Интернет

Модель взаимодействия открытых систем osi. Эталонная модель взаимодействия открытых систем (OSI)

Модель взаимодействия открытых систем osi. Эталонная модель взаимодействия открытых систем (OSI)

ВВЕДЕНИЕ

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Раздел 3. Стек протокола TCP/IP

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Организация взаимодействия между устройствами в сети является сложной проблемой, она включает много аспектов, начиная с согласования уровней электрических сигналов, формирования кадров, проверки контрольных сумм и кончая вопросами аутентификации приложений. Для ее решения используется универсальный прием - разбиение одной сложной задачи на несколько частных, более простых задач. Средства решения отдельных задач упорядочены в виде иерархии уровней. Для решения задачи некоторого уровня могут быть использованы средства непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы средств некоторого уровня могут быть переданы только средствам соседнего вышележащего уровня.

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать способ кодирования электрических сигналов, правило определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов до самого высокого уровня, предоставляющего услуги пользователям сети.

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другое в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет услуги, предоставляемые данным уровнем соседнему уровню.

В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы - модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями. Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средства протоколы верхних уровней, как правило, чисто программными средствами.

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

В начале 80-х годов - ряд международных организаций по стандартизации - ISO, ITU-T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System interconnection, OSI), или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

В модели OSI (рис. 1) средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств .

Рис. 1. Модель взаимодействия открытых систем ISO/OSI

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

) Канальный уровень

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи кадров, помещая для выделения каждого кадра специальную последовательность бит в его начало и конец, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые в отличие от локальных сетей редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B.

) Сетевой уровень

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной; структурой связей.

Сети соединяются между Собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор- это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщения сетевого уровня, или, как их принято называть, пакеты (packets), от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет. Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня.

Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

) Транспортный уровень

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня (Transport layer) заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов услуг, предоставляемых транспортным уровнем. Эти виды услуг отличаются качеством: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

) Сеансовый уровень

Сеансовый уровень (Session layer) обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

) Уровень представления

Уровень представления (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда будет понятна прикладному уровню в другой системе. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия кодов символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрирование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

) Прикладной уровень

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примеров протоколов прикладного уровня хотя бы несколько наиболее распространенных реализаций файловых служб: NCP в операционной системе Novell NetWare, 8MB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

кодирование коммуникационный протокол интерфейс

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежной информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/SNAP, причем в поле Type заголовка SNAP должен быть указан код 0х0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Type. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии АТМ в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети АТМ, появилась в 1994 году вскоре после принятия основных стандартов этой технологии) .

Раздел 3. Стек протокола TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) - это промышленный стандарт стека протоколов, разработанный для глобальных сетей.

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC .

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

·Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

·Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

·Это метод получения доступа к сети Internet.

·Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

·Все современные операционные системы поддерживают стек TCP/IP.

·Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

·Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 2. Протоколы TCP/IP делятся на 4 уровня .

Рис. 2. Стек TCP/IP

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие .

ЗАКЛЮЧЕНИЕ

Итак, формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют «протоколом». При этом соотношение между протоколом-формально определенной процедурой и протоколом-программным модулем, реализующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько программных реализации. Именно поэтому при сравнении протоколов следует учитывать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокупности протоколов, составляющих стек, в частности, насколько рационально распределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.

Протоколы реализуются не только компьютерами, но и другими сетевыми устройствами - концентраторами, мостами, коммутаторами, маршрутизаторами и т.д. Действительно, в общем случае связь компьютеров в сети осуществляется не напрямую, а через различные коммуникационные устройства. В зависимости от типа устройства в нем должны быть встроенные средства, реализующие тот или иной набор протоколов.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Бройдо В.Л. «Вычислительные системы, сети и телекоммуникации»: Учебник для вузов. 2-е изд. - СПб.: Питер, 2006 г.

Олифер В.Г., Олифер Н.А. «Компьютерные сети. Принципы, технологии, протоколы»: изд. 4-ое, Учебник для ВУЗов - Питер, 2010 г.

Таненбаум Э. «Компьютерные сети»: 4-е изд. - СПб.: Питер, 2003 г.




Разработана эта модель была в далеком 1984 году Международной организацией по стандартизации (International Standard Organization, ISO), и в оригинале называется Open Systems Interconnection, OSI.
Модель взаимодействия открытых систем (по факту - модель сетевого взаимодействия) является стандартом для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей.
Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.


  • Физический уровень (Physical layer) - определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
  • Канальный уровень (Data Link layer) - отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
  • Сетевой уровень (Network layer) - обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
  • Транспортный уровень (Transport layer) - реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
  • Сессионный (или сеансовый) уровень (Session layer) - позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
  • Уровень представления (Presentation layer) - осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
  • Прикладной уровень (Application layer) - предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

Модель OSI простым языком


Модель OSI – это аббревиатура от английского Open System Interconnection, то есть модель взаимодействия открытых систем. Под открытыми системами можно понимать сетевое оборудование (компьютеры с сетевыми картами, коммутаторы, маршрутизаторы).
Сетевая модель OSI представляет собой схему работы (или план действий по обмену данными) для сетевых устройств. Также OSI играет роль в создании новых сетевых протоколов, так как служит эталоном взаимодействия.
OSI состоит из 7 блоков (уровней). Каждый блок выполняет свою уникальную роль в сетевом взаимодействии различных сетевых устройств.
7 уровней модели OSI: 1 - Физический, 2 - Канальный, 3 - Сетевой, 4 - Транспортный, 5 - Сеансовый, 6 - Представления, 7 - Приложений.
На каждом уровне модели есть собственный набор сетевых протоколов (стандартов передачи данных), с помощью которых устройства в сети обмениваются данными.
Запомните, чем сложнее сетевое устройство, тем больше возможностей оно предоставляет, но и больше уровней занимает, и как следствие – медленней работает.

