Гаджеты

Что такое протокол tcp. Разница между протоколами TCP и UDP

Что такое протокол tcp. Разница между протоколами TCP и UDP

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 23:49, 28 января 2017.

NUMBEREDHEADINGS__

Стек протоколов ТСР/IP

IP-сеть

IP-сеть (какой является Интернет) отличается от глобальных сетей тем, что является составной сетью из подсетей, число которых измеряется тысячами. Для Интернета характерно использование стека протоколов не эталонной модели OSI, а эталонной модели TCP/IP . На рис. 1 представлен стек протоколов TCP/IP и его соответствие уровням модели OSI. Отличительной особенностью TCP/IP является также то, что IP-пакеты могут передаваться с использованием различных технологий составных сетей, в том числе посредством уже рассмотренных глобальных сетей Х.25, FR и ATM, которые являются самостоятельными со своими протоколами, адресацией и др. Другой особенностью является то, что эталонная модель TCP/IP в отличие от эталонной модели OSI была разработана под конкретную составную сеть (интерсеть или internet). Подсети, составляющую эту составную сеть, соединяются между собой маршрутизаторами. Такими подсетями могут быть как локальные, так и глобальные сети различных технологий.

Прикладной уровень стека TCP/IP (уровень 4) соответствует трём верхним уровням модели OSI. К протоколам прикладного уровня относятся протокол переноса файлов (FTP); протокол электронной почты (SMTP); протокол, используемый для создания страниц во всемирной паутине WWW (HTTP) - основа для доступа к связанным между собой документам; протокол преобразования (DNS) текстовых имен в сетевые IP-адреса, простой протокол сетевого управления (SNMP), протоколы соответственно сигнализации и передачи данных (SIP, RTP/RTCP) в IP-телефонии или речь поверх IP (VoIP-Voice over IP) и др. К протоколам прикладного уровня относятся также протоколы информационной безопасности Kerberos, PGP, SET и др.

Рис. 1. Стек протоколов TCP/IP

Транспортный уровень стека TCP/IP

Транспортный уровень стека TCP/IP (уровень 3) обеспечивает передачу данных между прикладными процессами. Транспортный уровень включает два протокола TCP и UDP. Протокол управления передачей TCP (Transmission Control Protocol) является надёжным протоколом с установлением соединения, позволяющим управлять потоком, т.е. без ошибок доставлять байтовый поток с одной машины на любую другую машину составной сети. Для того чтобы обеспечить надёжную доставку данных, протокол TCP предусматривает установление логического соединения. Это позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню в том порядке, в котором они были отправлены. Пакеты, поступающие на транспортный уровень, организуются в виде множества очередей к точкам входа прикладных процессов. В терминологии TCP/IP такие очереди, однозначно определяющие приложение в пределах хоста, называется портами. За портами каждого стандартного приложения определён номер например, порт TCP № 21 - за протоколом передачи файла FTP (File Transport Protocol). Номер порта в совокупности с номером сети и номером конечного узла имеет название сокет (socket). Каждое логическое соединение идентифицируется парой сокетов взаимодействующих процессов. Второй протокол транспортного уровня -протокол пользователей дейтаграмм UDP (User Data Protocol) является простейшим дейтаграммным протоколом (т.е. без установления соединения). К протоколу транспортного уровня относится протокол информационной безопасности SSL/TLS. Протоколы прикладного и транспортного уровней стека уровней TCP/IP устанавливаются на оконечных станциях (хостах) сети.

Межсетевой уровень стека TCP/IP

Межсетевой уровень стека TCP/IP (уровень 2) , называемый также сетевым уровнем (по модели OSI), является стержнем всей архитектуры TCP/IP. Именно этот уровень, функции которого соответствуют сетевому уровню модели OSI, обеспечивает перенос пакетов данных в пределах всей составной сети. Протоколы межсетевого уровня поддерживают интерфейсы с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети. Основным протоколом межсетевого уровня является межсетевой протокол IP (Internet Protocol). Он обеспечивает продвижение пакета между подсетями - от одного пограничного маршрутизатора до другого, до тех пор, пока пакет не попадёт в сеть назначения. Протокол IP так же, как и протоколы функций коммутации глобальных сетей связи (FR, ATM и др.), устанавливается не только на оконечных пунктах (хостах), но и на всех маршрутизаторах сети. Маршрутизатор представляет собой процессор, который связывает между собой две сети (подсети). Протокол межсетевого уровня работает в режиме без установления соединения (дейтаграммный режим), в соответствии с которым он не отвечает за доставку пакета до узла назначения. При потере пакета в сети протокол IP не пытается восстановить его.

