переносится с узлов в центральное коммутирующее устройство, обеспечивающее установление виртуальных выделенных каналов между парами портов — источниками и получателями пакетов. От узлов-передатчиков коммутирующий хаб почти всегда готов принять пакет либо в свой буфер, либо практически без задержки передать его в порт назначения (коммутация "на лету" — On-the-fly).

ARCnet

ARCnet (Attached Resource Computer Network — компьютерная сеть соединенных ресурсов) — архитектура сетей с разделяемой средой и широковещательной передачей. Метод доступа маркерный (Token passing), логическая топология — шина, физическая — комбинация шины и звезды (дерево). Скорость передачи 2,5 Мбит/с.

Кабель коаксиальный RG-62 с волновым сопротивлением 93 Ом, возможно применение кабеля с волновым сопротивлением 50-110 Ом и соответствующими терминаторами. Кабельные петли (кольца через хабы) недопустимы. Мало распространенные варианты — неэкранированная витая пара и скорость 20-100 Мбит/с.

Адаптеры: высокоимпедансные (Bus), низкоимпедансные (Star) и переключаемые, использующиеся в различных топологиях. Каждому адаптеру в сети при инсталляции назначают свой уникальный восьмибитный адрес, задающийся переключателями в диапазоне 1-254. Потребляемые системные ресурсы аналогичны адаптерам Ethernet.

Хабы: активные (с усилением сигнала) от 4 до 64 портов, применяются в высоко- и низкоимпедансных сетях; пассивные четырехпортовые резистивные согласователи импедансов применяются только для низкоимпедансных сетей.

Терминаторы: устанавливаются на концах шинных сегментов и неиспользуемых портах пассивных хабов.

Высокоимпедансные сети. Максимальная длина сегмента 305 м, узлы подключаются через BNC T-коннекторы, ответвления недопустимы, минимальное расстояние между узлами 1 м, допускается до 8 узлов в сегменте. Используются только активные хабы. Сегменты должны заканчиваться терминатором или активным хабом (адаптером).

Низкоимпедансные сети. Активный хаб может соединяться кабелем с адаптером (610 м), активным хабом (610 м) или пассивным хабом (30 м). Пассивный хаб может стоять только между активными узлами. На неиспользуемые порты пассивных хабов должны, а активных — могут устанавливаться терминаторы.

Смешанные сети строятся по вышеприведенным правилам. Общие ограничения: максимальное затухание в кабеле на частоте 5 МГц — 11 дБ, задержка распространения сигналов между узлами до 30 мкс.

Основные преимущества ARCnet перед Ethernet, обеспечивавшие его былую популярность: низкая стоимость схем присоединения (по сравнению с CSMA/CD), меньшая критичность к кабелю, более гибкая топология, легкость диагностики сети при звездообразной топологии, менее резкая (по сравнению с Ethernet) чувствительность пропускной способности к количеству и активности узлов сети.

Недостатки: малоэффективное использование и без того низкой пропускной способности канала из-за избыточности кода и административных пакетов. Реальная производительность, даже для небольших сетей не превышающая 65% от максимальной, с увеличением числа узлов падает. Однобайтное ограничение на адрес создает неудобства при объединении сетей. Ошибочное задание совпадающих адресов локализуется исключительно методом последовательного отключения узлов. Малый размер фрейма (252 байта данных в оригинальном варианте и 508 байтов в расширенном) трудно стыкуем с вышестоящими уровнями (Novell IPX передает пакет длиной 576 байт).

В настоящее время аппаратура ARCnet практически не выпускается, но поддерживается всеми продуктами Novell.

Token Ring

Token Ring (маркерное кольцо) — архитектура сетей с кольцевой логической топологией и детерминированным методом доступа с передачей маркера. Стандарт определен документом IEEE802.5, но IBM — основной проводник этой архитектуры — использует несколько отличающуюся спецификацию.

Логическое кольцо реализуется на физической звезде, в центре которой находится MAU (Multistation Access Unit) — хаб с портами подключения каждого узла. Для присоединения кабелей используются специальные разъемы, обеспечивающие замыкание кольца при отключении узла от сети. При необходимости сеть может расширяться за счет применения дополнительных хабов, связанных в общее кольцо. Требование безразрывности кольца усложняет кабельное хозяйство Token Ring, использующее четырехпроводные экранированные и неэкранированные витые пары и специальные коммутационные средства.

Облегченный вариант разводки обеспечивает подключение до 96 станций к 12 восьмипортовым хабам с максимальным удалением станции от хаба не более 45 м. Длина кабеля между хабами может достигать 45 м при их суммарной длине не более 120 м.

Стационарная разводка обеспечивает подключение до 260 станций и 33 хабов с расстоянием между устройствами до 100 м при общей длине кольца хабов до 200 м.

Оптоволоконный кабель увеличивает длину сегмента до 1 км.

Информация по кольцу передается только в одном направлении по цепочке от станции к станции, скорость передачи 4 или 16 Мбит/с. Адаптер узла копирует в свой буфер только адресованные ему пакеты.

Использование системных ресурсов PC и конфигурирование адаптеров аналогичны Ethernet. Программное обеспечение кроме обычного для всех сетевых адаптеров содержит дополнительные модули-агенты как на сервере, так и на рабочей станции.

Основное преимущество Token Ring — заведомо ограниченное время ожидания обслуживания узла (в отличии от Ethernet не возрастающее при усилении трафика), обусловленное детерминированным методом доступа и возможностью управления приоритетом. Это свойство позволяет использовать Token Ring в системах реального времени. Кроме того, сети Token Ring легко соединяются с сетями на больших машинах (IBM Mainframe).

Недостатками Token Ring являются высокая стоимость оборудования и сложность построения больших сетей (WAN).

Local Talk, 100BaseVG, TCNS, Token Bus

Local Talk — сетевая архитектура фирмы Apple, штатная подсистема Macintosh. Среда передачи — витая пара, скорость 230.4 кбит/с, интерфейс RS-422, метод доступа CSMA/CA.

