Разное

Различия сетей. Межсетевое взаимодействие при организации

 Различия сетей. Межсетевое взаимодействие при организации

Реализация межсетевого взаимодействия средствами TCP/IP

-Многоуровневая структура стека TCP/IP

В стеке TCP/IP определены 4 уровня (рис. 5.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе разных сетевых технологий.

Рис. 5.5. Многоуровневая архитектура стека TCP/IP

-Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

-Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу -обеспечение надежной информационной связи между двумя конечными узлами -решает основной уровень стека TCP/IP, называемый также транспортным .

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

-Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

-Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии АТМ в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры.

-Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI

Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированны на работу с приложениями (рис. 5.7).

Рис. 5.6. Соответствие уровней стека TCP/IP семиуровневой модели OSI

Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.

Протоколы транспортного уровня уже более зависят от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако, подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах. Протоколы двух нижних уровней являются сетезависимыми, а следовательно, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узлах составной сети, так и на маршрутизаторах.

Каждый коммуникационный протокол оперирует с некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 5.8).

Рис. 5.8. Название единиц данных, используемые в TCP/IP

Потоком называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP.

Протокол TCP нарезает из потока данных сегменты .

Единицу данных протокола UDP часто называют дейтаграммой (или датаграммой). Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол межсетевого взаимодействия IP.

Дейтаграмму протокола IP называют также пакетом .

В стеке TCP/IP принято называть кадрами (фреймами) единицы данных протоколов, на основе которых IP-пакеты переносятся через подсети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в локальной технологии.

Выводы

· Составная сеть (internetwork или internet) - это совокупность нескольких сетей, называемых также подсетями (subnet), которые соединяются между собой маршрутизаторами. Организация совместной транспортной службы в составной сети называется межсетевым взаимодействием (internetworking).

· В функции сетевого уровня входит: передача пакетов между конечными узлами в составных сетях, выбор маршрута, согласование локальных технологий отдельных подсетей.

· Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Задачу выбора маршрута из нескольких возможных решают маршрутизаторы и конечные узлы на основе таблиц маршрутизации. Записи в таблицу могут заноситься вручную администратором и автоматически протоколами маршрутизации.

· Протоколы маршрутизации (например, RIP или OSPF) следует отличать от собственно сетевых протоколов (например, IP или IPX). В то время как первые собирают и передают по сети чисто служебную информацию о возможных маршрутах, вторые предназначены для передачи пользовательских данных.

· Сетевые протоколы и протоколы маршрутизации реализуются в виде программных модулей на конечных узлах-компьютерах и на промежуточных узлах - маршрутизаторах.

· Маршрутизатор представляет собой сложное многофункциональное устройство, в задачи которого входит: построение таблицы маршрутизации, определение на ее основе маршрута, буферизация, фрагментация и фильтрация поступающих пакетов, поддержка сетевых интерфейсов. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.

· Для алгоритмов маршрутизации характерны одношаговый и многошаговый подходы. Одношаговые алгоритмы делятся на алгоритмы фиксированной, простой и адаптивной маршрутизации. Адаптивные протоколы маршрутизации являются наиболее распространенными и в свою очередь могут быть основаны на дистанционно-векторных алгоритмах и алгоритмах состояния связей.

· Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP. Стек TCP/IP имеет 4 уровня: прикладной, основной, уровень межсетевого взаимодействия и уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

· Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

· На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

· Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

· Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

· В стеке TCP/IP для именования единиц передаваемых данных на разных уровнях используют разные названия: поток, сегмент, дейтаграмма, пакет, кадр.


Рис. 1.1.

LAN -интерфейсы (G0/0, G0/1, F0/0, F0/1) используются для связи с узлами (компьютерами, серверами), напрямую или через коммутаторы; WAN -интерфейсы (S1/1, S1/2) необходимы, чтобы связываться с другими маршрутизаторами и всемирной сетью Интернет . Интерфейсы могут подключаться к разным видам передающей среды, в которых могут использоваться различные технологии канального и физического уровней.