В заголовке IP-пакета содержится IP-адрес отправителя и получателя - по 4 байта каждый. К межсетевому уровню относятся также протоколы, выполняющие функции составления и коррекции таблиц маршрутизации RIP (Routing Internet Protocol), OSPF (Open Shortest Path First), протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). К протоколу сетевого уровня относится протокол информационной безопасности IPSec. Уровень сетевого доступа стека TCP/IP (уровень 1) отвечает за организацию интерфейса с частными технологиями подсетей составной сети. Перемещение пакета можно рассматривать как последовательность «прыжков» от одного маршрутизатора к другому. На очередном маршрутизаторе на сетевом уровне определяется сетевой адрес следующего по маршруту маршрутизатора. Чтобы передать пакет IP этому маршрутизатору, надо перенести его через некоторую подсеть. Для этого необходимо использовать транспортные средства этой подсети. Задача уровня сетевого доступа сводится к инкапсуляции (вложению) пакета в блок данных этой промежуточной сети и в преобразовании сетевых адресов граничных маршрутизаторов этой подсети в новый тип адреса, принятой в технологии промежуточной сети.

Пример переноса данных в IP-сети

На примере IP-сети (рис. 2) покажем перенос данных оконечной станции А локальной вычислительной сети (подсети) Ethernet в оконечную станцию В сети (подсети) АТМ. Как видно из рисунка в эту составную сеть еще входит сеть (подсеть) Frame Relay. В основу приведенного упрощенного описания положен пример межсетевого взаимодействия сетей Ethernet и АТМ, приведенный в работе . Дополнительно в эту составную сеть введена сеть (подсеть) Frame Relay. Принцип маршрутизации и краткое описание протоколов маршрутизации в сети Интернет приведены в следующей главе. Для того, чтобы технология TCP/IP могла решать задачу объединения сетей, ей необходима собственная глобальная система адресации, не зависящая от способов адресации узлов в отдельных подсетях. Таким адресом является IP-адрес, состоящий из адреса подсети (префикса) и адреса оконечного устройства (хоста). Приведем пример адресации подсети и хоста. IP-адрес 200.15.45.126/25 означает, что 25 старших бит из выделенных 4-х байт под адресацию являются адресом подсети, а оставшиеся 7 бит означают адрес хоста в этой сети.

Как видно из предыдущих глав, глобальные сети Frame Relay и АТМ имеют различные системы нумерации, которые отличаются от системы нумерации локальной вычислительной сети (ЛВС) технологии Ethernet. Каждый компьютер Ethernet имеет уникальный физический адрес, состоящий из 48 бит. Этот адрес называется МАС-адресом и относится к канальному уровню - управлению доступом к среде MAC (Media Access Control). Для организации межсетевого взаимодействия подсетей различной технологии и адресации используются маршрутизаторы, включающие IP-пакеты. В состав этих пакетов входят глобальные IP-адреса. Каждый интерфейс маршрутизатора IP-сети и оконечного устройства включает два адреса – локальный адрес оконечного устройства подсети и IP-адрес.

Рис. 2. Пример взаимодействия двух устройств

Рассмотрим продвижение IP-пакета в сети (рис. 2).


Протоколы TCP/IP

Ниже приводится краткое описание протокола прикладного уровня SNMP и протокола транспортного уровня TCP архитектуры TCP/IP.

Протокол прикладного уровня SNMP

Большие сети не могут быть настроены и управляться вручную в плане изменения конфигурации сети, устранения неисправности в сети, сбора параметров о качестве обслуживания. Если в сети используется оборудование разных производителей, необходимость таких средств становится особенно необходимой. В связи с этим были разработаны стандарты сетевого управления. Одним из наиболее широко используемых является простой протокол управления сетью SNMP (Simple Network Management Protocol) . Приведем краткие сведения об архитектуре сетевого управления. Система сетевого управления включает инструментальные средства для решения задач управления. При этом необходимо использование уже имеющегося оборудования путем внедрения в него дополнительных аппаратных и программных средств для управления сетью. Это программное обеспечение размещается в хостах, коммуникационных процессорах и других устройствах сети. Модель сетевого управления, используемая для SNMP состоит из следующих элементов:

  • станция управления, выполняющая роль интерфейса между сетевым администратором и системой сетевого управления. Станция управления позволяет осуществить мониторинг сети и управление сетью. В этой станции имеется база данных с информацией, полученной из информационных баз всех управляемых объектов сети;
  • агент управления (хосты, коммутаторы и др.), которые отвечают на запросы от станции управления. Агент обеспечивает информацией станцию и без запроса;
  • агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств.

Станция управления и агенты взаимодействуют по протоколу SNMP. Так как управление сетью задача многоцелевая, приведем некоторые возможности использования протокола SNMP в сети Frame Relay . Агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств. Форум Frame Relay стандартизировал MIB для устройств Frame Relay. В большинстве служб Frame Relay провайдер собирает информации от агентов SNMP в каждом коммутаторе FR и записывает ее в центральную базу MIB для общего пользования. Тем самым пользователю предоставляется единый источник статистической информации обо всех соединениях виртуальных каналов сети. Это дает возможность отследить свои потоки данных в сети провайдера от коммутатора к коммутатору. Можно использовать SNMP для сбора статистики и аварийных сообщений от собственного оборудования, подключенного к сети FR. Для этого приходится работать с множеством MIB. Для сбора данных на основе SNMP можно использовать виртуальный канал FR.

