Windows 10

Метод ветвей и границ. Теория графов

Метод ветвей и границ. Теория графов

Введение

Большой класс прикладных задач оптимизации сводится к задачам целочисленного программирования. Для решения этих задач широко применяются комбинаторные методы, основанные на упорядоченном переборе наиболее перспективных вариантов. Комбинаторные методы решения можно разделить на две группы: методы динамического программирования и методы ветвей и границ.

При решении многомерных задач оптимизации предлагается совместное применение методов ветвей и границ и динамического программирования. На первом этапе задача решается методом динамического программирования отдельно по каждому из ограничений. Последовательности, полученные в результате решения функционального уравнения динамического программирования, в дальнейшем используется для оценки верхней (нижней) границы целевой функции. На втором этапе задача решается методом ветвей и границ. При использовании этого метода определяется способ разбиения всего множества допустимых вариантов на подмножества, то есть способ построения дерева возможных вариантов, и способ оценки верхней границы целевой функции.

Комплексное применение методов динамического программирования и ветвей и границ позволяет повысить эффективность решения дискретных задач оптимизации. При решении задач большой размерности с целью уменьшения членов оптимальной последовательности используются дополнительные условия отсечения.

1. Историческая справка

Впервые метод ветвей и границ был предложен Лендом и Дойгом в 1960 для решения общей задачи целочисленного линейного программирования. Интерес к этому методу и фактически его «второе рождение» связано с работой Литтла, Мурти, Суини и Кэрела, посвященной задаче коммивояжера. Начиная с этого момента, появилось большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех объясняется тем, что авторы первыми обратили внимание на широту возможностей метода, отметили важность использования специфики задачи и сами воспользовались спецификой задачи коммивояжера.

Этот метод является наиболее общим среди всех методов дискретного программирования и не имеет принципиальных ограничений по применению. Алгоритм метода ветвей и границ представляет собой эффективную процедуру перебора всех целочисленных допустимых решений.

Метод ветвей и границ - один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

2. Описание метода

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.

2.1 Правила ветвления

В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:

1. ветвление множества допустимых решений исходной задачи D;

2. ветвление множества D" получаемого из D путем снятия условия целочисленности на переменные.

Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.

Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области D i " этим способом на D i " решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.

Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x 0 [j]. Говорят, что ветвление осуществляется по переменной x[j]. Область D i " разделяется на две подобласти D i1 " и D i2 " следующим образом:

где ] - целая часть значения x 0 [j]

На рис. 2 условно дана геометрическая интерпретация такого ветвления.

Рис. 2. Геометрическая интерпретация ветвления

Видно, что при этом из области D i " удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. D i (D i D i ") при таком изъятии не исключается ни одного решения.

2.2 Формирование нижних и верхних оценок целевой функции

Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:

где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.

Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей D i D либо для подобластей D i " D" (D i " и D" получены из соответствующих множеств D i и D путем снятия условий целочисленности на дискретные переменные).
Нижней оценкой целевой функции f(x) на множестве D i (или D i ") будем называть величину:

Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.

На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D 1 , D 2 , D 3 , D 4 .

Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:

Определенная таким образом о i является нижней оценкой f(x) на D i (или D i "), так как D i D i ".

Если при решении задачи (4) установлено, что, то для общности будем полагать, что.

Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.

Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки, которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения:

Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:

Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.

2.3 Алгоритм метода ветвей и границ

Основные правила алгоритма могут быть сформулированы следующим образом:

1. Ветвлению в первую очередь подвергается подмножество с номером, которому соответствует наименьшее значение нижней оценки целевой функции (I - это множество номеров всех подмножеств, (или), находящихся на концах ветвей и ветвление которых еще не прекращено). Если реализуется изложенный выше способ ветвления множеств, то может возникнуть неоднозначность относительно выбора компоненты, по которой необходимо осуществлять очередной шаг ветвления. К сожалению, вопрос о «наилучшем» способе такого выбора с общих позиций пока не решен, и поэтому в конкретных задачах используются некоторые эвристические правила.

2. Если для некоторого i-го подмножества выполняется условие, то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует).

3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение. Обосновывается это тем, что, и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки.

4. Если, где, то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.

5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):

2.4 Решение задачи методом ветвей и границ

Целые .

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.

Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.

Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.

Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.

Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу.

Определяя эти числа, находим симплексным методом решение двух задач линейного программирования

- целые .

Целые .

Возможны четыре случая при решении этой пары задач:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.

Таким образом, при решении задачи получаем схему:

1. Находим решение задачи линейного программирования без учета целочисленности.

2. Составляет дополнительные ограничения на дробную компоненту плана.