100BaseVG — 100 Мбит/с сеть на витой паре категории 3 (Voice-Grade TP — витая пара для голосовой телефонии). Разработана фирмами Hewlett-Packard и AT&T Microelectronics как развитие Ethernet, описывается стандартом IEEE802.12. Использует 4 пары проводов, передача в любую сторону использует все пары одновременно (Quartet Signaling). Физическая топология — звезда, метод доступа — Demand Priority, управление передачей возложено на центральные коммутационные устройства, что обеспечивает предопределенное время отклика для критичных ко времени задач.

100VG-AnyLAN (100BaseVG-AnyLAN) — расширение 100BaseVG, введенное фирмами Hewlett-Packard и IBM. Является неким гибридом Ethernet и Token Ring, поддерживая их форматы кадров (802.3 и 802.5). Кроме приоритетов доступа поддерживает 2 уровня приоритетов передачи, что позволяет использовать сеть для критичных ко времени приложений (мультимедийных, видеоконференций и др.). Среда передачи — неэкранированная витая пара 3, 4, 5 категории. Адаптеры AnyLAN совместимы с обычными адаптерами Token Ring и Ethernet.

TCNS (Thomas-Conrad Network System) — 100 Мбит/с версия ARCnet фирмы Thomas-Conrad. Среда передачи — коаксиал, витая пара IBM Type 1 STP или UTP Level 5, оптоволокно; топология — звезда. Требует специальных адаптеров, программно совместимых с обычными драйверами ARCnet. Адаптеры могут применяться для зеркальных серверов в NetWare SFT III.

Token Bus — сетевая архитектура, определенная спецификацией IEEE802.4. Среда передачи — коаксиал 75 Ом или оптоволокно, скорость 1-20 Мбит/с в зависимости от среды. Физическая топология — шина, логическая — кольцо, метод доступа — передача маркера. Поддерживается система приоритетов, обеспечивающая заданное время отклика для различных уровней. Используется в промышленности, на ней базируются различные типы протоколов промышленной автоматики, например MAP (Manufacturing Automation Protocol).

FDDI и CDDI

FDDI (Fiber Distributed Data Interface) — стандартизованная спецификация ANSI X3T9.5 для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи — 100 Мбит/с. Топология — кольцо (двойное), возможна гибридная: включение звездообразных или древовидных подсетей в главную сеть через концентратор. Метод доступа — маркерный с возможностью одновременного циркулирования множества кадров в кольце. Максимальное количество станций в сети — до 1000, расстояние между станциями до 2 км при многомодовом и до 45 км при одномодовом кабеле (затухание сигнала между станциями до 11 дБ), длина кольца до 100 км (может увеличиваться за счет применения более мощной аппаратуры). В некоторых случаях вторичное кольцо используется для повышения пропускной способности потенциально до 200 Мбит/с.

CDDI (Copper Distributed Data Interface), он же TPDDI — (Twisted Pair Distributed Data Interface) — чисто электрическая реализация архитектуры FDDI на витой паре. Существенно дешевле оптической реализации, длина сегмента ограничена 100 м, применяется в локальных кольцах. Официального жесткого стандарта нет, корректное взаимодействие аппаратуры различных производителей не гарантируется.

Изначальная спецификация FDDI-I обеспечивает асинхронные коммуникации с коммутацией пакетов. Существующий синхронный класс трафика FDDI-I не гарантирует поддержания длительного равномерного потока данных, необходимого для голосовой и видеопередачи. Для мультимедийных приложений реального времени возможность передачи постоянного потока введена в FDDI-II, официальное название которого HRC FDDI (Hybrid Ring Control — управление гибридным кольцом).

По умолчанию сеть работает в базовом режиме, поддерживая только коммутацию пакетов. Гибридный режим — одновременное обслуживание асинхронных передач с коммутацией пакетов и изохронных передач с коммутацией каналов — включается при необходимости.

В базовом режиме по кольцу циркулирует маркер, дающий узлам право на передачу. В гибридном режиме передача организуется в виде циклов — пакетов, непрерывно повторяющихся в течении сеанса. Каждый цикл длительностью 125 мкс обеспечивает передачу данных 128 каналов (по 96 байт на канал). Реально каждому установленному каналу выделяется полоса пропускания, кратная 64 кбит/с, в зависимости от запрашиваемой скорости, максимальная скорость канала 6.144 Мбит/с.

Очень высокая стоимость оборудования определяет круг применений FDDI:

  • базовые сети (Backbone), объединяющие множество сетей;
  • объединение больших и миникомпьютеров и периферии (Back-end network);
  • соединение мощных рабочих станций, требующих высокоскоростного обмена (Front-end network).

Каждый порт имеет трансивер, содержащий передатчик (лазерный или светодиодный излучатель) и фотодетектор. Выходы передатчиков соседних узлов соединяются со входами приемников раздельными оптическими кабелями, образуя замкнутое кольцо. Каждому узлу кольца при конфигурировании назначается адрес и приоритет.

Для повышения надежности базовая сеть имеет два кольца с противоположным направлением передачи: первичное и вторичное. В нормальном режиме используется только первичное. В случае разрыва связи между двумя станциями крайние станции замыкают первичное кольцо с помощью вторичного.

Станции, или узлы, могут быть одинарного (SAS) или двойного (DAS) подключения. DAS (Dual-Attachment Station), они же станции класса A, имеют два трансивера и могут включаться непосредственно в базовую сеть, к первичному и вторичному кольцу. SAS (Single-Attachment Station), они же станции класса B, имеют один трансивер и включаются только в первичное кольцо. В базовую сеть они могут включаться только через концентратор, или обходной коммутатор, отключающий их в случае аварии.