SNMP может управлять конфигурацией сети. Для сети FR это касается как физической, так и логической конфигурации сети, включая установление адресации, определение DLCI, назначение полосы пропускания для PVC. SNMP может управлять устранением неисправностей в сети при получении системой управления аварийных сообщений от агента сетевого устройства.

Обеспечение информационной безопасности протокола SNMP

В документе RFC 2574 определяется модель USM (User Security Model – модель защиты пользователя) при использовании протокола SNMP. USM разрабатывалась с целью защиты от угроз следующих типов.

  1. Модификация информации. По пути следования сообщения, сгенерированного авторизованным объектом, некоторый другой объект может изменить это сообщение, чтобы выполнить несанкционированные операции управления (например, установив соответствующие значения объекта управления). Суть угрозы заключается в том, что несанкционированный объект может изменить любые параметры управления, включая параметры конфигурации, выполняемых действий и контроля.
  2. Имитация. Объект может пытаться выполнить не разрешенные для него операции управления, отождествляя данный объект с некоторым авторизованным объектом.
  3. Модификация потока сообщений. Протокол SNMP предназначен для работы над транспортным протоколом, не предполагающим установку соединений. Существует угроза переупорядочения, задержки или воспроизведения (дублирования) сообщений SNMP для несанкционированного управления. Например, можно скопировать и впоследствии воспроизвести сообщение, вызывающее перезапуск устройства.
  4. Разглашение информации. Наблюдая за потоком обмена данными между администратором и агентом, объект может выяснить значения управляемых объектов и распознать подлежащие регистрации события. Например, наблюдение за набором команд, изменяющих пароли, может позволить атакующему узнать новые пароли.

Протокол транспортного уровня TCP

Протокол транспортного уровня TCP выполняет функцию управления потоками между оконечными пунктами, так как уровень IP не гарантирует правильной доставки дейтаграмм. Дейтаграммы с уровня IP могут прибывать в неправильном порядке. Восстанавливает сообщения из таких дейтаграмм протокол TCP, обеспечивая этим надежный режим установленного соединения с низкой вероятностью потери пакета. Механизм управления потоками, используемый ТСP, отличается от механизма восстановления правильной последовательности кадров в Х.25 и называется схемой кредитов. В этой схеме считается, что каждый передаваемый байт данных имеет порядковый номер. Границы между сообщениями не сохраняются. Например, если отправляющий прикладной процесс записывает в ТСP-поток четыре 512-байтовые порции данных, эти данные могут быть доставлены получающему процессу в виде четырех 512-байтовых порций, либо двух 1024-байтовых порций, либо одной 2048-байтовой порции. Каждая протокольная единица PDU TCP называется сегментом TCP и включает в заголовок сегмента порт источника данных и порт получателя. Значения портов идентифицируют соответствующих пользователей (приложения) двух объектов TCP.

Логическая связь относится именно к данной паре значения портов. В процессе связи каждый объект отслеживает сегменты TCP, получаемые от другой стороны или отправленные другой стороне, для того, чтобы регулировать поток сегментов и восстанавливать утерянные или поврежденные сегменты. Стандартный номер порта однозначно идентифицирует тип приложения, однако он не может однозначно идентифицировать прикладной процесс этого приложения. Одно приложение может одновременно осуществлять несколько процессов. Поэтому прикладной процесс однозначно определяется в пределах сети и в пределах отдельного компьютера парой (IP-адрес, номер порта) и называется сокетом (socket). Логическое TCP-соединение однозначно идентифицируется парой сокетов, определенных для этого соединения двумя взаимодействующими сокетами.

При работе на хост-отправителе протокол TCP рассматривает информацию, поступающую к нему от уровня приложений, как неструктурированный поток байтов. Эти данные буферируются средствами TCP. На уровень IP из буфера «вырезаются» сегменты, к которым добавляются заголовки. В состав заголовка входят сегменты SYN и ACK, служащие для установления TCP-соединения.

Для передачи сегмента данных имеются три поля, связанные с управлением потоком (восстановлением целостности принятого сообщения): порядковый номер (SN), номер подтверждения (AN) и окно (W) .Когда транспортный объект отправляет сегмент, он помещает в поле данных сегмента порядковый номер первого байта. Принимающий объект подтверждает получение сегмента с помощью обратного сегмента, в котором (АN=i, W=j), что означает:

  • все байты до SN=i-1 подтверждены. Следующий ожидаемый байт имеет номер АN=i.
  • разрешается отправить дополнительное окно из W=j байт данных, т.е. байты от I до i+j-1.