3. Находим решение двух задач с ограничениями на компоненту.

4. Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Пример

Найдем решение задачи

Целые .

Решение. Находим решение без учет целочисленности задачи симплексным методом.

Рассмотрим следующую пару задач:

Задача №1

изадача №2

Первая задача имеет оптимальный план

вторая - неразрешима.

Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:

Задача №1.1

и задача №1.2

Задача №1.2 неразрешима, а задача №1.1 имеет оптимальный план, на котором значение целевой функции.

В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и.

3. Решение задачи коммивояжера методом ветвей и границ

Рассмотрим теперь класс прикладных задач оптимизации. Метод ветвей и границ используется в очень многих из них. Предлагается рассмотреть одну из самых популярных задач - задача коммивояжера. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат («обход коммивояжера»), и, если таковой путь имеется, установить кратчайший из таких путей.

3.1 Постановка задачи

Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.

Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес Ґ, считая, что Ґ - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом Ґ можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.

Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:

пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.

Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого.

Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.

Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.

Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.

Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.

Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.

Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.

Первый шаг . Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M 1 ; таким образом, итог первого шага:

множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M 1 .

Второй шаг. Выберем в матрице M 1 самый тяжелый нуль; пусть он стоит в клетке; фиксируем ребро графа и разделим множество G на две части: на часть, состоящую из обходов, которые проходят через ребро, и на часть, состоящую из обходов, которые не проходят через ребро.

Сопоставим множеству следующую матрицу M 1,1: в матрице M 1 заменим на Ґ число в клетке. Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M 1,1 ; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству.

Теперь множеству тоже сопоставим некую матрицу M 1,2 . Для этого в матрице M 1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M 1,2 . Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству.

Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).

Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.

При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.

К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.

Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.

После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.

3.2 Условие задачи

Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице

3.3 Математическая модель задачи

Для решения задачи присвоим каждому пункту маршрута определенный номер: 12-ый корпус - 1, Белый дом - 2, КРК «Премьер» - 3, Администрация - 4 и 5-ый корпус - 5. Соответственно общее количество пунктов. Далее введем альтернативных переменных, принимающих значение 0, если переход из i-того пункта в j-тый не входит в маршрут и 1 в противном случае. Условия прибытия в каждый пункт и выхода из каждого пункта только по одному разу выражаются равенствами (8) и (9).

Для обеспечения непрерывности маршрута вводятся дополнительно n переменных и дополнительных ограничений (10).

Суммарная протяженность маршрута F , которую необходимо минимизировать, запишется в следующем виде:

В нашем случае эти условия запишутся в следующем виде:

3.4 Решение задачи методом ветвей и границ

задача коммивояжер ветвь граница

1) Анализ множества D.

Найдем оценку снизу Н . Для этого определяем матрицу минимальных расстояний по строкам (1 где расстояние минимально в строке).

Аналогично определяем матрицу минимальных расстояний по столбцам.

Выберем начальный план: . Тогда верхняя оценка:

Очевидно, что, где означает переход из первого пункта в j-тый. Рассмотрим эти подмножества по порядку.

2) Анализ подмножества D 12 .

3) Анализ подмножества D 13 .

4) Анализ подмножества D 14 .

5) Анализ подмножества D 15 .

6) Отсев неперспективных подмножеств.

Подмножества D 13 и D 15 неперспективные. Т.к. , но, то далее будем рассматривать подмножество D 14 .

7) Анализ подмножества D 142 .

8) Анализ подмножества D 143 .

9) Анализ подмножества D 145 .

10) Отсев неперспективных подмножеств

Подмножество D 143 неперспективное. Т.к. , но, то далее будем рассматривать подмножество D 145 .

11) Анализ подмножества D 1452 .

12) Анализ подмножества D 1453 .

Оптимальное решение: .

Таким образом, маршрут студента: 12-ый корпус - Администрация - 5-ый корпус - Белый дом - КРК Премьер - 12-ый корпус.

Список литературы

1. Абрамов Л.А., Капустин В.Ф. Математическое программирование. - Л.: Изд-во ЛГУ, 1981. -328 с.

2. Алексеев О.Г. Комплексное применение методов дискретной оптимизации. - М.: Наука, 1987. -294 с.

3. Корбут А.А., Финкелгейн Ю.Ю. Дискретное программирование. М.: Наука. 1969. -240 с

4. Кузнецов Ю.Н. и др. Математическое программирование: Учебное пособие. - 2-е изд., перераб и доп. - М.: Высшая школа, 1980. -300 с.

5. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. - М.: Мир, 1985. -213 с.

Подобные документы

    Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.