Сетевые модели. Часть 1. OSI.


Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).
Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.
Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.
Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.
Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.
Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

Эталонная сетевая модель OSI


OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.
Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.
Перечислим их:
7. Прикладной уровень (application layer)
6. Представительский уровень или уровень представления (presentation layer)
5. Сеансовый уровень (session layer)
4. Транспортный уровень (transport layer)
3. Сетевой уровень (network layer)
2. Канальный уровень (data link layer)
1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень


Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень


Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).
Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.
Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень


Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.
Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень


Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень


Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Канальный уровень


Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Физический уровень


Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.
Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

Заключение


Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

После недолгих размышлений решил поместить сюда статью с сайта Сетевых заморочек . Чтобы всё лежало в одном месте.

И снова здравствуйте дорогие друзья, сегодня мы с вами разберемся в том, что же такое сетевая модель OSI, зачем она, собственно говоря, предназначена.

Как вы уже наверное понимаете, современные сети устроены очень и очень сложно, в них протекает множество различных процессов, выполняются сотни действий. Для того чтобы упростить процесс описания данного многообразия функций сети (а что еще более важно упростить процесс дальнейшей разработки данных функций) были предприняты попытке их структурирования. В результате структурирования все функции, выполняемые компьютерной сетью, разделяются на несколько уровней, каждый из которых отвечает только за определенный, узкоспециализированый круг задач. Здесь сетевую модель можно сравнить со структурой компании. Компания разделена на отделы. Каждый отдел выполняет свои функции, но во время работы контактирует с другими отделами.


Разделение функций с помощью сетевой модели


Сетевая модель OSI разработана таким образом, чтобы вышестоящие уровни сетевой модели использовали нижестоящие уровни сетевой модели, для передачи своей информации. Правила, с помощью которых общаются уровни модели, называются сетевыми протоколами. Сетевой протокол определенного уровня модели может общаться либо с протоколами своего уровня, либо с протоколами соседних уровней. Здесь опять же можно провести аналогию с работой компании. В компании всегда есть четко установленная иерархия, хотя и не такая строгая как в сетевой модели. Работники одной ступени иерархии выполняют поручения, полученные от работников более высокого уровня иерархии.


Взаимодействие между уровнями сетевой модели OSI


Каждое устройство, работающее в сети, можно представить в виде системы работающей на соответствующих уровнях модели OSI. Причем данное устройство может использовать в своей работе, как все уровни модели OSI, так и только некоторые нижние ее уровни. Обычно когда говорят, что устройство работает на некотором уровне модели, то подразумевают, что оно работает на данном уровне сетевой модели и на всех лежащих ниже уровнях.


Работа не некоторых уровнях сетевой модели OSI


Когда два различных устройства сети общаются между собой, они используют протоколы одних и тех же уровней сетевой модели, при этом в процесс взаимодействия вовлекается как протоколы уровня на котором непосредственно происходит взаимодействие, так и необходимые протоколы всех нижележащих уровней, так как они используются для передачи данных, полученных от верхних уровней.


Общение двух систем с позиции модели OSI


При передачи информации от верхнего уровня сетевой модели к нижнему уровню сетевой модели, к данной полезной информации добавляется некоторая служебная информация, называемая заголовком (на 2 уровне добавляется не только заголовок, но еще и концевик). Данный процесс добавления служебной информации называется инкапсуляцией. При приеме (передачи информации от нижнего уровня к верхнему) происходит отделение данной служебной информации и получение исходных данных. Такой процесс называется деинкапсуляцией. По своей сути этот процесс очень похож на процесс отправки письма по почте. Представьте, что вы хотите отправить письмо своему другу. Вы пишите письмо – это полезная информация. Отправляя ее по почте, вы упаковываете ее в конверт, надписывая на нем адрес получателя, то есть добавляете к полезной информации некоторый заголовок. По сути это и есть инкапсуляция. Получая ваше письмо, ваш друг его деинкапсулирует – то есть разрывает конверт и достает из него полезную информацию – ваше письмо.


Демонстрация принципа инкапсуляции


Модель OSI подразделяет все функции, выполняемые при взаимодействии систем на 7 уровней: Физический(Physical) - 1, Канальный(Data link) -2, Сетевой(network) – 3, Транспортный(transport) – 4, Сеансовый(Session) -5, Представительский(Presentation) -6 и Прикладной (Application) - 7.


Уровни модели взаимодействия открытых систем


Кратенько рассмотрим назначение каждого из уровней модели взаимодействия открытых систем.

Прикладной уровень является точкой, через которую приложения общаются с сетью (точка входа в модель OSI). С помощью данного уровня модели OSI выполняется следующие задачи: управление сетью, управление занятостью системы, управление передачей файлов, идентификация пользователей по их паролям. Примерами протоколов данного уровня являются: HTTP, SMTP, RDP и д.р. Очень часто протоколы прикладного уровня выполняют одновременно функции протоколов представительского и сеансового уровней.