Таким образом, протокол TCP обеспечивает надежную доставку сообщений, поступающих из сети от ненадежного дейтаграммного протокола на межсетевом уровне. В сети Х.25 функцию надежной доставки выполняет канальный уровень модели OSI, который был подробно рассмотрен в предыдущих главах, а в сети Frame Relay эту функцию выполняет протокол ITU-T Q.921.

Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Протокол TCP/IP впервые был создан в начале 1970-х годов и использовался для создания сети ARPANET. Технология разрабатывалась в рамках исследовательского проекта, который был нацелен на изучение потенциальной возможности объединения компьютеров в рамках одной локальной или виртуальной сети internetwork.

Установка соединения в TCP осуществляется при помощи специальной программы-клиента, например браузера, почтовой программы или клиента для обмена сообщениями.

Структура TCP

Структура TCP/IP позволяет формировать доступ к удаленным компьютерам, а также объединять отдельные устройства для создания локальных сетей, работающих отдельно от общих. TCP является надежным протоколом передачи данных. Таким образом, вся информация, которая будет отправлена в сети, гарантировано будет получена адресатом, т.е. пользователем, которому данные предоставлялись.

Альтернативой для TCP является UDP. Важными отличиями между данными сетями является то, что TCP необходимо предварительно установить доверительное соединение между отправителем и получателем информации. После установки соединения проходит передача данных, а затем начинается процедура завершения соединения. UDP сразу же устанавливает передачу нужных пакетов информации пользователю без предварительного создания канала.

Отправка данных по TCP

После установки соединения TCP отправляет данные по созданным маршрутам в соответствии с IP-адресами отправителя и получателя информации. IP-адрес является уникальным идентификатором каждого сетевого устройства в интернете, а потому отправленный по созданному туннелю пакет не может быть потерян или ошибочно послан другому пользователю.

На физическом уровне передачи данных информация имеет вид частот, амплитуд и других форм сигнала, которые уже обрабатываются сетевой картой адресата.

За обработку информации компьютером и ее передачу другим составляющим отвечают канальные протоколы, среди которых можно упомянуть Ethernet, ATM, SLIP, IEEE 802.11. Данные каналы обеспечивают не только передачу данных, но и форму доставки адресату. Так, в сетях IEEE 802.11 передача информации осуществляется при помощи беспроводного радиосигнала. При этом сигнал подается с сетевой карты компьютера, также имеющей собственный код MAC. В случае с Ethernet вся передача данных осуществляется при помощи кабельного соединения.

Видео по теме

В современных условиях деятельность общества и цивилизации невозможна без применения средств быстрого обмена информацией. Данную проблему призваны решать глобальные компьютерные сети.

Глобальная сеть (ГКС) - это сеть, которая состоит из компьютеров, охватывающих огромные территории при неограниченном количестве включенных в данную сеть компьютерных систем. Главным условием функционирования подобных сетей является моментальная передача информации по сети независимо от удаленности передающего и принимающего компьютера.

Глобальная сеть отличается от локальной, во-первых, более низкими скоростями передачи данных. Работают глобальные сети через протоколы TCP/IP, MPLS, ATM и некоторые других. Наиболее известным из указанных является протокол TCP/IP, который включает в себя подпротоколы разных уровней: прикладной, транспортный, сетевой, физический и канальный.

На прикладном уровне работает большинство программ, обладающих собственными протоколами, которые широко известны обычным пользователям ПК (HTTP, WWW, FTP и т.д.). Данные протоколы обеспечивают визуализацию и отображение необходимой пользователю информации.

Транспортный протокол ответственен за доставку данных именно тому приложению, которое способно их обработать. Он носит название TCP.

Сетевой уровень является, фактически, принимающим при передаче информации и отправляющей запросы на более низкие уровни для получения всей информации. Носит название протокола IP.

Физический и канальный уровни ответственны за определение условий и методов передачи информации.

Наиболее известной глобальной сетью является WWW (World Wide Web), которая представляет из себя совокупность серверов, где хранится необходимая для пользователей информация, и компьютеров, которые могут как принимать с серверов информацию, так и загружать ее на них. WWW отличается удобством и простотой использования, а также низкими требованиями к скорости передачи данных. Это позволило развиться данной сети за период чуть больший, чем десятилетие.

Видео по теме

Принято именовать символьное обозначение, заменяющее числовую адресацию, основанную на IP-адресах, в сети интернет. Числовая адресация, применяемая при обработке таблиц маршрутов, идеально подходит для компьютерного использования, но представляет значительные трудности при запоминании пользователем. На помощь приходят мнемонически осмысленные доменные имена.