    задача , добавлен 24.07.2009

    Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.

    контрольная работа , добавлен 07.06.2011

    Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа , добавлен 30.04.2011

    Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа , добавлен 18.06.2011

    Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа , добавлен 12.06.2011

    Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат , добавлен 09.10.2012

    Решение двойственной задачи с помощью первой основной теоремы теории двойственности, графическим и симплексным методом. Математическая модель транспортной задачи, расчет опорного плана перевозок методами северо-западного угла и минимального элемента.

    контрольная работа , добавлен 27.11.2011

    Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.

    курсовая работа , добавлен 08.10.2015

    Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа , добавлен 25.11.2011

    Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

Метод ветвей и границ относится к комбинаторным методам решения целочисленных задач и применим как к полностью, так и к частично целочисленным задачам.

Суть метода ветвей и границ – в направленном частичном переборе допустимых решений. Будем рассматривать . Вначале она решается без ограничений на целочисленность. При этом находится верхняя граница F(x), так как целочисленное решение не может улучшить значение функции цели.

Далее в методе ветвей и границ область допустимых значений переменных (ОДЗП) разбивается на ряд непересекающихся областей (ветвление), в каждой из которых оценивается экстремальное значение функции. Если целое решение не найдено, ветвление продолжается.

Ветвление производится последовательным введением дополнительных ограничений. Пусть x k – целочисленная переменная, значение которой в оптимальном решении получилось дробным. Интервал [β k ] ≤ x k ≤ [β k ]+1 не содержит целочисленных компонентов решения. Поэтому допустимое целое значение x k должно удовлетворять одному из неравенств x k ≥[β k ]+1 или x k ≤[β k ]. Это и есть дополнительные ограничения. Введение их в методе ветвей и границ на каждом шаге порождает две не связанные между собой подзадачи. Каждая подзадача решается как задача линейного программирования с исходной целевой функцией. После конечного числа шагов будет найдено целочисленное оптимальное решение.

Применение метода ветвей и границ рассмотрим на конкретном примере.

Пример 1. Методом ветвей и границ F(x) = 2x 1 + 3x 2 при ограничениях

3x 1 +4x 2 ≤24

2x 1 +5x 2 ≤22

x 1,2 ≥0 - целые

1-й шаг метода ветвей и границ. с отброшенными условиями целочисленности с помощью симплекс-метода (табл. 1 – 3).

По данным табл. 3 запишем оптимальное нецелое решение

; x * 2 =2 4 ; F max =16 6
7 7

Таблица 1 - симплекс-таблица для задачи ЛП

Таблица 2 - симплекс-таблица для задачи ЛП

Таблица 3 - симплекс-таблица для задачи ЛП

Графическая интерпретация задачи приведена на рис. 1. Здесь ОДЗП представлена четырехугольником ABCD, а координаты вершины С совпадают с x * 1 и x * 2 . Обе переменные в оптимальном решении являются нецелыми, поэтому любая из них может быть выбрана в качестве переменной, инициирующей процесс ветвления.

Пусть это будет x 2 . Выбор x 2 порождает две подзадачи (2 и 3), одна из них получается путем добавления ограничения x 2 ≥3 к исходной задаче, а другая – путем добавления ограничения x 2 ≤2. При этом ОДЗП разбивается на две заштрихованные области (рис. 1), а полоса значений 2 < x 2 < 3 исключается из рассмотрения. Однако множество допустимых целочисленных решений сохраняется, порожденные подзадачи содержат все целочисленные решения исходной задачи.

Рисунок 1 - графическая интерпритация решения примера методом ветвей и границ

2-й шаг метода ветвей и границ. Осуществляется выбор одной из обозначенных ранее подзадач. Не существует точных методов определения, какой из подзадач отдать предпочтение. Случайный выбор приводит к разным последовательностям подзадач и, следовательно, к различным количествам итераций, обеспечивающих получение оптимального решения.

Пусть вначале решается подзадача 3 с дополнительным ограничением x 2 ≤2 или x 2 + x 5 = 2 . Из табл. 3 для переменной x 2 справедливо следующее выражение -2/7x 3 +3/7x 4 +x 2 =18/7 или x 2 =18/7+2/7x 3 -3/7x 4 , тогда 2/7x 3 -3/7x 4 +x 5 =-4/7 . Включаем ограничение в табл. 3, при этом получим новую таблицу (табл. 4).

Осуществляя оптимизацию решения, переходим к табл. 5, которой соответствует решение

; x * 2 =2 ; F max =16 2
3

Переменная x 1 нецелая, поэтому ветвление необходимо продолжить; при этом возникают подзадачи 4 и 5 с ограничениями x 1 ≤5 и x 1 ≥6 соответственно. Полоса значений 5 < x 1 < 6 исключается из рассмотрения.