Концентраторы также могут быть одинарного (SAC) или двойного (DAC) подключения. В их функции входит поддержание целостности логического кольца независимо от состояния линий и узлов, подключенных к его портам. Надежность аппаратуры и электропитания концентраторов определяет живучесть кольца. DAC (Dual-Attachment Concentrator) может подключатся к любым узлам (SAS, DAS, SAC или DAC) и обеспечивает включение станций или групп (кластеров) станций в логическое кольцо. К SAC (Single-Attachment Concentrator) могут подключаться SAS или SAC, сам он должен подключаться к DAC, являющемуся частью кольца.

FDDI определяет четыре типа портов станций:

  • порт A определен только для устройств двойного подключения (DAC и DAS), его вход подключается к первичному кольцу, выход — ко вторичному;
  • порт B определен только для устройств двойного подключения (DAC и DAS), его вход подключается ко вторичному кольцу, выход — к первичному;
  • порт M (Master) определен для концентраторов (DAC или SAC) и соединяет два концентратора или концентратор со станцией (DAS или SAS);
  • порт S (Slave) определен только для устройств одинарного подключения и используется для соединения двух станций или станции и концентратора.

Адаптеры FDDI для PC используют системные шины ISA, EISA, MCA, PCI, реже VLB; их цена может превышать цену компьютера. Адаптер может иметь один (порт S) или два (порты A и B) трансивера.

Менее дорогие адаптеры с электрическим интерфейсом (TPDDI, CDDI) используют неэкранированную витую пару 5 категории с разъемами RJ-45.

Для подключения PC, не требующих полной пропускной способности FDDI, чаще применяются концентраторы, имеющие встроенные мосты для перехода на широкодоступные сетевые архитектуры (Ethernet, Token Ring).

Кабельное хозяйство FDDI весьма сложное и специфичное. Разъемы и кабели должны вносить строго регламентированное затухание. Специфические элементы:

  • оптические аттенюаторы, доводящие затухание до требуемой величины;
  • Bypass Switch, Dual Bypass Switch — обходной коммутатор, одиночный или двойной — дополнительное активное устройство, включаемое между узлом и кольцом, обеспечивающее обход узла в случае его отключения или отказа. Коммутатор включает узел в кольцо только при наличии разрешающего сигнала готовности, поступающего от узла по дополнительному электрическому интерфейсному кабелю;
  • Coupler — устройство разветвления или (и) объединения оптических сигналов.

ATM

ATM (Asynchronous Transfer Mode) — технология коммутации пакетов, формирующая ядро Broadband ISDN (BISDN), обеспечивающая передачу цифровых, голосовых и мультимедийных данных по одним и тем же линиям. Первоначально скорость передачи была определена 155 Мбит/с, затем 662 Мбит/с и планируется до 2.488 Гбит/с. ATM используется как в локальных, так и в глобальных сетях, с успехом применяется для связи локальных сетей, сильно удаленных друг от друга.

  • Линии связи — оптические, локальные или длинные. Длинные линии могут быть выделенными (арендуемыми) или коммутируемыми.
  • Обеспечение параллельной передачи. Каждый узел может иметь выделенное соединение с любым другим узлом.
  • Работа всегда на максимальной скорости.
  • Использование пакетов фиксированной длины — ячеек (Cell) по 53 байта.
  • Коррекция ошибок и маршрутизация на аппаратном уровне (частично благодаря фиксированному размеру ячеек).
  • Одновременная передача данных, видеоинформации и голоса. Фиксированный размер ячеек обеспечивает равномерность голосового потока.
  • Легкость балансирования загрузки: коммутируемость пакетов позволяет при необходимости повышения пропускной способности установить множество виртуальных цепей между передатчиком и приемником.

Интерфейс пользователя UNI (User Network Interface) определен ATM-форумом и допускает различные типы физического интерфейса:

  • SONET (OC-3, STS-3 или STM-1 в терминологии CCITT), 155,52 Мбит/с;
  • DS3, 44,736 Мбит/с;
  • 100 Мбит/с с кодированием 4B/5B;
  • 155 Мбит/с с кодированием 8B/10B.

Все эти интерфейсы используют оптоволокно, разрабатываются варианты стандартов на витой паре (UTP-3).

  • класс A используется для передачи с постоянной скоростью потока данных (Constant Bit Rate, CBR), обеспечивает эмуляцию коммутированного канала, подходит для голосовых данных;
  • класс B используется для передачи с переменной скоростью потока данных (Variable Bit Rate, VBR), например, для видеоконференций;
  • класс C используется для передачи данных с установлением соединения;
  • класс D используется для передачи данных без установления соединения.

Для каждого класса сервиса определяются протокольные блоки данных, PDU (Protocol Data Unit), которые являются блоками данных для ячеек. Каждый PDU содержит 48 октетов (групп по 8 бит), используемых для заголовка, концевика и собственно данных (Payload в терминологии ATM).

Первые 5 октетов ячейки составляют заголовок ATM. В него входят 4 бита общего управления потоком, 8 бит идентификатора виртуального пути, VPI (Virtual Path Identifier), 16 бит идентификатора виртуального канала, VCI (Virtual Channel Identifier), 3 бита указателя типа данных (Payload Type), 1 бит CLP (Cell Loss Priority) и 8 бит HEC (Header Error Control). Бит CLP определяет возможность отбрасывания данной ячейки в случае напряженного уровня трафика.

В ATM различают 3 плана (группы деятельности):

  • план управления, на котором устанавливаются и обслуживаются вызовы и соединения;
  • план пользователей, на котором происходит обычный обмен данными;
  • план менеджмента, координирующий все три плана и управляющий ресурсами.

Потоки данных от различных типов сервисов (голос, видеоинформация, данные и ячейки от ATM-станций) обрабатываются сервисами соответствующих классов и "расфасовываются" в 48-октетные PDU, которые заключаются в ячейки и мультиплексируются в поток ячеек для передачи. Ячейки содержат идентификаторы виртуальных каналов и путей, которые используются для достижения адресата назначения. ATM-коммутатор использует информацию идентификаторов для направления ячеек в соответствующий порт. Поток ячеек кодируется и передается через физическую среду передачи ATM-сети. На приемной стороне производятся обратные преобразования и потоки данных передаются на выход соответствующими сервисами.