Установка соединений в сети интернет происходит по числовым группам в 4 значения, разделенных символом «.» и именуемым IP-адресами. Символьные имена комплекса доменных имен представляют собой службу, призванную облегчить нахождение необходимого IP-адреса в сети.Техническим показателем доменного имени выступает символ «.» в электронном адресе пользователя. Так, в адресе google.com доменным именем будет com.Само доменное имя не способно предоставить доступ к требуемому интернет-ресурсу. Процедура использования мнемонического имени состоит из двух этапов:- IP-адреса по имени в файле hosts, содержащем таблицы соответствия IP-адреса и имени компьютера;- установка соединения с удаленным веб-ресурсом по определенному IP-адресу.Главной задачей сервиса DNS является получение IP-адреса для установки соединения, что делает эту службу вспомогательной по отношению к протоколу TCP/IP.Символ "." является разделителем составляющих доменного имени, хотя для практических целей обычно принимается в качестве обозначения корневого домена, не имеющего собственного обозначения. Корень - все множество хостов интернета - подразделяется на:- первого уровня - gov, edu, com,net;- национальные домены - uk, jp, ch и т.д.;- региональные домены - msk;- корпоративные домены - домены организаций.Сохранение привычной древовидной структуры доменных имен обусловило использование устоявшейся терминологии - корень, узлы дерева, лист. Термин «хост» в данной иерархии присвоен листу, не имеющему под собой ни одного узла. Полным именем хоста становится последовательное перечисление всех промежуточных узлов между корнем и листом, разделяемых символом "." слева направо:ivan.net.abcd.ru, где ru - корень дерева, abcd - название организации, ivan - лист дерева (хост).

Видео по теме

Источники:

  • Система доменных имен Internet в 2018

Транспортные протоколы TCP и UDP стека протоколов TCP/IP обеспечивают передачу данных между любой парой прикладных процессов , выполняющихся в сети, и предоставляют интерфейс для протокола IP путем демультиплексирования нескольких процессов, использующих в качестве адресов транспортного уровня порты. Для каждого прикладного процесса (ПП) (приложения), выполняемого в компьютере, может быть сформировано несколько точек входа , выступающих в качестве транспортных адресов , называемых портами (рис.4.60).

Существуют два способа присвоения порта приложению:

· централизованный (присвоенные или назначенные номера от 0 до 1023), использующий стандартные номера, присвоенные общедоступным службам (приложениям), например: FTP – 21, telnet – 23, SMTP – 25, DNS – 53, HTTP – 80.

· локальный (динамические номера от 1024 до 65535), предоставляющий произвольный номер из списка свободных номеров при поступлении запроса от приложения пользователя.

Динамические номера портов приложений являются уникальными в пределах каждого компьютера, но могут совпадать с номерами портов в других компьютерах. Различие между ними определяется только различием интерфейсов каждого из компьютеров, задаваемых IP-адресами.

Таким образом, пара «IP-адрес; номер порта », называемая сокетом (socket), однозначно определяет прикладной процесс в сети.

Номера UDP- и TCP-портов в пределах одного и того же компьютера могут совпадать, хотя и идентифицируют разные приложения. Поэтому при записи номера порта обязательно указывается тип протокола транспортного уровня, например 2345/TCP и 2345/UDP. В некоторых случаях, когда приложение может обращаться по выбору к протоколу UDP или TCP, ему могут быть назначены одинаковые номера UDP- и TCP-портов, например DNS-приложению назначен номер 53 – 53/UDP и 53/TCP.

Транспортный протокол UDP

UDP – транспортный протокол, обеспечивающий передачу данных в виде дейтаграмм между любой парой прикладных процессов , выполняющихся в сети, без установления соединения . Сегменты состоят из 8-байтового заголовка, за которым следует поле данных. Заголовок UDP-сегмента показан на рис.4.61.

Наиболее широко UDP используется при выполнении клиент-серверных приложений (типа запрос-ответ).

При этом UDP не выполняет:

· контроль потока,

· контроль ошибок,

· повторной передачи после получения испорченного сегмента.

Примерами приложений, использующих протокол UDP для передачи данных, являются DHCP, DNS, SNMP.

В некоторых случаях на одном конечном узле может выполняться несколько копий одного и того же приложения. Возникает вопрос: каким образом различаются эти приложения?

Для этого рассмотрим на простом примере процесс формирования запроса и процедуру обращения DNS-клиента к DNS-серверу, когда на одном компьютере запущены два DNS-сервера, причём оба используют для передачи своих данных транспортный протокол UDP (рис.4.62). Для того чтобы различать DNS-серверы, им присваиваются разные IP-адреса – IP1 и IP2, которые вместе с номером порта образуют два разных сокета: «UDP-порт 53, IP1» и «UDP-порт 53, IP2».

Рис.4.62,а) иллюстрирует процесс формирования DNS-клиентом запроса к DNS-серверу.