Таблица 5 - симплекс-таблица для задачи ЛП

3-й шаг метода ветвей и границ. Решаются подзадачи 4 и 5. Из рис. 1 видно, что оптимальное целочисленное решение подзадачи 4 достигается в вершине К с координатами x * 1 =5, x * 2 =2, однако это не означает, что найден оптимум исходной задачи. Причиной такого вывода являются еще не решенные подзадачи 3 и 5, которые также могут дать целочисленные решения. Найденное целочисленное решение F = 16 определяет нижнюю границу значений целевой функции, т.е. меньше этого значения оно быть не должно.

Подзадача 5 предполагает введение дополнительного ограничения x 1 ≥6 в подзадачу 3 . Графическое решение на рис. 1 определяет вершину L с координатами x * 1 =6, x * 2 =3/2 , в которой достигается оптимальное решение подзадачи 5: F max = 16.5 . Дальнейшее ветвление в этом направлении осуществлять нецелесообразно, так как большего, чем 16, целого значения функции цели получить невозможно. Ветвление подзадачи 5 в лучшем случае приведёт к другому целочисленному решению, в котором F = 16.

4-й шаг метода ветвей и границ. Исследуется подзадача 2 с ограничением x 2 ≥3, находится её оптимальное решение, которое соответствует вершине М (рис. 1) с координатами x * 1 =3.5, x * 2 =3. Значение функции цели при этом F max =16, которое не превышает найденного ранее решения. Таким образом, поиск вдоль ветви x 2 ≥3 следует прекратить.

Отметим, что алгоритм метода ветвей и границ является наиболее надёжным средством решения целочисленных задач, он положен в основу большинства прикладных программ для ПЭВМ, используемых для этих целей.

Для решения задач линейного программирования имеется широкий набор разнообразных машинных программ, которые избавляют от трудоёмкого процесса вычислений вручную. Однако интерпретация информации, выведенной на печать, невозможна без чёткого представления о том, почему и как работает .

Метод ветвей и границ

Метод ветвей и границ разработан Литлом, Мерти, Суини и Каре­лом. Рассмотрим основные идеи этого метода. Прежде всего, этот метод связан с некоторой общей схемой допущения и оценки альтернатив. Схема построения альтернативных предположений в общем виде может быть представлена, как это показано на рис. 3.9.

Вершины на рис. 3.9 соответствуют, как и ранее, состояниям зада­чи. Из каждой вершины выходит только два альтернативных направле­ния, что, впрочем, не ограничивает общности рассмотрения. Направле­ния отмечены буквами П с индексами. Идентификатор R(b i) есть неко­торая числовая оценка, приписываемая вершине b i .

Вообще говоря, не имеется ограничений на глубину построения де­рева, хотя ясно, что нужно стремиться к минимальной глубине. Этим, в частности, обосновывается выбор того или иного предположения П m: сначала следует стремиться доказать предположение, достоверность которого в наибольшей степени сомнительна, или наоборот, попытаться опровергнуть предположение, достоверность которого в наибольшей степени правдоподобна, т.е. действовать по принципу reductio ad absurdum, поскольку вероятность получения противоречия здесь наи­большая, это позволяет отсечь соответствующую альтернативу у ее "ис­токов", вместо того, чтобы строить новые альтернативные предполо­жения.

Пусть ищется состояние b * , в котором R(b *) минимально. Допус­тим далее, что известно некоторое текущее решение b x с текущим рекор­дом R(b x) . Тогда ясно, что любое состояние b i , в котором наилучшее достижимое значение R(b i) ³ R(b x) , может быть удалено (соответствующая часть дерева поиска отмечена, как показано с помощью заштрихованной области на рис. 3.9).


Рассмотрим задачу коммивояжера в следующей частной поста­новке. Пусть дано множество N из 4 городов, соединенных дорогами. Будем интерпретировать N сетью, в которой вершины соответствуют городам, причем дугам, соединяющим вершины, приписаны веса с ij , учитывающие затраты на переход коммивояжера из города i в город j (рис. 3.10а).

Полагаем с ij ³ 0 и с ii = ¥ , причем необязательно, чтобы с ij = с ji . Будем кодировать задачу матрицей затрат С = [с ij ], показанной на рис. 3.10,б.

В задаче коммивояжера требуется найти цикл с минимальной сум­мой затрат образующих его дуг, который обходит каждую вершину не более одного раза, за исключением одной вершины, из которой цикл "стартует" и в которой он же "заканчивается".