В настоящее время технология ATM является прогрессивной и быстро развивающейся, аппаратура разрабатывается и выпускается большим числом производителей, ведутся работы по обеспечению ее совместимости. В ближайшие годы ожидается резкое удешевление этой пока еще очень дорогой техники.

4.3 Модемы и факс-модемы

Модем (модулятор-демодулятор) служит для передачи информации на большие расстояния, недоступные локальным сетям.

Модемы обеспечивают телекоммуникации (обмен данными) по выделенным и коммутируемым телефонным линиям.

Факс-модемы позволяют передавать и принимать факсимильные изображения, совместимы с обычными факс-машинами.

Голосовые модемы (Voice Modem) преобразуют звуковое сообщение в файл данных, аудиосигнал сжимается по методу ADPCM (Adaptive Differential Pulse Code Modulation). Сообщение может передаваться по электронной почте или в диалоге реального времени (InterPhone??) и воспроизводиться голосовым модемом через внутренний динамик (телефонную трубку) или через мультимедийные средства (Sound Blaster).

Синхронные модемы требуют две выделенные пары проводов для синхронизации и данных. Протоколы синхронного обмена:

  • BSC — Binary Synchronous Communications;
  • SDLC — Synchronous Data Link Control;
  • HDLC — High-Level Data Link Control;

требуют установки в слот системной шины специального контроллера (достаточно дорогого).

Асинхронные модемы, подключаемые к COM-портам, позволяют использовать обычные телефонные линии, что обуславливает их широкое распространение.

Конструктивно модемы для PC выпускаются в двух исполнениях: внутренние (Internal) и внешние (External)

Внутренние модемы устанавливаются в слот системной шины, обычно эмулируют стандартный COM-порт с микросхемой 8250/16450/16550A. Адрес порта и номер IRQ задается на плате модема. Их преимущество — низкая цена, недостаток — для установки требуется вскрытие системного блока.

Внешние модемы, имеющие собственный корпус и блок питания, подключаются кабелем к 9- или 25-штырьковому разъему COM-порта. Их преимущество — для установки не требуется вскрытия системного блока; недостатки — более высокая цена, отдельное питание, дополнительное устройство на столе.

К телефонной линии модем подключается разъемом, помеченным "LINE", к телефонному аппарату — "PHONE".

Фактическими стандартами на систему команд стали системы команд модемов Hayes и USR (U.S.Robotics).

Современные модемы, используемые для коммутируемых линий, имеют средства набора номера и определения состояния линии (гудок, занято и т. п.), а также средства настройки параметров передачи. Для установления связи параметры передачи обоих модемов, участвующих в сеансе, естественно, должны совпадать.

Скоростные характеристики модемов:

  • cps — скорость передачи, символов(байт)/с — параметр, интересующий конечного пользователя, определяющий эффективную скорость работы;
  • bps — скорость передачи, бит/с;
  • baud — количество изменений сигнала в линии за 1 секунду (бод) — этот параметр ограничен полосой пропускания линии. Для повышения эффективной скорости работы при ограниченной полосе линии применяют различные методы кодирования и модуляции, при которых bps превышает baud.

Таблица 4.2. Стандарты на модуляцию

Стандарт bps baud Примечания
Bell 103 300 300
Bell 212A 1200 600
V.21 300 300 несовместим с Bell 103
V.22 1200 600 несовместим с Bell 212A
V.22bis 2400 600
V.23 1200 75 bps в дуплексном режиме
V.29 9600 полудуплекс, Fax Group III
V.32 9600 2400 дуплекс,доп. контроль
V.32bis 14400 2400 помехоустойчивый,быстрый
V.32fast 28800
HST 14400 9600 При дуплексе в обратном направлении скорости 300/450.
Удобен для диалога. Используется в U.S. Robotics.

Для коррекции ошибок и сжатия данных используются различные протоколы.

MNP — Microcom Networking Protocol — де-факто стандартный протокол корреккции ошибок и сжатия данных, введенный фирмой Microcom. Различают 9 классов MNP, определяющих различный сервис. Классы 2--4 — обеспечение безошибочной передачи, классы 5 и 7 — сжатие данных, класс 6 — расширенный сервис, класс 9 — оптимизация протокольных процедур, класс 10 — адаптация к каналам связи, класс 8 — пропущен. Старшие классы обычно включают в себя и возможности младших.

MNP-1. Асинхронный байт-ориентированный полудуплекс с минимальными требованиями к скорости процессора. Только исправление. Эффективность передачи данных 70% от обычного варианта, в модемы уже не включается.

MNP-2. Асинхронный байт-ориентированный дуплекс. Только исправление. Эффективность 84%.

MNP-3. Бит-ориентированный дуплекс с синхронной связью между модемами, асинхронный для пользователя. Эффективность 108% (254 cps при 2400 bps).

MNP-4. Адаптивная сборка пакетов (длина пакета зависит от качества линии) и сокращение избыточности (повторяющаяся служебная информация удаляется из потока данных). Эффективность 120% (до 150%).

MNP-5. Сжатие данных в реальном времени. Эффективность 150%. На сжатых (ZIP, ARJ...) файлах СНИЖАЕТ скорость.

MNP-6. Выполняет универсальное согласование связи — настройку скорости модема в диапазоне 300--9600 бод в зависимости от возможностей модема на другом конце линии. Симулирует дуплекс ("статистический дуплекс").

MNP-7. Выполняет более эффективное сжатие данных, чем MNP-5. Эффективность 300%.

MNP-9. Сокращает время на протокольные процедуры подтверждения приема сообщения и повторной передачи после ошибки.

MNP-10. Борьба с плохими линиями: множественные агрессивные попытки установления связи, адаптация размера пакета к уровням помех, согласование и динамическое изменение скорости.

MNPX. Возможность переключения протокола безошибочной передачи с MNP на LAPM и обратно.

В Hayes-модемах применяется собственный протокол исправления — Hayes V-Series.