DNS-запрос транспортном уровне стека протоколов TCP/IP передаётся протоколу UDP, который вкладывает этот запрос в UDP-дейтаграмму и указывает в заголовке порт назначения 53/UDP. Затем UDP-дейтаграмма передаётся на межсетевой уровень, где она вкладывается в IP-пакет, заголовок которого содержит «IP-адрес: IP2». IP-пакет, в свою очередь, передаётся на уровень «межсетевой интерфейс», где он помещается в кадр канального уровня с соответствующим заголовком канального уровня (ЗКУ). Этот кадр передаётся по сети к компьютеру, содержащему два DNS-сервера (рис.4.62,б).

В этом компьютере протокол канального уровня (ПКУ) снимает заголовок ЗКУ и передаёт содержимое кадра на межсетевой уровень протоколу IP, который, в свою очередь, извлекает содержимое (UDP-дейтаграмму) из IP-пакета. Дальнейшие манипуляции с передаваемыми данными отличаются от принципов, заложенных в многоуровневую модель иерархии протоколов. Вместо того чтобы просто передать UDP-дейтаграмму, находящуюся в поле данных IP-пакета, транспортному уровню, IP-протокол присоединяет к UDP-дейтаграмме так называемый псевдозаголовк , содержащий среди прочего IP-адреса отправителя и получателя. Таким образом, протокол UDP, имея IP-адрес и порт назначения, однозначно определяет, что содержимое поля данных (то есть DNS-запрос), должно быть передано приложению «DNS-сервер 2».

Транспортный протокол TCP

Протокол TCP обеспечивает надежную передачу данных между прикладными процессами за счет установления логических соединений между взаимодействующими процессами.

Логическое соединение между двумя прикладными процессами идентифицируется парой сокетов (IP-адрес, номер порта), каждый из которых описывает один из взаимодействующих процессов.

Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов и заносится в буфер. Для передачи на сетевой уровень из буфера вырезается сегмент , не превосходящий 64 Кбайт (максимального размера IP-пакета). На практике обычно длина сегмента ограничивается значением 1460 байтами, что позволяет поместить его в кадр Ethernet с заголовками TCP и IP.

Соединение TCP ориентировано на полнодуплексную передачу .

Управление потоком данных в протоколе ТСР осуществляется с использованием механизма скользящего окна переменного размера . При передаче сегмента узел-отправитель включает таймер и ожидает подтверждения. Отрицательные квитанции не посылаются, а используется механизм тайм-аута . Узел назначения, получивший сегмент формирует и посылает обратно сегмент (с данными, если они есть, или без данных) с номером подтверждения, равным следующему порядковому номеру ожидаемого байта . В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока. Если время ожидания подтверждения истекает, отправитель посылает сегмент еще раз.

Несмотря на кажущуюся простоту протокола, в нем имеется ряд нюансов, которые могут привести к некоторым проблемам.

Во-первых, поскольку сегменты при передаче по сети могут фрагментироваться, возможна ситуация, при которой часть переданного сегмента будет принята, а остальная часть окажется потерянной.

Во-вторых, сегменты могут прибывать в узел назначения в произвольном порядке, что может привести к ситуации, при которой байты с 2345 по 3456 уже прибыли, но подтверждение для них не может быть выслано, так как байты с 1234 по 2344 еще не получены.

В-третьих, сегменты могут задержаться в сети так долго, что у отправителя истечёт интервал ожидания, и он передаст их снова. Переданный повторно сегмент может пройти по другому маршруту и может быть иначе фрагментирован, или же сегмент может по дороге случайно попасть в перегруженную сеть. В результате для восстановления исходного сегмента потребуется достаточно сложная обработка На рис.4.63 представлен формат заголовка TCP-сегмента. Первые 20-байт заголовка имеют строго фиксированный формат, за которым могут находиться дополнительные поля. После дополнительных полей заголовка размещается поле данных, содержащее не более 65 495 байт, которое вместе с TCP- и IP-заголовками размером по 20 байт даст максимально допустимый размер IP-пакета в 65 535 байт.

Не вдаваясь в детали, рассмотрим кратко назначение фиксированных полей заголовка ТСР-сегмента.

Поля «Порт отправителя» (2 байта) и «Порт получателя» (2 байта) идентифицируют процессы , между которыми установлено логическое соединение.

Поле «Порядковый номер» (4 байта) содержит номер первого байта данных в сегменте, который определяет смещение сегмента относительно потока передаваемых данных

Поле «Номер подтверждения» (4 байта) содержит номер следующего ожидаемого байта , который используется в качестве квитанции, подтверждающей правильный приёма всех предыдущих байтов.

Поле «Длина TCP-заголовка» (4 бита) задаёт длину заголовка ТСР-сегмента, измеренную в 32-битовых словах.

Поле «Резерв» длиной 6 бит зарезервировано на будущее.

Однобитовые флаги несут служебную информацию о типе сегмента и интерпретируются следующим образом:

· URG=1 указывает на наличие срочных данных , что означает использование поля «Указатель на срочные данные» ;

· ACK=1 означает, что сегмент является квитанцией на принятый сегмент и поле «Номер подтверждения» содержит осмысленные данные. В противном случае данный сегмент не содержит подтверждения и поле «Номер подтверждения» просто игнорируется.