Когда адресат назначения находится в другой сети, то конечный узел пересылает пакет на шлюз по умолчанию , роль которого выполняет интерфейс маршрутизатора, через который все пакеты из локальной сети пересылаются в удаленные сети. Например, для сети 192.168.10.0/24 ( рис. 1.1) шлюзом по умолчанию является интерфейс F0/0 маршрутизатора А с адресом 192.168.10.1, а интерфейс F0/1 маршрутизатора В выполняет роль шлюза по умолчанию для сети 192.168.9.0/24. Через шлюз по умолчанию пакеты из удаленных сетей поступают в локальную сеть назначения.

При пересылке пакетов адресату назначения маршрутизатор реализует две основные функции:

  • выбирает наилучший (оптимальный) путь к адресату назначения, анализируя логический адрес назначения передаваемого пакета данных;
  • производит коммутацию принятого пакета с входного интерфейса на выходной для пересылки адресату.

Процесс выбора наилучшего пути получил название маршрутизация . Маршрутизаторы принимают решения, базируясь на сетевых логических адресах (IP-адресах ), находящихся в заголовке пакета. Для определения наилучшего пути передачи данных через связываемые сети, маршрутизаторы строят таблицы маршрутизации и обмениваются сетевой маршрутной информацией с другими сетевыми устройствами.

Ниже приведен пример конфигурирования основных параметров интерфейсов маршрутизатора R-A ( рис. 1.1). Интерфейсам маршрутизатора нужно задать IP- адрес и включить их (активировать ), т.к. все интерфейсы маршрутизаторов Cisco в исходном состоянии выключены.

R-A(config)#int f0/0 R-A(config-if)#ip add 192.168.10.1 255.255.255.0 R-A(config-if)#no shutdown R-A(config-if)# int g0/1 R-A(config-if)#ip add 192.168.20.1 255.255.255.0 R-A(config-if)#no shutdown R-A(config-if)# int s1/1 R-A(config-if)#ip add 210.5.5.1 255.255.255.0 R-A(config-if)#clock rate 64000 R-A(config-if)#no shutdown R-A(config-if)# int s1/2 R-A(config-if)#ip add 210.8.8.1 255.255.255.0 R-A(config-if)#clock rate 64000 R-A(config-if)#no shutdown

Команда clock rate переводит серийный интерфейс из исходного режима терминального устройства DTE в режим канального управляющего устройства DCE . При последовательном соединении маршрутизаторов один из двух соединяемых интерфейсов должен быть управляющим, т.е. DCE .

Остальные маршрутизаторы сети ( рис. 1.1) конфигурируются аналогичным образом.

После конфигурирования интерфейсов в таблице маршрутизации отображаются прямо присоединенные сети , что позволяет направлять пакеты, адресованные узлам в этих сетях. Кроме того, в рассматриваемом примере на всех маршрутизаторах сконфигурирована динамическая маршрутизация с использованием протокола RIP , о котором пойдет речь в "Динамическая маршрутизация" настоящего курса. Результатом конфигурирования устройств сети ( рис. 1.1) является приведенная ниже таблица маршрутизации сетевого элемента R-A:

R-A>show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is not set R 192.168.9.0/24 via 192.168.20.2, 00:00:09, GigabitEthernet0/1 C 192.168.10.0/24 is directly connected, FastEthernet0/0 C 192.168.20.0/24 is directly connected, GigabitEthernet0/1 R 200.30.30.0/24 via 192.168.20.2, 00:00:09, GigabitEthernet0/1 R 200.40.40.0/24 via 192.168.20.2, 00:00:09, GigabitEthernet0/1 C 210.5.5.0/24 is directly connected, Serial1/1 R 210.6.6.0/24 via 210.5.5.2, 00:00:18, Serial1/1 R 210.7.7.0/24 via 210.5.5.2, 00:00:18, Serial1/1 C 210.8.8.0/24 is directly connected, Serial1/2