V.42 — коррекция ошибок. На 20% эффективнее MNP-4. Использует стандарт LAPM (Link Access Procedure for Modems) — протокол безошибочной передачи данных по телефонным линиям.

V.42bis — сжатие данных. Включает в себя V.42 — коррекцию ошибок. На 35% эффективнее MNP-5, не пытается сжимать уже сжатые данные (многие V.42bis-модемы имеют режим MNP-5).

Протоколы исправления и сжатия реализуются программно (дешевле, но загружается CPU), или аппаратно (дороже, но эффективнее). На серверах и станциях, использующих модемы в фоновом режиме, лучше использовать модемы с аппаратной компрессией и исправлением ошибок.

Днем рождения Ethernet можно считать 22 мая 1973 г., когда Роберт Меткалф (Robert Metcalfe) и Дэвид Боггс (David Boggs) опубликовали докладную записку, в которой описывалась экспериментальная сеть, построенная ими в Исследовательском центре фирмы Xerox в Пало-Альто. При рождении сеть получила имя Ethernet, базировалась на толстом коаксиальном кабеле и обеспечивала скорость передачи данных 2,94 Мбит/с.

Ключевой фигурой в судьбе Ethernet становится Роберт Меткалф, который в 1979 г. для воплощения своих идей в жизнь создает собственную компанию 3Com, одновременно начиная работать консультантом в Digital Equipment Corporation (DEC). В DEC Меткалф получает задание на разработку сети, спецификации на которую не затрагивали бы патентов Xerox. Создается совместный проект Digital, Intel и Xerox, известный под названием DIX. Задачей консорциума DIX был перевод Ethernet из лабораторно-экспериментального состояния в технологию для построения новых систем, работающих с немалой на то время скоростью передачи данных 10 Мбит/с. Таким образом, Ethernet превращался из разработки Xerox в открытую и доступную всем технологию, что оказалось решающим в становлении его как мирового сетевого стандарта.

В феврале 1980 г. результаты деятельности DIX были представлены в IEEE, где вскоре была сформирована группа 802 для работы над проектом. Ethernet закреплял свои позиции в качестве стандарта. Для успешного внедрения технологии важное значение сыграли дальнейшие шаги «родителей» Ethernet по взаимодействию с другими производителями чипов и аппаратного обеспечения – так, например, группа разработчиков Digital представила чип Ethernet и исходные тексты его программного обеспечения компаниям Advanced Micro Devices (AMD) и Mostek. В результате возможность производить совместимые чипсеты Ethernet получили и другие компании, что сказалось на качестве «железа» и снижении его стоимости. В марте 1981 г. 3Com представила 10 Мбит/с Ethernet-трансивер, а в сентябре 1982 г. – первый Ethernet-адаптер для ПК.

После выхода первых изделий, в июне 1983 г. IEEE утвердил стандарты Ethernet 802.3 и Ethernet 10Base5. В качестве среды передачи предусматривался «толстый» коаксиальный кабель, а каждый узел сети подключался с помощью отдельного трансивера. Такая реализация оказалась дорогостоящей. Дешевой альтернативой с применением менее дорогого и более тонкого коаксиального кабеля, стал 10Base2. Станции уже не требовали отдельных трансиверов для подключения к кабелю. В такой конфигурации Ehternet начал победное шествие по просторам экс – СССР. Главными его преимуществами была простота развертывания и минимальное количество активного сетевого оборудования. Сразу же определились и недостатки. На время подключения новых станций приходилось останавливать работу всей сети. Для выхода сети из строя достаточно было обрыва кабеля в одном месте, поэтому эксплуатация кабельной системы требовала от технического персонала проявлений прикладного героизма.

Следующим шагом развития Ethernet стала разработка стандарта 10Base-T, предусматривавшего в качестве среды передачи неэкранированную витую пару (Unshielded Twisted Pair – UTP). В основу этого стандарта легли разработки SynOptics Communications под общим названием LattisNet, которые относятся к 1985 г. В 10Base-T использовалась топологии «звезда», в которой каждая станция соединялась с центральным концентратором (hub). Такой вариант реализации устранял необходимость прерывания работы сети на время подключения новых станций и позволял локализовать поиск обрывов проводки до одной линии концентратор-станция. Производители получили возможность встраивать в концентраторы средства мониторинга и управления сетью. В сентябре 1990 г. IEEE утверждает стандарт 10Base-T.

Спецификация Ethernet 10Base5 предусматривает выполнение следующих условий (рисунок 2.7):

    Среда передачи – «толстый» около 12 мм в диаметре коаксиальный кабель (RG-8 или RG-11) с волновым сопротивлением 50 Ом.

    Длина кабеля между соседними станциями не менее 2,5 м.

    Максимальная длина сегмента сети не более 500 м.

    Общая длина всех кабелей в сегментах не более 2,500 м.

    Общее число узлов на один сегмент сети не более 100.

    Сегмент оканчивается терминаторами, один из которых должен быть заземлен.

Ответвительные кабели могут быть сколь угодно короткими, но расстояние от трансивера до адаптера не более 50 м. В идеальном случае расстояние между соседними станциями должно быть кратно 2,5 м. Основные преимущества 10Base5: большая длина сегмента, хорошая помехозащищенность кабеля и высокое напряжение изоляции трансивера. Благодаря этим качествам «толстый» Ethernet чаще всего применялся для прокладки базовых сегментов (Backbone). Сейчас этот стандарт практически полностью вытеснен более дешевыми и производительными реализациями Ethernet.

Рисунок 2.7 – Ethernet 10Base5

Сеть Ethernet 10Base2 часто называют «тонкой Ethernet» или Thinnet из-за применяемого кабеля. Это одна из самых простых в установке и дешевых типов сетей. Топология сети – общая шина. Кабель прокладывается вдоль маршрута, где размещены рабочие станции, которые подключаются к сегменту при помощи Т-коннекторов. Отрезки сети, соединяющие соседние станции, подключаются к T-коннекторам при помощи BNC-разъемов. Для соединения двух отрезков кабеля применяются I-коннекторы. В сети не более 1024 станций. Сейчас 10base2 применяется в «домашних» сетях.