Рассмотрим решение этой задачи методом ветвей и границ. Решающими оказываются следующие два обстоятельства.

А1) Решению задачи коммивояжера соответствует выбор ровно од­ного элемента в каждой строке матрицы затрат С и ровно одного эле­мента в каждом столбце этой матрицы, причем сумма выбранных эле­ментов минимальна и они образуют цикл. Последнее замечание сущест­венно. Например, элементы (1, 2), (2, 3), (3, 1), (4, 4) не образуют цикл.

А2) Если из любой строки (столбца) вычесть (добавить) одну и ту же константу D , то результирующее значение С* суммарных затрат в оптимальном цикле Ц* уменьшится (увеличится) ровно на эту величину D .

Воспользуемся свойством А2. Выпишем минимальные элементы h j в каждом столбце j , после чего вычтем их из элементов соответствую­щих столбцов. Затем в полученной матрице выпишем минимальные элементы h i в строках i . Получим приведенную матрицу на рис. 2.11, а. Вычтем из каждой строки соответствующее значение h i (рис. 3.11, б).

Из матрицы на рис. 3.11, б легко устанавливается, что минимально возможное значение С* (которое обозначим ) вычисляется следую­щим образом

Теперь будем строить предположения для приведенной матрицы затрат на рис. 3.11, б.

Сделаем допущение, что дуга принадлежит Ц*; альтернатив­ное допущение означает, что . Если дуга , то полагаем для дуги с 4,3 = ¥, а также удаляем из матрицы затрат на рис. 2.11, б строку 3 и столбец 4, что в итоге дает матрицу, показанную на рис. 2.12, а. Приведенная матрица изображена на рис.2.12, б.

Для матрицы на рис. 2.12,б находим . Таким образом, получаем, что длина оптимального цикла, содержащего дугу суть

В то же время длина цикла равна 5+2+3+2=12, следовательно, делаем вывод, что дуга не входит в оптимальный цикл. Полагаем с 3,4 = ¥ .

Допустим теперь, что дуга . Проведя аналогичные вы­кладки устанавливаем, что минимальная суммарная величина затрат для цикла, содержащего дугу , составляет 13 единиц. Следователь­но, это допущение также отбрасывается, т.к. оно не улучшает текущий рекорд. Полагаем с 1,4 = ¥.

В результате в столбце 4 матрицы на рис. 3.10, б останется единст­венный допустимый элемент с 2,4 = 2 . Полагаем, . Это допущение позволяет удалить строку 2 и столбец 4. В результате получаем приведенную матрицу, изображенную на рис. 3.13, для кото­рой Ц* равно 12.

Допустим, что дуга Тогда автоматически следует, что дуга . Удалим строку 4 и столбец 3: получим приведенную матрицу, изображенную на рис. 3.14, из которой автоматически сле­дует, что дуга . Таким образом, из исходного предположения о том, что дуга , устанавливаем следующий оптимальный цикл, не содержа­щий дуги :



с суммарными затратами, равными 2 + 3 + 2 + 5 = 12.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Oooo. ooooooooo .ooooo. ooooooooo .ooooo.
.dP""Y88b d"""""""8" 888" `Y88. d"""""""8" d88" `8.
]8P" .8" 888 888 .8" Y88.. .8"
.d8P" .8" `Vbood888 .8" `88888b.
.dP" .8" 888" .8" .8" ``88b
.oP .o .8" .88P" .8" `8. .88P
8888888888 .8" .oP" .8" `boood8"

Введите число, изображенное выше:

Подобные документы

    Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 05.03.2012

    Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.

    курсовая работа , добавлен 01.10.2009

    Сущность и описание симплекс-метода и улучшенного симплекс-метода (метода обратной матрицы), преимущества и недостатки их применения в линейном прогаммировании. Листинг и блок-схема программы на языке Turbo Pascal для решения математической задачи.

    курсовая работа , добавлен 30.03.2009

    Форма организации основного переменно-поточного производства. Особенности переналадки станков как задача динамического программирования. Общая характеристика алгоритма формирования метода ветвей и границ. Сущность понятия комбинаторная конфигурация.

    курсовая работа , добавлен 20.12.2008

    Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.

    курсовая работа , добавлен 25.11.2011

    Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.

    курсовая работа , добавлен 08.11.2009

    Обзор задач, решаемых методом динамического программирования. Составление маршрута оптимальной длины. Перемножение цепочки матриц. Задача "Лестницы". Анализ необходимости использования специальных методов вероятностного динамического программирования.

    курсовая работа , добавлен 28.06.2015