В таблице символом С помечены четыре сети непосредственно присоединенные (connected) к определенным интерфейсам маршрутизатора. Сеть 192.168.10.0/24 присоединена к интерфейсу FastEthernet 0/0 (или F0/0), сеть 192.168.20.0/24 - к интерфейсу GigabitEthernet 0/1(или G0/1), сеть 210.5.5.0/24 - к интерфейсу Serial 1/1 (или S1/1), сеть 210.8.8.0/24 - к S1/2. Когда узел направляет кадр другому узлу из той же прямо присоединенной сети, то в такой пересылке шлюз по умолчанию ( интерфейс маршрутизатора) участие не принимает. Передача кадра сообщения производится непосредственно адресату с использованием МАС-адресов источника и назначения.

Маршруты могут создаваться вручную администратором (статическая маршрутизация ). Статические маршруты в таблице маршрутизации помечаются символом S (такие маршруты в приведенном примере отсутствуют). Таблица маршрутизации может также создаваться, обновляться и поддерживаться динамически (автоматически) с помощью протоколов маршрутизации.

В вышеприведенном примере маршруты к удаленным сетям помечены символом R , который указывает, что источником создания маршрутов к удаленным сетям является протокол RIP . Символом O помечаются маршруты, созданные протоколом OSPF , а символом D - протоколом EIGRP .

Перечень поддерживаемых протоколов маршрутизации можно посмотреть по команде Router(config)#router ? .

Вторая колонка (столбец) таблицы маршрутизации показывает адреса сетей, к которым проложен путь . Например, в первой строке указан маршрут к сети 192.168.9.0/24, который лежит через адрес следующего перехода ( next hop ) 192.168.20.2 и свой выходной интерфейс GigabitEthernet0/1. Таким образом, поступивший на один из интерфейсов маршрутизатора пакет, адресованный узлу в Сети 9, должен быть скоммутирован на выходной интерфейс G0/1. При адресации узлов, находящихся в других сетях, например в сети 210.6.6.0/24 или 210.7.7.0/24, в качестве выходного используется интерфейс Serial1/1.

В строке таблицы также указано значение таймера, например 00:00:09.

Кроме того, в квадратных скобках строк таблицы маршрутизации указаны, например: административное расстояние - 120 и метрика - 1. Административное расстояние (AD ) показывает степень достоверности (доверия) источника маршрута. Чем меньше AD , тем выше достоверность . Маршруты, созданные администратором вручную (статические маршруты), характеризуются значением AD = 1.

Источники (протоколы) маршрутизации имеют различные заданные по умолчанию административные расстояния (табл. 1.1).

Таблица 1.1. Административные расстояния по умолчанию
Источник (Протокол) Административное расстояние Источник (Протокол) Административное расстояние
Connected 0 OSPF 110
Static 1 IS-IS 115
eBGP 20 RIP 120
EIGRP 90 EIGRP (External) 170

Если на маршрутизаторе функционирует несколько протоколов, то в таблицу маршрутизации устанавливается маршрут , проложенный протоколом с наименьшим значением административного расстояния. В последней строке таблицы указано, что административное расстояниеEIGRP увеличено до 170, когда маршрут получен от внешнего (стороннего) маршрутизатора. Такой маршрут в таблице маршрутизации помечается символом D*EX .

Определение наилучшего (оптимального) пути любым протоколом маршрутизации производится на основе определенного критерия - метрики . Значение метрики используется при оценке возможных путей к адресату назначения. Метрика может включать разные параметры, например: количество переходов (количество маршрутизаторов) на пути к адресату, полосу пропускания канала, задержку, надежность , загрузку, обобщенную стоимость и другие параметры сетевого соединения. В вышеприведенной распечатке команды show ip route для маршрутов, созданных протоколом RIP , значение метрики равно 1. Это означает, что расстояние до маршрутизатора, к которому присоединена сеть назначения, составляет один переход. Наименьшая метрика означает наилучший маршрут. Метрика статического маршрута всегда равна 0.