Рисунок 2.8 – Ethernet 10Base2

Ограничения по спецификации Ethernet 10Base2 (рисунок 2.8):

    Среда передачи – «тонкий» (около 6 мм в диаметре) коаксиальный кабель (RG-58 различных модификаций) с волновым сопротивлением 50 Ом.

    Длина кабеля между соседними станциями не менее 0,5 м.

    Максимальная длина сегмента сети не более 185 м.

    Общая длина всех кабелей в сегментах (соединенных через повторители) не более 925 м.

    Общее число узлов на один сегмент сети не более 30.

    Сегмент оканчивается терминаторами, один из которых заземляется.

    Ответвления от сегмента недопустимы.

    При построении сетей, использующих физическую топологию «общая шина, действует правило 5–4–3:

    не более чем 5 сегментов сети;

    могут быть объединены не более чем 4-мя повторителями;

    при этом станции могут быть подключены не более чем к 3-м сегментам, остальные 2 могут быть использованы для увеличения общей длины сети.

Спецификация Ethernet 10Base-T соответствует стандарту IEEE 802.3i, принятому в 1991 г. Ограничения спецификации Ethernet 10Base-T:

    Среда передачи – неэкранированный кабель на основе витой пары (UTP – Unshielded Twisted Pair) категории 3 и выше. При этом задействуются 2 пары – одна на прием, вторая на передачу.

    Физическая топология «звезда».

    Длина кабеля между станцией и концентратором не более 100 м.

    Максимальный диаметр сети не более 500 м.

    Количество станций в сети не более 1024.

В сети 10Base-Т термин «сегмент» применяют к соединению станция-концентратор. Дополнительные расходы в 10Base-T, связанные с необходимостью наличия концентратора и большим количеством кабеля, компенсируются большей надежностью и удобством эксплуатации. Индикаторы, присутствующие даже на самых простых концентраторах, позволяют быстро найти неисправный кабель. Управляемые модели концентраторов способны осуществлять мониторинг и управление сетью. Совместимость кабельной системы со стандартами Fast Ethernet увеличивает пропускную способность без изменения кабельных систем. Для оконцовки кабеля применяются восьмиконтактные разъемы и розетки RJ-45.

Правило 5–4–3 при построении сетей, использующих физическую топологию «звезда», можно интерпретировать в этом случае следующим образом:

    каскадно могут объединяться не более чем 4 концентратора;

    «дерево» каскадируемых концентраторов должно быть построено таким образом, чтобы между двумя любыми станциями в сети было не более чем 4 концентратора (в смешанных сетях могут быть исключения из этого правила – например, если один из хабов поддерживает не только витую пару, но и оптоволоконный кабель, то допустимое число каскадируемых концентраторов увеличивается до 5).

Рисунок 2.9 – Ethernet 10Base – Т

Среда передачи данных стандарта 10Base-F – оптоволокно. В стандарте повторяется топология и функциональные элементы 10Base-T: концентратор, к портам которого с помощью кабеля подключаются сетевые адаптеры станций. Для соединения адаптера с повторителем используется два оптоволокна – одно на прием, второе на передачу.

Существует несколько разновидностей 10Base-F. Первым стандартом для использования оптоволокна в сетях Ethernet был FOIRL (Fiber Optic Inter-Repeater Link). Ограничение длины оптоволоконных линий между повторителями 1 км при общей длине сети не более 2,5 км. Максимальное число повторителей – 4.

В стандарте 10Base-FL, предназначенном для соединения станций с концентратором, длина сегмента оптоволокна до 2 км при общей длине сети не более 2,5 км. Максимальное число повторителей также 4. Ограничения длин кабелей даны для многомодового кабеля. Применение одномодового кабеля позволяет прокладывать сегменты длиной до 20 км.

Существует также стандарт 10Base-FB, предназначенный для магистрального соединения повторителей. Ограничение на длину сегмента – 2 км при общей длине сети 2,74 км. Количество повторителей – до 5. Характерной особенностью 10Base-FB является способность повторителей обнаруживать отказы основных портов и переходить на резервные за счет обмена специальными сигналами, которые отличаются от сигналов передачи данных.

Стандарты 10Base-FL и 10Base-FB не совместимы между собой. Дешевизна оборудования 10Base-FL позволила ему обогнать по распространенности волоконно-оптические сети других стандартов.

Оконцовка оптоволоконных кабелей представляет собой существенно более сложную задачу, чем оконцовка медных кабелей. Необходимо точное совмещение осей светопроводящего материала – волокон и коннекторов. Типы коннекторов в основном отличаются друг от друга размером и формой направляющего ободка. Если в самых первых биконических коннекторах использовались конические ободки, то в настоящее время используются коннекторы типа SC (square cross-section), имеющие ободок квадратного сечения. Для надежного закрепления коннектора в гнезде в ранних типах коннекторов использовалась байонетная (ST) или резьбовая (SMA) фиксация. Сейчас в коннекторах SC используется технология «push-pull», предусматривающая закрепление коннектора в гнезде защелкиванием. Коннекторы типа SC применяются не только в локальных сетях, но также и в телекоммуникационных системах и в сетях кабельного телевидения.

Отдельная проблема – соединение оптических волокон. Надежное и долговечное соединение достигается сваркой волокон, что требует специального оборудования и навыков.

Область применения оптоволокна в сетях Ethernet – это магистральные каналы, соединения между зданиями, а также те случаи, когда применение медных кабелей невозможно из-за больших расстояний или сильных электромагнитных помех на участке прокладки кабеля. На сегодняшний день стандарт 10Base-F вытесняется более скоростными стандартами Ethernet на оптоволоконном кабеле.

В 1992 г группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая обобщила бы достижения отдельных компаний в области Ethernet-преемственного высокоскоростного стандарта. Новая технология получила название Fast Ethernet.