Данный уровень отвечает за формат представления данных. Грубо говоря, он преобразует данные полученные от уровня приложений к формату пригодному для передачи по сети (ну и соответственно выполняет обратную операцию преобразуя информацию, полученную из сети, к формату пригодному для обработки приложениями).


На данном уровне происходит установление, поддержание и управление сеансом связи между двумя системами. Именно данный уровень отвечает за поддержание связи между системами на весь промежуток времени в течение которого происходит их взаимодействие.


Протоколы данного уровня сетевой модели OSI отвечают за передачу данных от одной системы другой. На данном уровне большие блоки данных разделяются на более мелкие блоки, пригодные для обработки сетевым уровнем (очень мелкие блоки данных объединяются в более крупные), данные блоки соответствующим образом маркируются для их последующего восстановления на принимающей стороне. Так же при использовании соответствующих протоколов данный уровень способен обеспечить контроль доставки пакетов сетевого уровня. Блок данных, которым оперируют данный уровень обычно называется сегментом. Примерами протоколов данного уровня являются: TCP, UDP, SPX, ATP и д.р.


Данный уровень отвечает за маршрутизацию (определение оптимальных маршрутов от одной системы до другой) блоков данных данного уровня. Блок данных этого уровня обычно называется пакетом. Так же данный уровень отвечает за логическую адресацию систем (те самые IP адреса), на основе которой как раз и происходит маршрутизация. К протоколам данного уровня можно отнести: IP, IPX и др, к устройствам работающим на данном уровне – маршрутизаторы.


Данный уровень отвечает за физическую адресацию устройств сети (MAC адреса), управлением доступа к среде, а также коррекцией ошибок допущенных физическим уровнем. Блок данных, используемый на канальном уровне принято называть фреймом. К данному уровню относятся следующие устройства: коммутаторы (не все), мосты и д.р. Типичной технологией использующей данный уровень является Ethernet.


Осуществляет передачу оптических или электрических импульсов по выбранной среде передачи. К устройствам данного уровня можно отнести всевозможные повторители и концентраторы.


Модель OSI сама по себе не является практической реализацией, она лишь предполагает некоторый набор правил по взаимодействию компонентов системы. Практическим примером реализации стека сетевых протоколов является стек протоколов TCP/IP (а так же другие менее распространенные стеки протоколов).

Тема 6.

Прогресс в сфере компьютерных технологий и постоянное повышение быстродействия вычислительных систем обозначил целый ряд задач, при решении которых возникает необходимость интегрирования воедино вычислительных мощностей многих компьютеров. С другой стороны, все нарастающие потребности информационного обмена в человеческом обществе требуют соединения отдельных компьютеров с целью повышения скорости обмена информацией между ними. В связи с этим уже с 70-х годов возникли и начали интенсивно развиваться технологии компьютерного объединения. Многокомпьютерные системы стали называть компьютерными сетями, а технологии интеграции - сетевыми.

Компьютерная сеть – коммуникационная система (система обмена данными), созданная с помощью физического соединения двух или более компьютеров с использованием сетевой архитектуры. Сетевая архитектура определяет полный набор стандартов на аппаратное обеспечение, программное обеспечение и кабельное оборудование в соответствии с проектом компьютерной сети.

Целью создания компьютерных сетей является:

· обеспечение совместного использования аппаратных и программных ресурсов сети;

· обеспечение совместного доступа к ресурсам данных.

Например, все участники локальной сети могут совместно использовать одно общее устройство печати - сетевой принтер или, например, ресурсы жестких дисков одного выделенного компьютера - файлового сервера. Аналогично можно совместно использовать и программное обеспечение. Если в сети имеется специальный компьютер, выделенный для совместного использования участниками сети, он называется файловым сервером .

Все многообразие компьютерных сетей можно классифицировать по группе признаков:
1)Территориальная распространенность;
2) Ведомственная принадлежность;
3) Скорость передачи информации;
4) Тип среды передачи;
5) Топология;
6) Организация взаимодействия компьютеров.

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

Локальная сеть (LAN - Local Area Network) - сеть в пределах предприятия, учреждения, одной организации.

Региональная сеть (MAN - Metropolitan Area Network) - сеть в пределах города или области.

Глобальная сеть (WAN - Wide Area Network) – сеть на территории государства или группы государств.

Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.


По ведомственной принадлежности различают ведомственные и государственные сети . Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети - сети, используемые в государственных структурах.

По типу среды передачи сети разделяются на:

· проводные – с использованием кабелей: коаксиальных, на витой паре, оптоволоконных;

· беспроводные – с передачей информации по радиоканалам, в инфракрасном диапазоне.

Геометрическая организация узлов и кабельных соединений в локальной компьютерной сети определяет различные сетевые топологии .

Классические топологии («кольцо » рис. 15.1, «звезда » рис. 15.2 , «шина » рис. 15.3) в чистом виде встречаются редко.

В реальной практике используется большое число смешанных вариантов, в которых различные участки сети имеют ту или иную топологию:

По способу организации взаимодействия компьютеров сети делят на одноранговые и с выделенным сервером (иерархические сети).

Все компьютеры одноранговой сети равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Главное достоинство одноранговых сетей – это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.

В иерархической сети при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.

Сервер в иерархических сетях - это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, винчестерами большой емкости и высокоскоростной сетевой картой.

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных. К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

1. Необходимость дополнительной ОС для сервера.