Каждый интерфейс маршрутизатора подключен к сети (подсети), имеющей свой логический IP- адрес . Широковещательные сообщения передаются только в пределах сети или, по-другому, в пределах широковещательного домена. Поэтому говорят, что маршрутизаторы делят сеть на широковещательные домены . Маршрутизаторы блокируют широковещательные сообщения и не пропускают их в другие сети. Деление сети на широковещательные домены повышает безопасность , поскольку широковещательный шторм может распространяться только в пределах домена (в пределах одной сети).

Когда на один из интерфейсов маршрутизатора (входной интерфейс ) поступает пакет, адресованный узлу из другой присоединенной сети, он продвигается на выходной интерфейс , к которому присоединена сеть назначения.

Получив кадр на входной интерфейс, маршрутизатор:

  1. Декапсулирует пакет из кадра.
  2. Из заголовка пакета считывает IP-адрес узла назначения.
  3. С помощью маски вычисляет адрес сети назначения.
  4. Обращается к таблице маршрутизации, чтобы определить, на какой выходной интерфейс, ведущий к сети назначения, произвести коммутацию пакета.
  5. На выходном интерфейсе инкапсулирует пакет в новый кадр и отправляет его в направлении адресата назначения.

Подобная последовательность действий, выполняемая центральным процессором (ЦП) маршрутизатора, получила название программной коммутации . Она выполняется с каждым пакетом, поступившим на

  • SWOT-анализ деятельности предприятия ООО «Кока-Кола»: выявление альтернативных стратегических задач
  • V. Органы управления территориальным фондом и организация деятельности
  • V1: Формы взаимодействия продавца и покупателя на потребительском рынке
  • VI: Организация и управление торгово-посреднической деятельностью на рынке товаров
  • Актуальные этико-правовые проблемы взаимодействия человека и общества.
  • На предприятии используется глобальная компьютерная сеть, которая охватывает большие территории и включающая в себя большое число компьютеров.

    Глобальная компьютерная сеть служит для объединения разрозненных сетей так, чтобы пользователи и компьютеры, где бы они ни находились, могли взаимодействовать со всеми остальными участниками глобальной сети. На каждом компьютере есть выход в интернет, но с ограниченным доступом к социальным сетям.

    Компьютерные сети – это системы компьютеров, объединенных каналами передачи данных, обеспечивающие эффективное предоставление различных информационно-вычислительных услуг пользователям посредством реализации удобного и надежного доступа к ресурсам сети.

    Информационные системы, использующие возможности компьютерных сетей, обеспечивают выполнение следующих задач:

    1. Хранение и обработка данных

    2. Организация доступа пользователей к данным

    3. Передача данных и результатов обработки пользователям

    Эффективность решения перечисленных задач обеспечивается:

    1. Дистанционным доступом пользователей к аппаратным, программным и информационным ресурсам

    2. Высокой надежностью системы

    3. Возможностью оперативного перераспределения нагрузки

    4. Специализацией отдельных узлов сети для решения определенного класса задач

    5. Решением сложных задач совместными усилиями нескольких узлов сети

    6. Возможностью осуществления оперативного контроля всех узлов сети

    Виды компьютерных сетей:

    1. Локальные (ЛВС, LAN-Local Area Network)

    2. Региональные (РВС, MAN – Metropolitan Area Network)

    3. Глобальные (ГВС, WAN – Wide Area Network)

    В локальной сети абоненты находятся на небольшом (до 10-15 км) расстоянии.

    Глобальные сети соединяют абонентов, удаленных друг от друга на значительное расстояние, расположенных в разных странах, или разных континентах.