· PSH=1 (PUSH-флаг) означает запрос на отправку данных без ожидания заполнения буфера;

· RST=1 используется для сброса состояния соединения при обнаружении проблем, а также для отказа от неверного сегмента или от попытки создать соединение;

· SYN=1 используется для установки соединения , при этом если АСК=0, то это означает, что поле подтверждения не используется;

· FIN=1 используется для разрыва соединения .

Поле «Размер окна» (2 байта) определяет, сколько байт может быть послано после байта, получившего подтверждение.

Поле «Контрольная сумма» (2 байта) содержит контрольную сумму, которая охватывает заголовок, данные и псевдозаголовок .

Алгоритм вычисления контрольной суммы выглядит следующим образом.

Перед началом вычисления контрольной суммы значение этого поля устанавливается равным нулю. Если поле данных содержит нечётное число байтов, то оно дополняется нулевым байтом, который используется при подсчёте контрольной суммы, но не вставляется в сегмент для передачи в сети. Необходимость такого добавления обусловлена тем, что ТСР-сегмент, включающий заголовок, данные и псевдозаголовок, рассматривается как совокупность 16-разрядных двоичных чисел, которые складываются в дополнительном коде, а затем вычисляется дополнение для полученной суммы, которое заносится в поле «Контрольная сумма».

Получатель сегмента аналогичным образом подсчитывает контрольную сумму для всего сегмента, включая поле «Контрольная сумма». Очевидно, что полученный таким образом результат должен быть равен 0. Отметим, что дополнительный нулевой байт Поле «Указатель на срочные данные» (2 байта) содержит смещение в байтах от текущего порядкового номера байта до места расположения срочных данных, которые необходимо срочно принять, несмотря на переполнение буфера. Таким образом, в протоколе TCP реализуются прерывающие сообщения. Содержимым срочных данных занимается прикладной уровень. Протокол TCP лишь обеспечивает их доставку и не интересуется причиной прерывания.

Поле «Параметры» имеет переменную длину и может отсутствовать.

Примерами приложений, использующих протокол TCP для передачи данных, являются FTP, TFTP, DNS, POP3, IMAP, TELNET.

На канальном и сетевом уровне протоколов TCP / IP пакета , которые касаются основного механизма передачи блоков данных между странами и между сетями, являются основами TCP / IP . Они используют стек протоколов, но они не используются непосредственно в приложениях, которые работают по протоколу TCP / IP . В этой статье мы рассмотрим два протокола, которые используются приложениями: User Datagram Protocol (UDP) и Transmission Control Protocol (TCP).