Одновременно были начаты работы в институте IEEE по стандартизации новой технологии – там была сформирована исследовательская группа для изучения технического потенциала высокоскоростных технологий. За период с конца 1992 г и по конец 1993 г группа IEEE изучила 100-Мегабитные решения, предложенные различными производителями. Наряду с предложениями Fast Ethernet Alliance группа рассмотрела также и другую высокоскоростную технологию, предложенную компаниями Hewlett-Packard и AT&T.

В центре дискуссий была проблема сохранения соревновательного метода доступа CSMA/CD. Предложение по Fast Ethernet сохраняло этот метод и тем самым обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T. Коалиция HP и AT&T, которая имела поддержку гораздо меньшего числа производителей в сетевой индустрии, чем Fast Ethernet Alliance, предложила совершенно новый метод доступа, называемый Demand Priority. Он существенно менял картину поведения узлов в сети, поэтому не смог вписаться в технологию Ethernet и стандарт 802.3, и для его стандартизации был организован новый комитет IEEE 802.12.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Стандарт Token Ring был принят комитетом 802.5 в 1985 г. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60 % сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями – 4 Мбитт/с и 16 Мбит/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Сети Token Ring, работающие со скоростью 16 Мбит/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мбит/с.

Наиболее распространенными решениями для локальных сетей являются архитектуры Ethernet и Token Ring, нередко еще используется Arcnet, для Macintosh характерно использование Apple Talk и Ether Talk.

Различия между названными архитектурами весьма значительны. Существенны различия и в используемом оборудовании (кабельных соединениях, контроллерах, электрических характеристиках и т.п.) в соответствующих сетях. Поэтому эти три типа сетей образовали отдельные области в промышленности локальных сетей.

Ethernet – архитектура сетей с разделяемой средой и широковещательной передачей (все узлы получают пакет одновременно) и методом доступа CSMA/CD. Стандарт определен документом IEEE802.3. Физическая архитектура Ethernet была разработана в середине 1970-х гг. в Исследовательском центре фирмы "Хегох" и используется многими поставщиками сетей. Согласно данной архитектуре компьютер выдает в сеть сообщение без предварительных запросов на передачу. Сообщение передается в сети во всех направлениях и доходит до каждого подключенного компьютера. Однако реагирует на него только тот компьютер, которому это сообщение адресовано, поскольку сообщение содержит его сетевой адрес. Затем "принимающий" компьютер, распознав и приняв сообщение, передает в сеть подтверждение приема, снабдив его сетевым адресом "передававшего" компьютера (этот адрес также присутствует в исходном сообщении).

Ethernet имеет шинную или звездообразную топологию.

В сети Ethernet на физическом уровне применяются многие типы кабеля. Кабель может прокладываться отрезками. Однако сеть Ethernet может включать в себя любое число отрезков кабеля, соединенных специальными "повторителями". При этом необходимо выполнение одного условия: между двумя ПК должен быть один соединяющий их путь, его длина не должна превышать 1500 м и на нем не должно быть более двух повторителей. При расширении сети Ethernet и увеличении числа станций локальной сети ее производительность может существенно снизиться. Это связано с тем, что в данной сети реализуется совместно используемая среда передачи данных и, когда информацию передает множество станций, возникает перегрузка сети (число конфликтов превышает число успешных передач).

Физическая архитектура Arcnet была разработана в начале 1970-х гг. фирмой "Datapoint Corp". В данной сети используется схема передачи маркера со звездообразной, шинной или древовидной топологией. Применяются три типа кабелей: коаксиальный, UTP и волоконно-оптический.

Согласно данной архитектуре компьютер может передать свое сообщение в сеть только после получения специального служебного маркера. Маркер представляет собой специальную последовательность битов. Он перемещается по сети от компьютера к компьютеру в порядке возрастания их системных номеров. Системные номера компьютеров в сети Arcnet находятся в диапазоне 0–255. Достигнув старшего номера, маркер переходит к младшему и снова движется в сторону возрастания номеров. Получив маркер, компьютер может передавать в сеть один пакет данных общим объемом до 512 байт: к маркеру добавляется сетевой номер (адрес) компьютера, которому передается сообщение, собственный сетевой номер и 508 байт данных. Этот пакет далее последовательно переходит в сети от одного компьютера к другому, пока не достигнет адресата. Если объема одного пакета окажется недостаточно для передачи сообщения, то передача выполняется за несколько проходов маркера по сети. Поэтому метод Arcnet называют методом доступа с эстафетной передачей в сетях со звездообразной топологией.

Архитектура Token Ring была разработана в 1984 г. фирмой IBM. Эта сеть оказала большое влияние на промышленность локальных сетей. Поставщиками сетевого программного обеспечения для сетей Token Ring являются такие фирмы, как "Novell", "3Com". В сети Token Ring также используется передача маркера. Сеть Token Ring имеет кольцевую топологию при соединении компьютеров. Согласно данному методу компьютер, получив пустой маркер, может заполнить его сообщением любой длины. Сформированное сообщение – кадр – перемещается по сети, и каждый компьютер копирует кадр в свою память, а затем помечает его пометкой "принято". Передававший компьютер, получив свой кадр уже обработанным, удаляет его из сети. Сети Token Ring имеют механизм приоритета, что позволяет выделять определенные компьютеры для ускоренного обслуживания. Предусмотрена возможность отключения неисправного компьютера от сети.

Виды сетевых архитектур

Сетевая архитектура предоставляет более подробную информацию не только о физическом расположении, но и о спецификациях используемых кабелей, и о методе, посредством которого компьютеры и прочие устройства получают доступ к сети. Сетевые архитектуры определяются строгими спецификациями, предложенными Институтом электротехники и электроники (Institute of Electrical and Electronically Engineer - IEEE), международной организацией, распространяющей по всему миру спецификации в области электротехники и информационных технологий.