    По признакам организации передачи данныхкомпьютерные сети можно разделить на две группы:

    1. последовательные;

    2. широковещательные.

    В последовательных сетях передача данных осуществляется после­довательно от одного узла к другому. Каждый узел ретранслирует при­нятые данные дальше. Практически все виды сетей относятся к этому типу. В широковещательных сетях в конкретный момент времени пе­редачу может вести только один узел, остальные узлы могут только принимать информацию.

    Топология представляет физическое расположение сетевых компо­нентов (компьютеров, кабелей и др.). Выбором топологии опреде­ляется состав сетевого оборудования, возможности расширения сети, способ управления сетью.

    Существуют следующие топологии компьютерных сетей:

    1. шинные (линейные, bus);

    2. кольцевые (петлевые, ring);

    3. радиальные (звездообразные, star);

    4. смешанные (гибридные).

    Практически все сети строятся на основе трех базовых топологий:топологии «шина», «звезда» и «кольцо». Базовые топологии достаточно просты, однако на практике часто встречаются довольно сложные комбинации, сочетающие, свойства и характеристики нескольких топологий.

    В топологии «шина», или «линейная шина» (linear bus), используется один кабель, именуемый магистралью или сегментом, к которомуподключены все компьютеры сети. Эта топология является наиболее простой и распространенной реализацией сети.

    Так как данные в сеть передаются лишь одним компьютером, про­изводительность сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, тем медленнее сеть.

    Зависимость пропускной способности сети от количества компьютеров в ней не является прямой, так как, кроме числа компьютеров, на быстродействие сети влияет множество других факторов: тип аппаратного обеспечения, частота передачи данных, тип сетевых приложений, тип сетевого кабеля, расстояние между компьютерами в сети.

    «Шина» является пассивной топологией - компьютеры только«слушают» передаваемые по сети, данные, но не передают их от отправителя к получателю. Выход из строя какого-либо компьютера не оказывает влияния на работу всей сети. В активных топологиях компьютеры регенерируют сигналы с последующей передачей их по сети.

    Основой последовательной сети с радиальной топологией (топологией «звезда») является специальный компьютер - сервер, к которому подключаются рабочие станции, каждая по своей линии связи.

    Всяинформация передается через сервер, в задачи которого входит ретрансляция, переключение и маршрутизация информационных потоков в сети. Такая сеть является аналогом системы телеобработки, в которой все абонентские пункты содержат в своем составе компьютер.

    Недостатками такой сети являются:

    · высокие требования к вычислительным ресурсам центральной аппаратуры,

    · потеря работоспособности сети при отказе центральной аппаратуры,

    · большая протяженность линий связи,

    · отсутствие гибкости в выборе пути передачи информации если выйдет из строя рабочая станция (или кабель, соединяющий ее сконцентратором), то лишь эта станция не сможет передавать или принимать данные по сети. На остальные рабочие станции в сети этот сбой не повлияет.

    При использовании топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются в одном направлении и проходят через каждый компьютер. Каждый компьютер является повторителем, усиливая сигналы и передавая их следующему компьютеру. Если выйдет из строя один компьютер, прекращает функционировать вся сеть.

    Способ передачи данных по кольцевой сети называется передачей маркера. Маркер последовательно, от компьютера к компьютеру, пе­редается до тех пор, пока его не получит тот компьютер, который дол­жен передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя и отправляет его дальше по кольцу.

    Данные передаются через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Далее принимающий компьютер посылает передающему сообщение - подтверждение о приеме данных. Получив сообщение - подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

    На предприятие используется топология типа общая шина, которая представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

    Отправляемое какой-либо рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет, кому адресовано сообщение - если сообщение адресовано ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Для того чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» «МАРКЕР» остальным компьютерам такой сети.

    Достоинства:

    1. Небольшое время установки сети;

    2. Дешевизна (требуется кабель меньшей длины и меньше сетевых устройств);

    3. Простота настройки;

    4. Выход из строя одной рабочей станции не отражается на работе всей сети.