2. Более высокая сложность установки и модернизации сети.

3. Необходимость выделения отдельного компьютера в качестве сервера

По технологии использования сервера различают сети с архитектурой файл -сервер и сети с архитектурой клиент -сервер . В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.

В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса.

К основным характеристикам сетей относятся:

Пропускная способность – максимальный объем данных, передаваемых сетью в единицу времени. Пропускная способность измеряется в Мбит/с.

Время реакции сети - время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах.

Модель взаимодействия открытых систем.

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на так называемой модели OSI (модель взаимодействия открытых систем - Model of Open System Interconnections). Модель OSI была создана на основе технических предложений Международного института стандартов ISO (International Standards Organization).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Для обеспечения необходимой совместимости на каждом из семи возможных уровней архитектуры компьютерной сети действуют специальные стандарты, называемые протоколами . Они определяют характер аппаратного взаимодействия компонентов сети (аппаратные протоколы ) и характер взаимодействия программ и данных (программные протоколы ). Физически функции поддержки протоколов исполняют аппаратные устройства (интерфейсы ) и программные средства (программы поддержки протоколов). Программы, выполняющие поддержку протоколов, также называют протоколами.

Каждый уровень архитектуры подразделяется на две части:

Спецификацию услуг;

Спецификацию протокола.

Спецификация услуг определяет, что делает уровень, а спецификация протокола - как он это делает, причем каждый конкретный уровень может иметь более одного протокола.

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения:

1. Физический уровень осуществляет соединения с физическим каналом, так, отсоединения от канала, управление каналом. Определяется скорость передачи данных и топология сети.

2. Канальный уровень добавляет в передаваемые массивы информации вспомогательные символы и контролирует правильность передаваемых данных. Здесь передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой уровень определяет маршрут передачи информации между сетями, обеспечивает обработку ошибок, а так же управление потоками данных. Основная задача сетевого уровня - маршрутизация данных (передача данных между сетями).

4. Транспортный уровень связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения.

5. Сеансовый уровень осуществляет управление сеансами связи между двумя взаимодействующими пользователями, определяет начало и окончание сеанса связи, время, длительность и режим сеанса связи, точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных.

6. Представительский уровень управляет представлением данных в необходимой для программы пользователя форме, производит компрессию и декомпрессию данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных данный уровень представления данных выполняет обратное преобразование.

7. Прикладной уровень взаимодействует с прикладными сетевые программами, обслуживающими файлы, а также выполняет вычислительные, информационно-поисковые работы, логические преобразования информации, передачу почтовых сообщений и т.п. Главная задача этого уровня - обеспечить удобный интерфейс для пользователя.

На разных уровнях обмен происходит различными единицами информации: биты, кадры, пакеты, сеансовые сообщения, пользовательские сообщения.

Основными компонентами сети являются рабочие станции , серверы , передающие среды (кабели ) и сетевое оборудование .

Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи.

Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть это любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами локальной сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры.

Сети можно создавать с любым из типов кабеля.

1. Витая пара (TP - Twisted Pair)– это кабель, выполненный в виде скрученной пары проводов. Он может быть экранированным и неэкранированным. Экранированный кабель более устойчив к электромагнитным помехам. Витая пара наилучшим образом подходит для малых учреждений. Недостатками данного кабеля является высокий коэффициент затухания сигнала и высокая чувствительность к электромагнитным помехам, поэтому максимальное расстояние между активными устройствами в ЛВС при использовании витой пары должно быть не более 100 метров.

2. Коаксиальный кабель состоит из одного цельного или витого центрального проводника, который окружен слоем диэлектрика. Проводящий слой алюминиевой фольги, металлической оплетки или их комбинации окружает диэлектрик и служит одновременно как экран против наводок. Общий изолирующий слой образует внешнюю оболочку кабеля.

Коаксиальный кабель может использоваться в двух различных системах передачи данных: без модуляции сигнала и с модуляцией. В первом случае цифровой сигнал используется в таком виде, в каком он поступает из ПК и сразу же передается по кабелю на приемную станцию. Он имеет один канал передачи со скоростью до 10 Мбит/сек и максимальный радиус действия 4000 м. Во втором случае цифровой сигнал превращают в аналоговый и направляют его на приемную станцию, где он снова превращается в цифровой. Операция превращения сигнала выполняется модемом; каждая станция должна иметь свой модем. Этот способ передачи является многоканальным (обеспечивает передачу по десяткам каналов, используя для этого всего лишь один кабель). Таким способом можно передавать звуки, видеосигналы и другие данные. Длина кабеля может достигать до 50 км.

3. Оптоволоконный кабель является более новой технологией, используемой в сетях. Носителем информации является световой луч, который модулируется сетью и принимает форму сигнала. Такая система устойчива к внешним электрическим помехам и таким образом возможна очень быстрая, секретная и безошибочная передача данных со скоростью до 200 Гбит/с. Количество каналов в таких кабелях огромно. Передача данных выполняется только в симплексном режиме, поэтому для организации обмена данными устройства необходимо соединять двумя оптическими волокнами (на практике оптоволоконный кабель всегда имеет четное, парное кол-во волокон). К недостаткам оптоволоконного кабеля можно отнести большую стоимость, а также сложность подсоединения.

4. Радиоволны в микроволновом диапазоне используются в качестве передающей среды в беспроводных локальных сетях, либо между мостами или шлюзами для связи между локальными сетями. В первом случае максимальное расстояние между станциями составляет 200 - 300 м, во втором - это расстояние прямой видимости. Скорость передачи данных - до 2 Мбит/с.