Архитектура Ethernet

Как многие компьютерные и сетевые технологии, которыми мы пользуемся, сетевая архитектура Ethernet разработана в научно-исследовательском центре Ра1о А1to Research Center (PARC) компании Xerox в 1972 г. Коммерческая версия Ethernet была выпущена в 1975 г. и обеспечивала скорость передачи данных на уровне 3 Мбит/с.

Ethernet получила всеобщее признание, и компании Xerox, Intel и Digital Equipment Corporation (DEC) объединили свои усилия, чтобы улучшить технические характеристики Ethernet и довести скорость передачи данных до 10 Мбит/с. Именно эта версия Ethernet обеспечивающая скорость передачи данных на уровне 10 Мбит/с, прошла стандартизацию в институте IEEE, и ей была присвоена спецификация 802.3.

Это самая популярная сетевая архитектура в мире. Давайте рассмотрим, как Ethernet управляет доступом компьютеров и прочих устройств к сети.

Рис. 4

Ethernet/Fast Ethernet

Существуют и более быстрые версии Ethernet - гораздо быстрее, чем оригинальная версия со скоростью передачи данных на уровне 10 Мбит/с. Технология Fast Ethernet получила свое название из-за более высокой скорости передачи данных. Fast Ethernet обеспечивает полосу пропускания 100 Мбит/с. Увеличение полосы пропускания связано с тем, что время, требуемое на передачу одного бита информации по сетевым носителям, уменьшено в 10 раз. То есть сеть Fast Ethernet в 10 раз быстрее, чем сеть Ethernet, и обеспечивает скорость передачи данных на уровне 100 Мбит/с.

Технология Fast Ethernet не может быть реализована, если сетевые карты и концентраторы рассчитаны на использование в сети Ethernet со скоростью передачи данных 10 Мбит/с. Однако многие современные концентраторы, коммутаторы и сетевые карты Ethernet: имеют переключатель 10/1001, то есть могут подстраиваться под обе версии.

Gigabit Ethernet

Еще более быстрой версией Ethernet! является Gigabit Ethernet, использующая те же спецификации IEEE и тот же формат данных, что и остальные версии Ethernet. Технология Gigabit Ethernet обеспечивает скорость передачи данных на уровне 1000 Мбит/с.

Если в локальных сетях Fast Ethernet могут применяться и витые пары, и оптоволоконные кабели, то архитектура Gigabit Ethernet изначально рассчитана на использование только оптоволоконных кабелей и требует высокоскоростных коммутаторов и специализированных серверов. Gigabit Ethernet задумывалась как высокоскоростная технология для крупных сетей.

Однако в настоящее время технология Gigabit Ethernet используется в локальных сетях, а сетевые карты, ее поддерживающие, могут устанавливаться в сетевых клиентах и серверах. Также в качестве носителей в сети Gigabit Ethernet могут использоваться кабели пятой категории (о кабелях речь пойдет дальше в этой же главе). Сейчас разрабатывается еще более быстрая версия Gigabit Ethernet - 10Gigabit Ethernet. Она также рассчитана как на оптоволоконные, так и на медные кабели.

Спецификация IEEE и кабели для технологии Ethernet

Институт IEEE разработал спецификации для многих сетевых технологий, включая Ethernet. Перечислим некоторые из этих спецификаций:

802.3 - локальная сеть Ethernet (CSMA/CD); 802.5 - локальная сеть Token-Ring;

802.7 - отчет технической консультативной группы (Technical Advisory Group) по широкополосным сетям;

802.8 - отчет технической консультативной группы по оптоволоконным сетям;

802.10 - сетевая безопасность;

802.11 - беспроводные сети.

Как вы видно, технологии Ethernet соответствует спецификация 802.3. Ethernet действует на уровне канала передачи данных концептуальной модели OSI. Количество существующих типов Ethernet зависит от разновидностей используемых в сети кабелей (более подробно различные кабели будут рассматриваться в разделе «Разновидности кабелей»).

Этим типам Ethernet, Fast E и Gigabit Ethernet присваиваются трех частные наименования, такие как 10Base-T Первая часть названия (10 или 100) отражает скорость передачи данных. Например, 10 означает, что полоса пропускания в сети Ethernet составляет 10 Мбит/с.

Вторая часть названия (Base - для всех типов Ethernet) означает, что в сети Ethernet используется узкополосная (Basebend) передача сигнала. То есть данные передаются по единственному каналу связи. При таком типе передачи сигнал не может поступать по нескольким каналам, как при широкополосной (broadband).

Последняя часть названия отражает используемый кабель. Например, в названии 10Base-Т, буква «Т» означает витую пару, а заодно указывает, что это неэкранированная витая пара (и даже свидетельствует о том, что в такой сети используется неэкранированная витая пара пятой категории). Теперь, когда мы разобрались с наименованиями, пора рассмотреть имеющиеся стандарты Ethernet и Fast Ethernet. Перечислим разновидности Ethernet

10Base-T. В такой сети Ethernet используется кабель «витая пара» (неэкранированная витая пара, UTP). Максимальная длина кабеля (без усиления сигнала) составляет 100 м. 10Base-Т использует топологию «звезда»;

10Base-2. В такой сети Ethernet используется достаточно гибкий коаксиальный кабель (RG-58А/U, который часто называют тонким кабелем) с максимальной длиной 185 м (цифра 2 означает 200 м - округленное значение максимальной длины). В сети 10Base-2 используется шинная топология, причем кабель подключается к сетевой плате компьютера посредством Т-коннектора (без концентратора). Хотя 10Base-2 всегда был самой дешевой реализацией Ethernet, в настоящее время повсеместное распространение получили сети 10Base-Т;

10Base-5. В такой сети Ethernet используется толстый коаксиальный кабель, а компьютеры подключены к основной магистрали. Кабели от сетевых компьютеров подсоединяются к главному магистральному кабелю посредством пронзающих ответвителей, которые и в самом деле прокалывают изоляцию магистрального кабеля (их еще называют «зубами вампира»). Сети 10Base-5 встречаются довольно редко, хотя одно время этот тип сетей Ethernet был популярен у производителей аппаратного обеспечения;