    Недостатки:

    2. Неполадки в сети, такие как обрыв кабеля или выход из строя терминатора, полностью блокируют работу всей сети;

    3. Затрудненность выявления неисправностей;

    4. С добавлением новых рабочих станций падает общая производительность сети.

    Обмен данными между сотрудниками на предприятии происходит с помощью Viber.

    Viber - новое уникальное приложение, доступное каждому пользователю смартфона или компьютера. Viber –звонки, и возможность отправлять голосовые сообщения и видеофайлы, и многое другое.


    | | 3 | |

    виртуальных каналов, межсетевая передача без соединений. Тунеллирование. Межсетевая

    маршрутизация. Фрагментация. Firewall .

    На рис.5.33 показаны различные сценарии соединений между сетями:

    0. LAN-LAN: научный сотрудник передает файл в рамках локальной сети кампуса;

    1. LAN-WAN: научный сотрудник посылает письмо коллеги;

    2. WAN-WAN: два гуманитария обмениваются мнениями;

    3. LAN-WAN-LAN: научные сотрудники разных университетов общаются между собой.

    Название средства, соединяющего сети между собой, зависит от того на каком уровне это происходит.

    Уровень 1: репитор копирует биты одного кабельного сегмента в другой;

    Уровень 2: мост передает пакеты канального уровня из одной ЛВС в другую;

    Уровень 3: мультипротокольный маршрутизатор передает пакеты между разными сетями;

    Уровень 4: транспортный шлюз соединяет байтовые потоки на транспортном уровне;

    Над уровнем 4: прикладной шлюз соединяет приложения в разных сетях.

    Напомним, что термин шлюз мы используем для обозначения устройства, соединяющего разные сети.

    Репитор - устройство обеспечивающее усиление и очистку сигнала. На МАС уровне трансивер обеспечивает передачу в пределах 500 метров. Репитор обеспечивает передачу на 2.5 км.

    Мост способен хранить и маршрутизировать пакеты на канальном уровне. Он получает канальный пакет целиком и решает по какой линии его передать дальше.

    Мультипротокольные маршрутизаторы - примерно то же, что и мосты, но работают на сетевом уровне. Они получают пакеты сетевого уровня и определяют куда их передать.

    На рис.5.34 показаны разные схемы включения шлюза.

    Чем различаются сети

    На рис.5.35 перечислены основные различия, которые могут встречаться на сетевом уровне.

    Стыковка виртуальных каналов

    Есть два общих приема для межсетевого взаимодействия: стыковка, ориентированная на соединения, подсетей с виртуальными каналами, и взаимодействие подсетей через дейтаграммы. На рис.5.36 показана модель стыковки виртуальных каналов. Абонентская машина одной сети устанавливает виртуальное соединение не только внутри своей сети, но и в другой, вплоть до получателя. Внутри своей сети соединение прокладывается по правилам этой сети вплоть до мультипротокольного маршрутизатора, ближайшего к сети получателя. Затем от этого шлюза до получателя по правилам сети получателя. (Рассмотреть прохождение пакетов вдоль соединения.)

    На рис.5.36 показано решение с использованием полного шлюза. Однако, такое же решение возможно и с полу шлюзом. Это решение хорошо работает для сетей с примерно одинаковыми характеристиками.

    Межсетевое взаимодействие без соединений

    На рис.5.37 показано решение на основе соединения сетей на уровне дейтаграмм. В этом подходе единственный сервис, какой сетевой уровень предоставляет транспортному - "впрыскивание" дейтаграмм в подсеть. Дальше приходиться надеяться на удачу. Такое соединение возможно, если соединяемые подсети используют одни и те же сетевые или, очень близкие, протоколы. Вспомним проблемы мостов между подуровнями 802.х.