Беспроводные локальные сети считаются перспективным направлением развития ЛС. Их преимущество - простота и мобильность. Также исчезают проблемы, связанные с прокладкой и монтажом кабельных соединений - достаточно установить интерфейсные платы на рабочие станции, и сеть готова к работе.

Выделяют следующие виды сетевого оборудования .

1. Сетевые карты – это контроллеры, подключаемые в слоты расширения материнской платы компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети.

2. Терминаторы - это резисторы номиналом 50 Ом, которые производят затухание сигнала на концах сегмента сети.

3. Концентраторы (Hub ) – это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. В результате получается сеть с логической структурой общей шины. Различают концентраторы активные и пассивные. Активные концентраторы усиливают полученные сигналы и передают их. Пассивные концентраторы пропускают через себя сигнал, не усиливая и не восстанавливая его.

4. Повторители (Repeater )- устройства сети, усиливает и заново формирует форму входящего аналогового сигнала сети на расстояние другого сегмента. Повторитель действует на электрическом уровне для соединения двух сегментов. Повторители ничего распознают сетевые адреса и поэтому не могут использоваться для уменьшения трафика.

5. Коммутаторы (Switch ) - управляемые программным обеспечением центральные устройства кабельной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адреса его получателя и соответственно передается только ему.

Использование коммутаторов является более дорогим, но и более производительным решением. Коммутатор обычно значительно более сложное устройство и может обслуживать одновременно несколько запросов. Если по какой-то причине нужный порт в данный момент времени занят, то пакет помещается в буферную память коммутатора, где и дожидается своей очереди. Построенные с помощью коммутаторов сети могут охватывать несколько сотен машин и иметь протяженность в несколько километров.

6. Маршрутизаторы (Router ) - стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую, а также фильтровать широковещательные сообщения.

7. Мосты (Bridge )- устройства сети, которое соединяют два отдельных сегмента, ограниченных своей физической длиной, и передают трафик между ними. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети, одновременно не нарушая ограничений на максимальную длину кабеля, количество подключенных устройств или количество повторителей на сетевой сегмент.

8. Шлюзы (Gateway ) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Они действует на сеансовом, представительском и прикладном уровнях модели OSI.

9. Мультиплексоры – это устройства центрального офиса, которое поддерживают несколько сотен цифровых абонентских линий. Мультиплексоры посылают и получают абонентские данные по телефонным линиям, концентрируя весь трафик в одном высокоскоростном канале для передачи в Internet или в сеть компании.

10. Межсетевые экраны (firewall, брандмауэры) - это сетевые устройства, реализующие контроль за поступающей в локальную сеть и выходящей из нее информацией и обеспечивающие защиту локальной сети посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. В других случаях таким уникальным элементом является микропроцессорные карточки, биометрические характеристики пользователя и т. п. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры.

Таким образом, межсетевой экран - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения. Обычно межсетевые экраны защищают соединяемую с Internet корпоративную сеть от проникновения извне и исключает возможность доступа к конфиденциальной информации.

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) . Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Взаимодействие уровней модели OSI

Модель OSI можно разделить на две различных модели, как показано на рис. 1.11:

Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Каждый уровень компьютера-отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера-получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

Рис. 1.11. Схема взаимодействия компьютеров в базовой эталонной модели OSI

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети.

При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 1.12, где Заг – заголовок пакета, Кон – конец пакета.

На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Рис. 1.12. Формирование пакета каждого уровня семиуровневой модели

Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

Отдельные уровни модели OSI удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы, необходимые для выполнения этой задачи.

Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни. На рис. 1.13 приведено краткое описание функций всех уровней.

Рис. 1.13. Функции уровней модели OSI

Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

Взаимодействию прикладных процессов;

Формам представления данных;

Единообразному хранению данных;

Управлению сетевыми ресурсами;

Безопасности данных и защите информации;

Диагностике программ и технических средств.

Прикладной уровень (Application layer)

Прикладной уровень обеспечивает прикладным процессам средства доступа к области взаимодействия, является верхним (седьмым) уровнем и непосредственно примыкает к прикладным процессам.

В действительности прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Специальные элементы прикладного сервиса обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например программе необходимо переслать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами FTAM (File Transfer, Access, and Management). В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере), посылает конкретные данные в виде Дейтаграммы на прикладной уровень. Одна из основных задач этого уровня – определить, как следует обрабатывать запрос прикладной программы, другими словами, какой вид должен принять данный запрос.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень выполняет следующие функции:

1. Выполнение различных видов работ.

Передача файлов;

Управление заданиями;

Управление системой и т. д;

2. Идентификация пользователей по их паролям, адресам, электронным подписям;

3. Определение функционирующих абонентов и возможности доступа к новым прикладным процессам;

4. Определение достаточности имеющихся ресурсов;

5. Организация запросов на соединение с другими прикладными процессами;

6. Передача заявок представительскому уровню на необходимые методы описания информации;

7. Выбор процедур планируемого диалога процессов;

8. Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов;

9. Определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок);

10. Соглашение об исправлении ошибок и определении достоверности данных;

11. Согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Указанные функции определяют виды сервиса, которые прикладной уровень предоставляет прикладным процессам. Кроме этого, прикладной уровень передает прикладным процессам сервис, предоставляемый физическим, канальным, сетевым, транспортным, сеансовым и представительским уровнями.

На прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское программное обеспечение.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних трех уровней относятся:

FTP (File Transfer Protocol) протокол передачи файлов;

TFTP (Trivial File Transfer Protocol) простейший протокол пересылки файлов;

X.400 электронная почта;

Telnet работа с удаленным терминалом;

SMTP (Simple Mail Transfer Protocol) простой протокол почтового обмена;

CMIP (Common Management Information Protocol) общий протокол управления информацией;

SLIP (Serial Line IP) IP для последовательных линий. Протокол последовательной посимвольной передачи данных;

SNMP (Simple Network Management Protocol) простой протокол сетевого управления;

FTAM (File Transfer, Access, and Management) протокол передачи, доступа и управления файлами.

Уровень представления данных (Presentation layer)

Функции данного уровня – представление данных, передаваемых между прикладными процессами, в нужной форме.

Этот уровень обеспечивает то, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. В случаях необходимости уровень представления в момент передачи информации выполняет преобразование форматов данных в некоторый общий формат представления, а в момент приема, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. Такая ситуация может возникнуть в ЛВС с неоднотипными компьютерами (IBM PC и Macintosh), которым необходимо обмениваться данными. Так, в полях баз данных информация должна быть представлена в виде букв и цифр, а зачастую и в виде графического изображения. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

В основу общего представления данных положена единая для всех уровней модели система ASN.1. Эта система служит для описания структуры файлов, а также позволяет решить проблему шифрования данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня.

Представительный уровень выполняет следующие основные функции:

1. Генерация запросов на установление сеансов взаимодействия прикладных процессов.

2. Согласование представления данных между прикладными процессами.

3. Реализация форм представления данных.

4. Представление графического материала (чертежей, рисунков, схем).

5. Засекречивание данных.

6. Передача запросов на прекращение сеансов.

Протоколы уровня представления данных обычно являются составной частью протоколов трех верхних уровней модели.

Сеансовый уровень (Session layer)

Сеансовый уровень – это уровень, определяющий процедуру проведения сеансов между пользователями или прикладными процессами.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того чтобы начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Сеансовый уровень управляет передачей информации между прикладными процессами, координирует прием, передачу и выдачу одного сеанса связи. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающими на разных рабочих станциях. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений во время сеанса и завершение сеанса.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Полудуплексной (процессы будут передавать и принимать данные по очереди);

Дуплексной (процессы будут передавать данные, и принимать их одновременно).

В полудуплексном режиме сеансовый уровень выдает тому процессу, который начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень разрешает передачу только той стороне, которая обладает маркером данных.

Сеансовый уровень обеспечивает выполнение следующих функций:

1. Установление и завершение на сеансовом уровне соединения между взаимодействующими системами.

2. Выполнение нормального и срочного обмена данными между прикладными процессами.

3. Управление взаимодействием прикладных процессов.

4. Синхронизация сеансовых соединений.

5. Извещение прикладных процессов об исключительных ситуациях.

6. Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки.

7. Прерывание в нужных случаях прикладного процесса и его корректное возобновление.

8. Прекращение сеанса без потери данных.

9. Передача особых сообщений о ходе проведения сеанса.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью протоколов трех верхних уровней модели.

Транспортный уровень (Transport Layer)

Транспортный уровень предназначен для передачи пакетов через коммуникационную сеть. На транспортном уровне пакеты разбиваются на блоки.

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням модели (прикладному и сеансовому) передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень определяет адресацию физических устройств (систем, их частей) в сети. Этот уровень гарантирует доставку блоков информации адресатам и управляет этой доставкой. Его главной задачей является обеспечение эффективных, удобных и надежных форм передачи информации между системами. Когда в процессе обработки находится более одного пакета, транспортный уровень контролирует очередность прохождения пакетов. Если проходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

В функции транспортного уровня входят:

1. Управление передачей по сети и обеспечение целостности блоков данных.

2. Обнаружение ошибок, частичная их ликвидация и сообщение о неисправленных ошибках.

3. Восстановление передачи после отказов и неисправностей.

4. Укрупнение или разделение блоков данных.

5. Предоставление приоритетов при передаче блоков (нормальная или срочная).

6. Подтверждение передачи.

7. Ликвидация блоков при тупиковых ситуациях в сети.

Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Наиболее распространенные протоколы транспортного уровня включают в себя:

TCP (Transmission Control Protocol) протокол управления передачей стека TCP/IP;

UDP (User Datagram Protocol) пользовательский протокол дейтаграмм стека TCP/IP;

NCP (NetWare Core Protocol) базовый протокол сетей NetWare;

SPX (Sequenced Packet eXchange) упорядоченный обмен пакетами стека Novell;

TP4 (Transmission Protocol) – протокол передачи класса 4.

Сетевой уровень (Network Layer)

Сетевой уровень обеспечивает прокладку каналов, соединяющих абонентские и административные системы через коммуникационную сеть, выбор маршрута наиболее быстрого и надежного пути.

Сетевой уровень устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними. Виртуальный или логический канал – это такое функционирование компонентов сети, которое создает взаимодействующим компонентам иллюзию прокладки между ними нужного тракта. Кроме этого, сетевой уровень сообщает транспортному уровню о появляющихся ошибках. Сообщения сетевого уровня принято называть пакетами (packet). В них помещаются фрагменты данных. Сетевой уровень отвечает за их адресацию и доставку.

Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз, выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, по которым проходит пакет.

Сетевой уровень отвечает за деление пользователей на группы и маршрутизацию пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Сетевой уровень выполняет функции:

1. Создание сетевых соединений и идентификация их портов.

2. Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть.

3. Управление потоками пакетов.

4. Организация (упорядочение) последовательностей пакетов.

5. Маршрутизация и коммутация.

6. Сегментирование и объединение пакетов.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Наиболее часто на сетевом уровне используются протоколы:

IP (Internet Protocol) протокол Internet, сетевой протокол стека TCP/IP, который предоставляет адресную и маршрутную информацию;

IPX (Internetwork Packet Exchange) протокол межсетевого обмена пакетами, предназначенный для адресации и маршрутизации пакетов в сетях Novell;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов (частично этот протокол реализован на уровне 2);

CLNP (Connection Less Network Protocol) сетевой протокол без организации соединений.

Канальный уровень (Data Link)

Единицей информации канального уровня являются кадры (frame). Кадры – это логически организованная структура, в которую можно помещать данные. Задача канального уровня – передавать кадры от сетевого уровня к физическому уровню.

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Задача канального уровня – брать пакеты, поступающие с сетевого уровня и готовить их к передаче, укладывая в кадр соответствующего размера. Этот уровень обязан определить, где начинается и где заканчивается блок, а также обнаруживать ошибки передачи.

На этом же уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются и исправляются (путем требований повторной передачи данных) ошибки.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.Х делят канальный уровень на два подуровня:

LLC (Logical Link Control) управление логическим каналом осуществляет логический контроль связи. Подуровень LLC обеспечивает обслуживание сетевого уровня и связан с передачей и приемом пользовательских сообщений.

MAC (Media Assess Control) контроль доступа к среде. Подуровень MAC регулирует доступ к разделяемой физической среде (передача маркера или обнаружение коллизий или столкновений) и управляет доступом к каналу связи. Подуровень LLC находится выше подуровня МАC.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу.

При больших размерах передаваемых блоков данных канальный уровень делит их на кадры и передает кадры в виде последовательностей.

При получении кадров уровень формирует из них переданные блоки данных. Размер блока данных зависит от способа передачи, качества канала, по которому он передается.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Канальный уровень может выполнять следующие виды функций:

1. Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.

2. Организация и передача кадров.

3. Обнаружение и исправление ошибок.

4. Управление потоками данных.

5. Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Наиболее часто используемые протоколы на канальном уровне включают:

HDLC (High Level Data Link Control) протокол управления каналом передачи данных высокого уровня, для последовательных соединений;

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x;

Ethernet сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей частоты и обнаружением конфликтов;

Token ring сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера;

FDDI (Fiber Distributed Date Interface Station) сетевая технология по стандарту IEEE 802.6, использующая оптоволоконный носитель;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов;

Frame relay сеть, организованная из технологий Х25 и ISDN.

Физический уровень (Physical Layer)

Физический уровень предназначен для сопряжения с физическими средствами соединения. Физические средства соединения – это совокупность физической среды, аппаратных и программных средств, обеспечивающая передачу сигналов между системами.

Физическая среда – это материальная субстанция, через которую осуществляется передача сигналов. Физическая среда является основой, на которой строятся физические средства соединения. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц.

Физический уровень состоит из Подуровня стыковки со средой и Подуровня преобразования передачи.

Первый из них обеспечивает сопряжение потока данных с используемым физическим каналом связи. Второй осуществляет преобразования, связанные с применяемыми протоколами. Физический уровень обеспечивает физический интерфейс с каналом передачи данных, а также описывает процедуры передачи сигналов в канал и получения их из канала. На этом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

Тип кабелей и разъемов;

Разводку контактов в разъемах;

Схему кодирования сигналов для значений 0 и 1.

Физический уровень выполняет следующие функции:

1. Установление и разъединение физических соединений.

2. Передача сигналов в последовательном коде и прием.

3. Прослушивание, в нужных случаях, каналов.

4. Идентификация каналов.

5. Оповещение о появлении неисправностей и отказов.

Оповещение о появлении неисправностей и отказов связано с тем, что на физическом уровне происходит обнаружение определенного класса событий, мешающих нормальной работе сети (столкновение кадров, посланных сразу несколькими системами, обрыв канала, отключение питания, потеря механического контакта и т.д.). Виды сервиса, предоставляемого канальному уровню, определяются протоколами физического уровня. Прослушивание канала необходимо в тех случаях, когда к одному каналу подключается группа систем, но одновременно передавать сигналы разрешается только одной из них. Поэтому прослушивание канала позволяет определить, свободен ли он для передачи. В ряде случаев для более четкого определения структуры физический уровень разбивается на несколько подуровней. Например, физический уровень беспроводной сети делится на три подуровня (рис. 1.14).

Рис. 1.14. Физический уровень беспроводной локальной сети

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Физический уровень может обеспечивать как асинхронную (последовательную) так и синхронную (параллельную) передачу, которая применяется для некоторых мэйнфреймов и мини-компьютеров. На Физическом уровне должна быть определена схема кодирования для представления двоичных значений с целью их передачи по каналу связи. Во многих локальных сетях используется манчестерское кодирование.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных и другие характеристики среды и электрических сигналов.