Протокол дейтаграммы пользователя
User Datagram Protocol очень простой протокол. Как и IP , это надежный протокол без соединений. Вам не нужно устанавливать соединение с хостом для обмена данными с ним, используя UDP , и не существует механизма для обеспечения передаваемых данных.
Блок данных, передаваемых с помощью UDP называется датаграммой. UDP добавляет четыре 16-битных поля заголовка (8 байт) к передаваемым данным. Эти поля: длина поля, поле контрольной суммы, а также источник и номер порта назначения. «Порт», в этом контексте, представляет собой программное обеспечение порта, а не аппаратный порт.
Концепция номера порта является общей для обоих UDP и TCP . Номера портов определяют, какой модуль протокола направляет (или получает) данные. Большинство протоколов имеют стандартные порты, которые обычно используются для этого. Например, протокол Telnet обычно использует порт 23. Simple Mail Transfer Protocol (SMTP), использует порт 25. Использование стандартных номеров портов позволяет клиентам взаимодействовать с сервером без предварительной установки, какой порт использовать.
Номер порта и протокола в поле в заголовка IP дублируют друг друга в какой-то степени, хотя поля протокола не доступны для протоколов более высокого уровня. IP использует поле протокола, чтобы определить, куда должны быть переданы данные на UDP или TCP модули. UDP или TCP используют номер порта, чтобы определить, какой протокол прикладного уровня, должен получать данные.
Несмотря на то, UDP не является надежным, он все еще подходящий выбор для многих приложений. Он используется приложениями в реальном времени, такими как потоковое аудио и видео, где, если данные будут потеряны, то лучше обойтись без него, чем отправить его снова по порядку. Он также используется протоколами, такими как Simple Network Management Protocol (SNMP).
Трансляция
UDP подходит для информационного вещания, поскольку он не требует подключения к открытой связи.Цели широковещательного сообщения определяются отправителем, на указанный в IP-адрес назначения. UDP датаграммы с адресом назначения IP все бинарные 255.255.255.255) и будет получен каждый хост в локальной сети. Обратите внимание на слово местные: дейтаграммы с таким адресом не будут приняты маршрутизатором к Интернету.
Передачи могут быть направлены на конкретные сети. UDP датаграммы с хоста и подсети части IP-адреса, установленные как бинарные транслируются на все узлы на всех подсетях сети, которая соответствует чистой части IP-адреса. Если только принимающая сторона (другими словами, все биты, которые равны нулю в маске подсети) устанавливается в бинарные, то вещание ограничено для всех хостов в подсети, который соответствует остальной части адреса.
Многоадресная рассылка используются для передачи данных в группе хостов, которые выразили желание их получать. Многоадресная UDP датаграмма имеет адрес назначения, в котором первые четыре бита 1110, предоставлены адреса в диапазоне 224.xxx в 239.xxx Остальные биты адреса используются для обозначения группы многоадресной рассылки. Это, скорее, как радио-или телеканал. Так, например, 224.0.1.1 используется для протокола NTP. Если TCP / IP приложения хотят получить многоадресное сообщение, они должны присоединиться к соответствующей группе многоадресной рассылки, что он и делает, передавая адрес группы в стек протоколов.
Широкое вещание, по сути, фильтруют передачу. Multicaster не рассматривает индивидуальные сообщения для каждого хоста, который присоединяется к группе. Вместо этого, сообщения в эфир, и драйвера на каждом хосте решают, следует ли игнорировать их или передать содержимое стеку протоколов.
Это означает, что многоадресные сообщения должны транслироваться по всему Интернету, так как multicaster не знает, какие хосты хотят получать сообщения. К счастью, это не является необходимым. IP использует протокол под названием Internet Group Management Protocol (IGMP), чтобы сообщить маршрутизаторам, какие хосты хотят получать сообщения многоадресной группы, так что сообщения отправляются только туда, где они необходимы.
Протокол управления передачей
Transmission Control Protocol является протоколом транспортного уровня и используется большинством интернет-приложений, такими как Telnet, FTP и HTTP. Это протокол с установлением соединения. Это означает, что два компьютера - один клиент, другой сервер и между ними необходимо установить соединение до того, как данные могут передаваться между ними.
TCP обеспечивает надежность. Приложение, которое использует TCP знает, что он отправляет данные полученные на другом конце, и что он получил их правильно. TCP использует контрольные суммы, как на заголовках,так и на данных. При получении данных, TCP посылает подтверждение обратно к отправителю. Если отправитель не получает подтверждения в течение определенного периода времени, данные отправляются повторно.
TCP включает в себя механизмы обеспечения данных, которые поступают в обратной последовательности, в порядке как они были отправлены. Он также реализует управление потоком, так что отправитель не может подавить приемник данных.
TCP передает данные, используя IP, в блоках, которые называются сегментами. Длина отрезка определяется протоколом. В дополнение к IP-заголовку, каждый сегмент состоит из 20 байт заголовка. Заголовок TCP начинается с 16-битного источника и поля назначения номера порта. Как и UDP , эти поля определяют уровень приложения, которые направлены и на получение данных. IP-адрес и номер порта, вместе взятые однозначно идентифицируют службы, работающие на хозяина, и пары известной как гнездо.
Далее в заголовке идет 32-битный порядковый номер. Это число определяет позицию в потоке данных, что должен занимать первый байт данных в сегменте. Порядковый номер TCP позволяет поддерживать поток данных в правильном порядке, хотя сегменты могут быть получены из последовательности.
Следующее поле представляет собой 32-битное поле, которое используется для передачи обратно отправителю, что данные были получены правильно. Если ACK флаг, которым он обычно и бывает, то это поле содержит положение следующего байта данных, что отправитель сегмента ожидает получить.
В TCP нет необходимости для каждого сегмента данных, которые будут признаны. Значение в поле подтверждения интерпретируется как «все данные до сих пор получены ОК». Это экономит полосу пропускания, когда все данные направляются в одну сторону, уменьшая потребность в признании сегментов. Если данные одновременно отправляються в обоих направлениях, как в полной дуплексной связи, то марки не связаны с расходами,так как сегмент передачи данных в одну сторону может содержать подтверждение для данных, передаваемых по-другому.
Далее в заголовке представляется 16-битное поле, содержащее длину заголовка и флаги. TCP заголовки могут содержать дополнительные поля, так что длина может варьироваться от 20 до 60 байт. Флаги: URG, ACK (который мы уже упоминали), PSH, RST, SYN и FIN. Позже,мы рассмотрим некоторые другие флаги.
Заголовок содержит поле, называемое размером окна, что дает количество байт, которые приемник может принять. Также существует 16-битная контрольная сумма, охватывающая как заголовок,так и данные. Наконец (до дополнительных данных) есть поле называемое «указатель срочности». Когда флаг URG установлен, это значение интерпретируется как смещение порядкового номера. Он определяет начало данных в потоке, которые должны быть обработаны в срочном порядке. Эти данные часто называют данными «вне группы». Пример её использования, когда пользователь нажимает клавишу перерыв, чтобы прервать выход из программы во время Telnet сессии.