    Другая проблема - адресация. Различия в адресации могут быть столь велики, что соединение станет не возможным. Например, в ТСР/IP используется 32 разрядный адрес, а в OSI - десятичный номер, подобный телефонному. Выход - распространять каждую адресацию на все машины в мире. Однако, очевидно, что это не работает.

    Другой выход - создать универсальный пакет, который понимали бы разные сети то же не работает. Проблема - всех уговорить признать один формат как универсальный не возможно.

    Соединение виртуальных каналов (достинства): буфера можно резервировать заранее, порядок пакетов сохраняется, проще управлять повторной передачей из-за задержки, короткие заголовки пакетов.

    Соединение виртуальных каналов (недостатки): хранение таблицы соединения, сложности в изменении маршрута при перегрузках, высокая надежность маршрутизаторов вдоль соединения.

    Основное достоинство дейтаграммного подхода - он может использоваться между сетями, которые не поддерживают виртуальных соединений. Категория таким сетей весьма велика.


    Тунелирование

    Это соединение двух одинаковых сетей через третью. Например так как показано на рис.5.38. Решение проблемы межсетевого соединения в этом случае - тунелирование.

    Межсетевая маршрутизация

    рис.5.40. На этом рисунке внутри каждой сети также происходит маршрутизация. Она происходит и на межсетевом уровне. Так мы приходим к двум уровням маршрутизации: внутреннему межшлюзовому протоклу и внешнему. Поскольку каждая сеть в определенном смысле автономна, то часто используют термин - автономная система.

    Главная сложность, опасность отличающая внутри сетевую маршрутизацию от межсетевой - государственные границы. Здесь возникают различия в законах разных стран, различия в оплате трафиков, принятые на территориях разных стран и т.д.

    Фрагментация

    В каждой сети есть свой максимальный размер пакетов. Это ограничение имеет несколько причин:

    1. Аппаратура (например максимальный TDM слот)

    2. Операционная система (все буфера по 512 байтов)

    3. Протоколы (например, размер поля длины пакета)

    4. Совместимость с некоторыми национальными и международными стандартами

    5. Стремление сократить ошибку, наводимую повторной передачей

    6. Желание предотвратить захват канала на долго одним пакетом.

    Максимальный размер пакета колеблется от 48 байтов у АТМ до 65 515 байтов у IP (у протоколов более верхних уровней он еще больше).

    Очевидно, первая же проблема возникает при попытке передать большой пакет через сеть, у которой максимальный размер пакета меньше. Одно из решений проложить маршрут для таких пакетов так, чтобы избежать таких ситуаций. Однако, что делать если эта сеть - сеть где расположен получатель?

    Единственное решение - разрешить шлюзу разбивать пакет на фрагменты и отправлять каждый фрагмент независимо. В этом случае возникает проблема сборки фрагментов.

    Есть два подхода для этого. Первый делать фрагменты столь малыми, что любая сеть на их пути будет прозрачна для них. Это решение показано на рис.5.41(а). Когда большой пакет поступает, его разбивают на малые и всех их отправляют на один и тот же выходной шлюз, где они собираются в большой пакет снова.

    У такой фрагментации есть трудности: как узнать что все фрагменты достигли выходного шлюза, как выбирать маршрут для фрагментов, накладные расходы на разбиение на фрагменты и сборку из фрагментов пакета.

    Другой подход - разбив пакет на фрагменты трактовать каждый из них как обычный пакет. Это решение показано на рис.5.41(в). Сборка фрагментов происходит только в узле назначения. Однако, при таком подходе каждый хост должен уметь собирать пакеты из фрагментов.

    Firewall

    Итак нужен механизм, который бы различал "чистые" биты от "не чистых". Один способ шифровать данные. Так поступают при передаче данных. Со способами шифрования мы познакомимся позднее. Но шифрование бессильно против вирусов, хакеров и проч. нечести. Одним из средств борьбы с ними служат барьеры (firewall).