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 – механические/электрические характеристики несбалансированного последовательного интерфейса;

EIA-RS-422/449, CCITT V.10 – механические, электрические и оптические характеристики сбалансированного последовательного интерфейса;

Ethernet – сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов;

Token ring – сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера.


Уважаемый читатель!
Публикация данного документа не преследует за собой никакой коммерческой выгоды. Но такие документы способствуют профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов. Все авторские права сохраняются за правообладателем.
За содержание статьи ответственность несут ее авторы.

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ

Семиуровневая модель взаимодействия открытых систем (Open Systems Interconnection , OSI ), предложенная Международной организацией по стандартизации (International Organization for Standardization , ISO ) . Модель ISO / OSI предполагает, что все сетевые приложения можно подразделить на семь уровней, для каждого из которых созданы свои стандартыи общие модели. В результате задача сетевого взаимодействия делиться на меньшие и более легкие задачи, обеспечивается совместимость между продуктами разных производителей и упрощается разработка приложений за счёт создания отдельных уровней и использования уже существующих реализаций.

Рисунок 1. Семиуровневая модель

Теоретически, каждый уровень должен взаимодействовать с аналогичным уровнем удаленного компьютера. На практике каждый из них, за исключением физического, взаимодействует с выше – и нижележащими уровнями – представляет услуги вышележащему и пользуется услугами нижележащего. В реальной ситуации на одном компьютере независимо друг от друга иногда выполняется несколько реализаций одного уровня. Например, компьютер может иметь несколько сетевых адаптеров стандарта Ethernet или адаптеры стандартов Ethernet и Token -Ring и.т.д.

Рассмотрим подробнее каждый из семи уровней и их применение.

Физический уровень

Физический уровень описывает физические свойства (например, электромеханические характеристики) среды и сигналов, переносящих информацию. Это физические характеристики кабелей и разъемов, уровни напряжений и электрического сопротивления и.т.д., в том числе, например, спецификация кабеля «неэкранированная витая пара» (unshielded twisted pair , UTP )

Канальный уровень

Канальный уровень обеспечивает перенос данных по физической среде. Он поделен на два подуровня: управления логическим каналом (logical link control , LLC ) и управления доступом к среде (media access control , MAC ). Такое деление позволяет одному уровню LLC использовать различные реализации уровня MAC . Уровень MAC работает с применяемым в Ethernet и Token -Ring физическими адресами, которые «вшиты» в сетевые адаптеры их производителями. Следует различать физические и логические (например, IP ) адреса. С последним работает сетевой уровень.

Сетевой уровень

В отличии от канального уровня, имеющего дело с физическими адресами, сетевой уровень работает с логическими адресами. Он обеспечивает подключение и маршрутизацию между двумя узлами сети. Сетевой уровень предоставляет транспортному уровню услуги с установлением соединения (connection -oriented ), например Х.25, или без установления такового (connectionless ) например IP (internet protocol ). Одна из основных функций сетевого уровня – маршрутизация.

К протоколам сетевого уровня относиться IP и ICMP (Internet Control Massage Protocol ).

Транспортный уровень

Транспортный уровень предоставляет услуги, аналогично услугам сетевого уровня. Надежность гарантируют лишь некоторые (не все) реализации сетевых уровней, поэтому ее относят к числу функций, выполняемых транспортным уровнем. Транспортный уровень должен существовать хотя бы потому, что иногда все три нижних уровня (физический, канальный и сетевой) предоставляет оператор услуг связи. В этом случае, используя соответствующий протокол транспортного уровня, потребитель услуг может обеспечить требуемую надежность услуг. TCP (Transmission Control Protocol) – широко распространенный протокол транспортного уровня.

Сеансовый уровень

Сеансовый уровень обеспечивает установление и разрыв сеансов, и управление ими. Сеанс – это логическое соединение между двумя конечными пунктами. Наилучший пример этой модели – телефонный звонок. При наборе номера Вы устанавливаете логическое соединение, в результате на другом конце провода звонит телефон. Когда один из собеседников говорит «аллё», начинается передача данных. После того как один из абонентов вешает трубку, телефонная компания выполняет некоторые действия для разрыва соединения. Сеансовый уровень следит также за очередностью передачи данных. Эту функцию называют «управление диалогом» (dialog management ). Вот примеры протоколов сеансового, представительного и прикладного уровней – SMTP (Simple Mail Transfer Protocol ), FTP (File Transfer Protocol ) и Telnet .

Представительный уровень

Представительный уровень позволяет двум стекам протоколов «договариваться» о синтаксисе (представлении) передаваемых друг другу данных. Поскольку гарантий одинакового представления информации нет, то этот уровень при необходимости переводит данные из одного вида в другой.

Прикладной уровень

Прикладной уровень – высший в модели ISO / OSI . На этом уровне выполняться конкретные приложения, которые пользуются услугами представительного уровня (и косвенно – всех остальных). Это может быть обмен электронной почтой, пересылка файлов и любое другое сетевое приложение.

Таблица 1. модель ISO / OSI и некоторые протоколы соответствующих уровней.

ПРИКЛАДНОЙ УРОВЕНЬ

SMTP (Simple Mail Transfer Protocol), FTP (File Transfer Protocol)

ПРЕДСТАВИТЕЛЬНЫЙ УРОВЕНЬ

СЕАНСОВЫ УРОВЕНЬ

ТРАНСПОРТНЫЙ УРОВЕНЬ