    Барьер - современная форма крепостного рва. Компания может иметь сколь угодно сложную сеть, объединяющую много ЛАН. Однако, весь трафик в сеть и из этой сети идет только через один шлюз, где происходит проверка пакета на соответствие определенным требованиям. Если пакет не удовлетворяет этим требованиям, то он не допускает в или из сети.

    Барьер состоит из двух маршрутизаторов, фильтрующих пакеты и шлюза приложений. Фильтры содержат таблицы сайтов, от которых можно принимать пакеты и которым можно передавать пакеты. Шлюз приложений ориентированы на конкретные приложения. Например, шлюз для эл.почты. Этот шлюз анализирует поле данных и принимает решение сбросить пакет или нет.


    Похожая информация.


    Описание презентации по отдельным слайдам:

    1 слайд

    Описание слайда:

    ГБПОУ ВО «Острогожский многопрофильный техникум» Разработал преподаватель спецдисциплин Солодовникова О.А. Презентация По МДК 02.01 «Инфокоммуникационные системы и сети» На тему « Организация межсетевого взаимодействия»

    2 слайд

    Описание слайда:

    Введение Взаимодействие с PSTN Взаимодействие с PSPDN 3.1. Случай А 3.2. Случай B Взаимодействие с СSPDN Заключение Литература План

    3 слайд

    Описание слайда:

    Введение При объединении локальных сетей (которые называются сегментами) в одну сеть пользователи этих сетей могут совместно использовать файлы, ресурсы и средства электронной почты. Если все сети одной фирмы используют одну и ту же топологию и метод доступа (например, Ethernet), то объединить их относительной несложно. Вам могут потребоваться для этого различные мосты, маршрутизаторы, кабельные концентраторы и коммутационные блоки, о которых рассказывается в данной главе.

    4 слайд

    Описание слайда:

    Межсетевое взаимодействие необходимо для абонентов ISDN с целью связи с абонентами других сетей, как показано на рис. 2.21. Некоторое время проблема организации межсетевого взаимодействия между ISDN и другими сетями была сложной. Несмотря на использование ISDN в различных государственных структурах, услуги и атрибуты услуг могут отличаться Рис. 2.21. ISDN пользователи имеют доступ ко всем сетям Типичные функции межсетевого взаимодействия включают: § преобразование между различными системами нумерации; § адаптацию электрических характеристик различных сетей; § преобразование между различными системами сигнализации, обычно называемое отображением; § преобразование между различной техникой модуляции.

    5 слайд

    Описание слайда:

    Взаимодействие с PSTN В ISDN детальная информация о запрашиваемой услуге и совместимости терминалов может передаваться вне канала через сеть от терминала к терминалу. Это является характеристикой систем сигнализации, применяемых в ISDN. "Вне канала" означает, что информация сигнализации и пользовательская информация передаются по отдельным путям. Системы сигнализации, используемые в PSTN, не имеют такой способности. Через PSTN в ISDN может быть передана только ограниченная информация. Кроме того, цифровые данные со скоростью 64 кбит/с или со скоростью, адаптированной к 64 кбит/с, передаются через ISDN со скоростью 64 кбит/с. Но в PSTN цифровые данные должны быть преобразованы в аналоговые посредством модема и переведены через PSTN как 3,1 кГц аудио – информация (рис. 2.22).

    6 слайд

    Описание слайда:

    Взаимодействие с PSPDN Трафик между ISDN и сетью передачи данных с коммутацией пакетов общего пользования (PSPDN) может быть представлен двумя способами, определенными CCITT как случай А и случай В.

    7 слайд

    Описание слайда:

    Взаимодействие с PSPDN Случай А В случае А терминалы, передающие пакеты в ISDN, соединяются с помощью информационных каналов с сетью коммутации пакетов. Пакетная коммутация используется в PSPDN даже для вызовов между двумя терминалами, передающими пакеты в ISDN.

    8 слайд